
Network Coding — State of the Art

Florian Stamer, Jonas Andre∗, Stephan Guenther∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: florian.stamer@tum.de, andre@in.tum.de, guenther@tum.de

Abstract—Network Coding (NC) [1] confers to intermediate
nodes of a network the ability to combine packets via code.
Instead of the traditional store-and-forward mechanisms of
routing this new paradigm of store-code-forward mechanism
has the potential to increase throughput, robustness against
network loss, and security.

In this paper we give an overview of recent advancements
in network coding. We present an implementation of a
Random Linear Network Coding (RLNC) data plane in
P4 as introduced in [2]. Furthermore we focus on two
optimization approaches for RLNC, with one being a novel
Online Directed Acyclic Graph (DAG) algorithm [3] that
tries to improve the decoding process and the other being
an optimization to the encoding process of RLNC through
the use of processor specific SIMD vector extensions [4]. By
comparing the benefits of using the online DAG algorithm or
SIMD vector extensions, we conclude the latter to be more
practical since the online DAG algorithm is quite complex
and only provides slightly better performance compared to
already existing offline DAG algorithms.

Index Terms—Network Coding, Random Linear Network
Coding, Directed Acyclic Graph, AVX, SIMD

1. Introduction

In traditional networks packets are forwarded through
store-and-forward mechanisms, but some networks can
profit from combining packets to improve throughput.
Ahlswede et al. [1] proposed the idea of combining pack-
ets via code and creating a store-code-forward mechanism
called Network Coding (NC). This way inner nodes of
a network can freely combine packets and provide the
benefit of improved throughput [5], robustness against
network loss [6], and security [7].

In Figure 1 we give an example of a butterfly network
to illustrate how network coding can outperform tradi-
tional routing. The two source nodes (server A/B) transmit
information A and B, respectively. Both must be received
by the destination nodes (PC 1/2). With traditional routing
only information A or B can be sent between the two
switches at a time, thus both destination nodes do not
receive all information at the same time. With network
coding the information can be combined by a simple op-
eration (XOR) and reconstructed at the destination nodes,
in this case with antoher XOR operation.

The purpose of this paper is to give an overview of
the current state of network coding and advances that have
been made. We structure the paper as follows:

server A

server B

PC 1

PC 2

A
A

B
B

A+B
A+B
A+B

Figure 1: Butterfly Network

We first give a short summary of the network coding
basics. We proceed to take a look at a P4 implementation
of a Random Linear Network Coding (RLNC) data plane
in Section 2. In Section 3 the focus lies on optimizing
the RLNC decoding process through the usage of an
Online Directed Acyclic Graph (DAG) algorithm. Another
potential optimization to the performance of RLNC are
Single Instruction Multiple Data (SIMD) vector extensions
of certain processors. We take a deeper look at this idea
in Section 4. We provide a comparison of the online DAG
and SIMD vector extension approaches in Section 5 and
give our conclusion as well as thoughts on future work in
Section 6.

Basics of Network Coding. Network Coding introduces
the ability to combine packets via code. In the case
of Linear Network Coding (LNC) an encoded packet is
created by linear combinations of N packets. In general
the group of packets is referred to as a generation and the
number of packets N is called the generation size. These
linear combinations can be expressed as a matrix-vector
multiplication over a given finite extension field. A finite
field is a Galois field of the form GF (2n). For (random)
linear network coding the finite extension fields GF (21),
GF (22), GF (24) and GF (28) are of particular interest as
mentioned in [4]. For convenience of notation we use Fq

with q = 2n instead of GF (2n).
The following mathematical description of the encod-

ing process is based on [4]. A packet with M sym-
bols, each of size n, can be written as vector a =
[a1, a2, . . . , aM ]T with the symbols ai ∈ Fq. This gives
for a generation of N packets the matrix

A = [a1 . . .aN ] =



a11 . . . a1N

...
. . .

