
TLS Certificate Analysis

Jonas Lang, Markus Sosnowski∗, Johannes Zirngibl∗, Patrick Sattler∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: langj@cs.tum.de, sosnowski@net.in.tum.de, zirngibler@net.in.tum.de, sattler@net.in.tum.de

Abstract—TLS Certificates contain a variety of different
information. In this paper, we give an overview on what
information we could extract from a large dataset of TLS
certificates. We gather information about who issues these
certificates and what they do with select fields. Also, we use
zLint, a linter, to check certificates for issues. Finally, we
look at the trust chains of leading to certificates.

Index Terms—tls certificate analysis, internet-wide, zlint,
trustchain, PKI

1. Introduction

In recent years, using HTTP over TLS (HTTPS) has
become more and more widespread for securely commu-
nicating over the web. Major Web-Browsers are mark-
ing websites using the plain Hypertext Transfer Protocol
(HTTP) as "insecure" [1], [2], so websites are incentivized
to provide access by HTTPS [3]. While establishing a
Transport Layer Security (TLS) connection, the server has
to present a X.509 Certificate. This is also called a TLS
certificate. The client has to determine if the certificate is
valid, and if the certificate can be trusted. If the certificate
is considered invalid or not trusted, web-browsers may
block access and display a warning [4], [5]. In 2019, the
management of TLS certificates has been standardized
by the Automatic Certificate Management Environment
(ACME) protocol. This protocol simplifies automated is-
suance, renewal and revocation of a certificate [6]. In this
paper, we focus on the analysis of TLS certificates. We
first introduce the concept of TLS certificate in section 2”.
Then we present a short overview of the design of our
analysis in section 3”, followed up by the details of the
implementation in section 4”. The core part of our paper is
the evaluation of the results in section 5”. Finally, we draw
a conclusion and present opportunities for future work in
section 6”.

1.1. Related Work

There have been other papers that surveyed the cer-
tificates used for TLS. The authors of "Analysis of the
HTTPS Certificate Ecosystem" [7] presented in 2013 a
large-scale study that gave insight into the HTTPS cer-
tificate ecosystem. They analysed over 42M certificates
in total, and investigated the trust relationships between
users, intermediate authorities and root authorities. An-
other Study in 2017 looked at the misissuance of certifi-
cates. "Tracking Certificate Misissuance in the Wild" [8]
introduces zLint, a certificate linter. They have been able

to check 61M certificates for misissuance and uncovered
that mainly smaller organizations misissue certificates.

2. Background

TLS certificates are mainly used by servers to authenti-
cate themselves. Most certificates are leaf certificates, that
are signed by a 3rd Party, called a certificate authority
(CA). The CAs control root certificates, which are the
trust anchor in this system - most clients trust a set
of root certificates, transitively trusting each certificate
signed by one of the roots. However, most leaf certificates
are not directly signed by root certificates, instead they
are signed by intermediate certificates. Those intermediate
certificates are signed by root certificates. TLS certificates
can also be self-signed, therefore they are not signed using
the private key from a third party. This means that the
client needs to trust the certificate. Most browsers offer
the option to trust certain self signed certificates, but self-
signed certificates are generally not stored in the trust
anchor.

2.1. Chain of Trust

If a server presents a leaf certificate to a client, the
client has to determine if it trusts this certificate. As the
client implicitly trusts all root certificates, the client has to
build a chain of trust to a root certificate, as depicted in
Figure 1. In other words, the client has to find a root
certificate that has signed the presented leaf certificate
directly, or a chain of potentially multiple intermediate
certificates that lead to the leaf certificate.

root

intermediate

leaf

signature

Figure 1: chain of trust

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

45 doi: 10.2313/NET-2021-05-1_10



2.2. Certificates with more than one Parent

It is possible that there are two or more valid chains
of trust associated with the same leaf certificate. E.g. this
occurs when two intermediate certificates share the same
private key so both their signatures are identical, as in
Figure 2.

root 1

intermediate 1 intermediate 2

root 2

leaf

signature

Figure 2: example certificate with two valid chains of trust

2.3. Mississued Certificates

Misissued certificates do not adhere to specifications in
RFC5280 [9], or fail to adhere to the CA/Browser Forum
Baseline Requirements [10]. If certificate fails to meet
those requirements, a client typically does not trust the
server.

3. Design

We use a large-scale HTTPS scan on port 443 cre-
ated in December 2020 using goscanner [11] containing
over 126M TLS certificates. The certificates are parsed,
processed and then results are written back to disk to be
analyzed. We examine the presence of select fields and
analyse their content. Each certificate is checked by a
certificate linter. Furthermore, we use a library to build
trust chains for each certificate, that end with a root
certificate in our trust anchor.