...
aM1 . . . aMN


 ∈ FM×N

q . (1)

An encoded packet b is generated by multiplication with

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

63 doi: 10.2313/NET-2021-05-1_13



an encoding vector c ∈ FN
q .

b = Ac =

N∑

i=1

ciai. (2)

The components of c are chosen from the finite extension
field Fq, either independently and identically distributed
for RLNC or otherwise by some deterministic algorithm.
In the given extension fields the addition operation is
always a bit-wise XOR operation while the multiplication
is a more complex modulo operation given a reduction
polynomial specific to the field.

The decoding process is more complex and uses algo-
rithms such as Gauss-Jordan elemination or LU decom-
position on the recieved encoded packets.

2. An RLNC Implementation in P4

A recent implementation of a random linear network
coding data plane in P4 has been proposed by Gonçalves
et al. in [2]. By using RLNC, the network needs to be able
to transmit additional information such as the encoding
vectors. Thus a new packet format is designed to cope
with this new way of packet processing. Since they use
RLNC for their approach, the coefficients are chosen
independently and uniformly at random from the finite
field Fq. This provides the bonus of decentralizing code
generation computation, but has the drawback that enough
linearly independent coded packets are needed to decode
the original message. We elaborate more on the packet
format, the P4 program, and different methods of finite
field multiplication in the following subsections.

2.1. Packet Format

The packet format of the generation-based RLNC
protocol uses an inner and an outer header. Both are
carried over Ethernet frames. The inner header contains
the symbols and the coding vectors, if present, and carries
information about the packet length as well as the type of
packet. The types of packets are either coded or uncoded.
The outer header holds information about meta parame-
ters, such as the generation id, generation, finite field and
symbol size.

2.2. RLNC P4 Program

The P4 PISA-like switch architecture buffers packets
of different generations, which are limited in number per
buffer. A generation stays buffered until enough packets
of this generation are collected and the coding process
starts. New linear combinations of the packets are trans-
mitted until receiving an acknowledgment. Afterwards the
buffer is flushed and starts accumulating packets of a new
generation. The outer header of the newly coded packets
stays the same while the inner header, i.e., the symbols
and coding vectors, are readjusted.

2.3. Finite Field Multiplication

For the finite field arithmetic module the authors have
featured two multiplication techniques. One is a compute-
intensive method, based on simple shift and add opera-
tions, that results in an iterative algorithm which operates

bit by bit. The other algorithm is based on pre-computed
lookup tables, containing values for the log and antilog
of the elements in the finite extension field Fq.

3. Parallelization of the Decoding Process

While random linear network coding improves
throughput, robustness against network loss, and security,
it suffers from decoding delay since enough linearly in-
dependent packets have to arrive at the node before the
decoding process can commence. This can be improved by
using a progressive RLNC decoder that can partially de-
code a generation before all packets arrive. Based on pro-
gressive RLNC decoding Wunderlich et al. [3] proposes
a novel strategy using directed acyclic graph scheduling.
By arranging matrix block operations in a DAG manner,
multiple operations are worked on in parallel by different
threads. The novelty of this approach lies in it being an
Online DAG algorithm, thus constructing the graph on the
fly, instead of pre-computing, and making optimal use of
progressive RLNC decoding. In the following subsections
we give an explanation about the difference between non-
progressive and progressive RLNC decoders, how the ma-
trix block operations are defined and how the online DAG
scheduling works, based on the information provided in
[3].

3.1. Non-Progressive vs Progressive RLNC De-
coder

There exist two categories of RLNC decoders, the non-
progressive and progressive decoders. The classic non-
progressive decoder expects all information to be present
before starting the decoding process. An example is the
generation-based RLNC approach as presented in [2],
which we elaborate on in Section 2. Such a decoder can
make use of matrix inversion algorithms other than Gauss-
Jordan elimination, such as LU inversion.

A progressive RLNC decoder on the other hand can
partially decode the data that has already been gathered
and does not need to wait for the arrival of all data.
While new encoded packets and coding vectors can be fed
into the decoder as they are received. When considering
conventional full-vector RLNC code, the decoded packets
can only be released after the last packet of the genera-
tion is decoded. An optimization for such a progressive
RLNC decoder is the use of low-delay codes, like sliding
window codes [8, 9] or systematic generation based codes
[10]. This way the decoder can already release any fully
decoded information to upper levels without receiving all
coded packets of a generation.