4. Implementation

Each certificate is parsed using the zCrypto library,
which is based on the standard Go library [12]. If the
Basic Constraints extension is present and the cA boolean
[sic] is set, a a certificate is considered a CA certificate,
otherwise, it is considered a leaf certificate [9].

4.1. Linting with zLint

Every certificate was linted by running zLint on it,
which checks for "consistency with rfc standards and other
relevant pki requirements" [13]. zlint distinguishes three
categories of Lints: "Notice", "Warn" and "Error". Lints
in category "Notice" can be non-deterministic and indicate
there may be a problem. As over 126M certificates were
processed in this paper, it was not possible to examine for

every notice if there truly was a problem, so lints of this
category were ignored. Lints in category "Warn" check
e.g. if a SHOULD or SHOULD NOT Requirement from
an RFC has been violated, while lints in category "Error"
e.g. check if a MUST or MUST NOT Requirement has
been violated [13].

4.2. Building trust chains

We use the mozilla root store [14] as of December
2020 as the trust anchor. The set of intermediate cer-
tificates is built by collecting all certificates that are CA
certificates. Then we use the Verify function from zCrypto
[15] to find all trust chains that lead to a root in the trust
anchor.

4.3. Differences to typical clients in trust chain
validation

Some certificates that appear valid in our testing may
be rejected by certain browsers, and some certificates that
appear valid in certain browsers may appear valid in our
testing.

4.3.1. Available Intermediates. We try to build trust
chains using the set of all intermediate certificates that
have been seen in the scan. Typically however, a client
should rely on the server to present all intermediate cer-
tificates leading to the root. All clients we are aware of
use some form of caching for intermediate certificates.
If the necessary intermediates are already in this cache,
the client may succeed in building a trust chain even if
the server does not present every necessary intermediate.
Some clients try to use an Uniform Resource Identi-
fier (URI) specified in the Authority Information Access
Extension (AIA Extension) [15] to fetch missing inter-
mediate certificates. The platform verifiers on Windows,
ChromeOS and MacOS implement this. [16] However, a
major client that does not support fetching intermediate
certificates using the AIA Extension is Mozilla Firefox
[17].

4.3.2. Revoked certificates. In theory, CAs should be
able to revoke issued certificates via the Online Certifi-
cate Status Protocol (OCSP) and Certificate Revocation
Lists (CRL). As Liu et. al found in 2015 however, these
mechanisms are often not used by clients [18]. They also
revealed that Mobile Browsers on Android did not check
for revocation at all. Some Desktop-Browsers use pre-
selected CRLs to check for revoked certificates, which
only contain a fraction of all revoked certficates [19],
[20]. Because the revocation of certificates is handled so
differently across clients, we do not check any certificates
for revocation.

5. Evaluation

We ran our analysis on a Dataset that was collected
from 24/12/2020 to 27/12/2020. This Dataset contains
126.200.987 certificates that could be successfully parsed,
while only 175 certificates were too broken to be parsed.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

46 doi: 10.2313/NET-2021-05-1_10



TABLE 1: Classes of certificates in our dataset

class total % absolute
all certificates 100% 126.200.987

roots <0,01% 78
intermediates 0,18% 236.475

valid intermediates <0,01% 927
self-signed 1,75% 2.207.833

leaves 98,24% 123.983.769
valid leaves 95,61% 120.658.574

Let's Encrypt

55.8%

Cloudflare, Inc.

14.4%

cPanel, Inc.

9.1%

DigiCert Inc

6.4%
Sectigo Limited

6.3%
other

7.9%

Figure 3: Percentage of valid leaves signed by each orga-
nization

5.1. General Landscape

We define a valid leaf as a leaf certificate, to which we
could build a trust chain that has been valid anywhere in
between 21/12/2020 and 28/12/2020. This is to mitigate
that the certificates were collected over multiple days.
Table 1 reveals that over 95% of certificates are valid leaf
certificates.

5.2. Issuers of HTTPS Certificates

We grouped valid leaf certificate by issuer organisation
name in Figure 3 . Let’s Encrypt is the dominant issuer
of TLS certificates with a share of over 55%.

5.3. Signature Algorithms

Table 2 shows that certificate signatures among valid
leaves were almost exclusively made using SHA256-
RSA. An exception is Cloudflare, which is responsible
for 99,55% of all ECDSA-SHA256 signatures, which
amounts to 17.405.658 certificates. This is 99,84% of all
Cloudflare issued certificates.