A hybrid scheme aims to combine the strengths of
both non-progressive and progressive RLNC decoders.
By performing sub-generation, more than one encoded
packet, but less than the normal generation size, based
progressive RLNC decoding [11].

3.2. Matrix Block Operations

A given matrix, of coding coefficients or encoded
packets, gets split into blocks of size b × b, where
b ≤ N ∧N/b ∈ N and 16 ≤ N ≤ 1024 is the generation

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

64 doi: 10.2313/NET-2021-05-1_13



size, e.g. a matrix of dimension 16× 16 is split into four
blocks of size 4×4. Each block gets separately processed
by the three phases of the Gauss Jordan elimination with
the use of helper matrices, hence the name Matrix Block
Operations.

Given the number of symbols per packet M , the
generation size N and the finite extension field Fq, let
C ∈ FN×N

q be the coding coefficient matrix and D ∈
FN×M
q be the data matrix. Both are initially padded with

zeros. C ′ ∈ F b×N
q and D′ ∈ F b×M

q describe the encoded
coding coefficient matrix and data matrix respectively, for
the sub-generation of size b. In the following the ‘row of a
block X’ is used to reference every block left and right of
X spanning over the same rows and respectively ‘column’
for the blocks above and below of X. For a more in depth
explanation and helpful figures we refer the reader to [3].

Forward Elimination. When a new sub-generation of
encoded packets arrives, i.e. C ′ and D′, the blocks in
C containing the pivots on the diagonal are used to
fill the corresponding blocks in C ′ with zeros. The row
operations for a block are recorded in a helper matrix and
applied to the other blocks in C ′ and to the blocks of
D′. Gaussian elimination is used on the first block in C ′

containing non zero values. The row operations are once
more recorded in a helper matrix and applied to the rest
of C ′ and D′.

Backward Substitution. Continuing in this phase C ′

contains blocks of zeros followed by a block with the
pivots on the diagonal. This block is used to fill the cor-
responding block X in C with zeros. The row operations
are once again recorded in a helper matrix and applied to
the row of X in C and D. This process is repeated for
every non zero block in the column of X.

Row Swapping. After the backward substitution con-
cludes, both C ′ and D′ are moved to the corresponding
row in C and D. If C is still missing pivots on the
diagonal the algorithm starts once more after collecting
enough new packets for a sub-generation. This is repeated
until C is an identity matrix.

3.3. Online DAG Algorithm

New block operations are added on the fly to the Di-
rected Acyclic Graph, instead of collecting all operations
and constructing the entire DAG a priori (offline). This
way the algorithm can take advantage of the properties
of a progressive RLNC decoder. The iterative RLNC pro-
gram is executed by a main thread. Block operations are
added to the online DAG as new task descriptions, each
summarizing the read and write dependencies regarding
the other task descriptions. The main thread can then
delegate tasks to a later time or another worker thread. The
worker threads check independently for task descriptions
in the DAG which have all of their dependencies resolved,
pick and execute them.

Task Descriptions. These are objects in the DAG that
hold information about the type of operation they rep-
resent, pointers to memory where matrices are stored,
parameters describing said matrices (e.g. size) and more.

Every object also has an access queue that keeps track of
the sub tasks, that need to be concluded beforehand.

4. Encoding Process Optimization Using
SIMD Vector Extensions

Contrary to optimizing the decoding process of (ran-
dom) linear network coding, Günther et al. [4] try to
improve the encoding process. In particular they imple-
ment and evaluate algorithms for finite field multiplication
using processor specific vector instructions. For this study
they implement two algorithms using the new family
of instruction sets AVX512 in their finite field library
libmoepgf [12]. AVX512 is a family of extensions and
the two subsets AVX512-F (foundation) and AVX512-BW
(byte and word) are the focus for the presented algorithms.
While the byte-wise operations of AVX512-BW set of
instructions are only supported by Intels Skylake-X and
Ice Lake processors as of the time [4] was written, the
AVX512-F extension will be supported by any processor
that supports AVX512.

As we present in Section 1, the encoding process (2)
expects the vectors ai to be multiplied by the constant
values ci and finally accumulated into b, this is commonly
know as multiply and add (madd). One such algorithm
using vector instructions has been proposed by Plank et
al. [13] and is called shuffle algorithm. This algorithm
requires a shuffle instruction to swap words in vector
registers. Hence the byte-wise operations of the AVX512-
BW instruction set are necessary. Another algorithm in-
troduced by Günther et al. in [12] is called imul. Contrary
to the shuffle algorithm, it does not need any special
instructions, but its complexity linearly depends on the
word size. For the implementation this algorithm relies
on the AVX512-F instructions set. Both algorithms are
implemented for the finite expansion fields F2, F4, F16

and F256.

Shuffle Algorithm . This algorithm expects the accu-
mulator array b, the source packet vector ai and the
coefficient ci to calculate b := b + ai · ci. The shuffle
algorithm needs certain constants, such as lookup tables
and bit masks, different for each finite field Fq. Those are
preloaded into the register variables. After handling the
trivial cases for ci ∈ {0, 1}, either no operation or a simple
XOR, additional temporary registers are preloaded and the
necessary madd operations using the shuffle instruction
are performed.

Imul Algorithm. Similar to the previous algorithm, the
imul algorithm expects the accumulator array b, the source
packet vector ai and coefficient ci. This algorithm also
preloads lookup tables and after caching the trivial cases,
sets up the temporary registers. One holds bit masks to
isolate the coefficients of ai and the other the powers of
the constant ci. These again are different depending on
the finite field Fq. Afterward polynomial multiplication is
performed inside a loop.

5. Evaluation and Comparison

In this Section we give a compact overview of the
results and evaluations of both optimization approaches

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

65 doi: 10.2313/NET-2021-05-1_13



and put the results into perspective. It is important to
mention, that the presented algorithms (online DAG vs
shuffle/imul) try to optimize different processes (decoding
vs encoding) and have been tested on different hardware.

Online DAG. The algorithm has been tested on both
the ODROID-XU-3 and ODROID-XU+E, each equipped
with four Cortex-A15 (big) cores and four Cortex-A7
(LITTLE) cores. The Cortex-A15 are clocked at 2.0GHz
in XU-3 and 1.6GHz in XU+E, while the Cortex-A7 are
clocked at 1.4GHz and 1.2GHz respectively [3].

While keeping the finite field (F256) the same through-
out the tests, a multitude of combinations for different
values of the other parameters such as generation size,
symbol size, number of threads and more are examined.
This way optimal parameterization for high throughput
and low delay are collected. For the benchmark the online
DAG algorithm is compared to its offline DAG counter
part and a state-of-the-art progressive coefficient matrix
duplication (CD) approach [14]. The online DAG ap-
proach performs in general similar to the conventional
offline method, while resulting in slightly better perfor-
mance for smaller generations sizes. This is expected to be
the result of the computational complexity, that increases
with growing generation size. This approach performs also
better then the CD approach for small symbol size, while
falling short when the symbol size is especially large.

AVX512 Instruction Set Extensions. The shuffle and
imul algorithms are tested on a multitude of processors,
but in this overview we only mention the ones that support
AVX512. These are the Intel Xeon Gold 6130 (clocked at
3.7GHz), Silver 4116 (clocked at 3.0GHz) and D-2166NT
(clocked at 3.0GHz) [4].

For the tests only a single core is used and the
generation size is kept at 16, while different finite fields
(F2, F4, F16, F256) get analyzed. The AVX512 implemen-
tations perform in general better then the AVX2 imple-
mentations, but when the packet size reaches the size of
the L2 cache the throughput drops regardless of exten-
sion used. Even for the commonly used finite field F256

an average of roughly 30Gbit/s of throughput can be
achieved.

Encoding vs Decoding Optimization. We compare and
evaluate both optimizations based on their performance
gain compared to existing methods, as well as their im-
plementation complexity. The online DAG algorithm is a
complex approach, needing support for matrix block oper-
ations and the DAG scheduling with custom task descrip-
tions. It provides only slight performance improvements
compared to the common offline DAG algorithms, with
throughput measured in MiB/s. Contrary the AVX512
based shuffle and imul algorithm already have library
implementations and perform better compared to the older
AVX2 extension, with throughput measured in Gbit/s.
The difference in the units of measurement are most
likely linked to the higher computational complexity of
the decoding process or the different hardware used. To
improve the performance of an RLNC implementation,
the optimization of the encoding process through the use
of vector extensions should be prioritized.

6. Conclusion and future work

We provide an overview of current advances in net-
work coding, with the focus on two approaches to improve
and optimize random linear network coding. One uses
a progressive RLNC online directed acyclic graph based
algorithm to parallelize the decoding process. The other
provides the shuffle and imul algorithm, which make use
of AVX512 vector extensions to speed up the finite field
multiplication of the encoding process. In Section 5 we
provide a summary of the evaluations of both approaches
and came to the conclusion, that the use of processor
specific vector extensions yield better results with less
complex algorithms. Thus the optimization of the encod-
ing process is more appealing.

Different implementations of network coding proto-
cols or other areas of network coding, such as network
security, can be of interest and be the focus of future
works.

References

[1] R. Ahlswede, N. Cai, S. . R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204–1216, 2000.

[2] D. Goncalves, S. Signorello, F. M. V. Ramos, and M. Medard,
“Random linear network coding on programmable switches,” in
2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS 2019, 2019.

[3] S. Wunderlich, F. H. P. Fitzek, and M. Reisslein, “Progressive
Multicore RLNC Decoding with Online DAG Scheduling,” IEEE
Access, vol. 7, pp. 161 184–161 200, 2019.

[4] S. M. Günther, N. Appel, and G. Carle, “Galois Field Arithmetics
for Linear Network Coding using AVX512 instruction set exten-
sions,” 2019.

[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 497–510, 2008.

[6] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for
reliable communication over packet networks,” Physical Commu-
nication, vol. 1, no. 1, pp. 3–20, 2008.

[7] L. Lima, M. Médard, and J. Barros, “Random linear network
coding: A free cipher?” in IEEE International Symposium on
Information Theory - Proceedings, 2007, pp. 546–550.

[8] S. Wunderlich, F. Gabriel, S. Pandi, F. H. P. Fitzek, and
M. Reisslein, “Caterpillar RLNC (CRLNC): A Practical Finite
Sliding Window RLNC Approach,” IEEE Access, vol. 5, pp.
20 183–20 197, 2017.

[9] F. Gabriel, S. Wunderlich, S. Pandi, F. H. P. Fitzek, and
M. Reisslein, “Caterpillar RLNC With Feedback (CRLNC-FB):
Reducing Delay in Selective Repeat ARQ Through Coding,” IEEE
Access, vol. 6, pp. 44 787–44 802, 2018.

[10] D. E. Lucani, M. Médard, and M. Stojanovic, “Systematic network
coding for time-division duplexing,” pp. 2403–2407, 2010.

[11] M. Kim, K. Park, and W. W. Ro, “Benefits of using parallelized
non-progressive network coding,” Journal of Network and Com-
puter Applications, vol. 36, no. 1, pp. 293–305, 2013.

[12] S. M. Günther, M. Riemensberger, and W. Utschick, “Efficient
GF arithmetic for linear network coding using hardware SIMD
extensions,” in 2014 International Symposium on Network Coding
(NetCod), 2014.

[13] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast galois
field arithmetic using intel simd extensions,” USENIX Conference
on File and Storage Technologies, vol. 11, 2013.

[14] H. Shin and J.-S. Park, “Optimizing random network coding for
multimedia content distribution over smartphones,” Multimedia
Tools and Applications, vol. 76, 10 2017.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

66 doi: 10.2313/NET-2021-05-1_13