TABLE 2: Signature Algorithms used for valid leaves

algorithm valid leaves % absolute
SHA256-RSA 85,23% 102.834.585

ECDSA-SHA256 14,49% 17.483.284
SHA384-RSA 0,27% 316.893

ECDSA-SHA384 0,01% 17.483.284
SHA512-RSA <0,01% 6.278

TABLE 3: Certificate lifespan by interval

lifetime in days valid leaves % absolute
51-100 70.80% 85.427.923

200-398 26.80% 32.341.146
399-800 2,00% 2.413.525

801-1200 0,23% 282.170
101-200 0,11% 132.037

0-50 0,05% 61.773

TABLE 4: Usage of the subject country field

country valid leaves % absolute
not used 82,76% 104.443.306

US 14,79% 18.336.360
PL 0,12% 156.190
DE 0,11% 134.287

... ... ...

5.4. Validity Period

Each certificate has a not before and not after field.
These indicate the lifespan of a certificate. In Table 3, the
lifetime of valid leaf certificates is divided into classes.
Starting on September 1st 2020, every major root program
decided to reduce the maximum lifespan of each certificate
to 398 days [21]. The majority of valid leaves has a
considerably shorter validity period of <100 days. This is
desirable, as shorter lifespans of certificates are generally
better for security, as certificates have to be reissued more
often. Certificates that have a longer lifespan than 398
days, but have been issued before September 2020 can
still be valid certificates.

5.5. Subject Country Field

As X.509 certificates used for TLS are general pur-
pose, they also feature fields that are not useful for typical
browsers. One example is the subject country field, which
is left unused by the vast majority of certificates, as Table
4 shows. Surprisingly, some CAs like Cloudflare seem
to set the subject country field for all of their issued
certificates to "US".

5.6. Extended Key Usage Field

Over 98% of certificates are issued with ServerAuth
and ClientAuth as their extended key usage, as Table 5
shows. The purpose of the certificates during the scan
was to authenticate the server, so ClientAuth should not
be needed as specified by RFC5280, Section 4.2.1.3. [9].
We hypothesize that the vast number of certificates with
ClientAuth set is due to the added flexibility for the users.

TABLE 5: Extended key usage

Extended key usage valid leaves % absolute
ServerAuth, ClientAuth 98,15% 118.407.285

ServerAuth 1 ,84% 2.243.899
... ... ...

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

47 doi: 10.2313/NET-2021-05-1_10



TABLE 6: certificates with warnings per organization
sorted by absolute amount

Organisation Name warnings issued % warnings
GoDaddy.com, Inc. 179.679 2.481.067 7,24%

Amazon 40.853 1.392.205 2,93%
SECOM Trust Systems [...] 35.842 35.872 99,91%

Actalis S.p.A. 20.984 408.090 5,14%
DigiCert Inc 20.389 7.773.648 0,26%

Starfield Technologies, Inc. 17.305 322.869 5,35%
Microsoft Corporation 13.572 123.668 10,97%

Sectigo Limited 9.399 7.588.983 0,12%
... ... ... ...

TABLE 7: valid leaf certificates with errors per organiza-
tion sorted by absolute amount

Organisation Name errors issued % errors
nazwa.pl sp. z o.o. 1.138 271.919 0,41

AC Camerfirma S.A. 479 1.630 29,38
Unizeto Technologies S.A. 53 57.203 0,09

home.pl S.A. 19 54.282 0,03
Dreamcommerce S.A. 5 13.222 0,03

... ... ... ..

5.7. zLint Results

Of all valid leaf certficates, only 2.283 triggered an
error, and 353.292 triggered a warning. In Figure 6,
GoDaddy and Sectigo triggered warnings, even though
they are known to use zLint in some fashion for pre-
issuance linting. This may either be due to old certificates
that are still valid, or that they choose to ignore these
specific lints. In Table 7, most organisations triggered only
few errors relative to their total issued certificates. With
almost a rate of 30% of their issued valid leaves triggering
errors, AC Camerfirma S.A. is clearly an exception in our
dataset. The mozilla wiki details 26 potential issues with
certificates from this CA [22], and the Chromium open-
source project to plans to block this CA in a future release
entirely [23].

5.8. Certificate trust chains

We examined the trust chains leading from certificates
to a trusted root certificate. As mentioned earlier, we didn’t
do any revocation checking. Therefore, we also found trust
chains containing revoked intermediates. For example, the
Let’s Encrypt’s R3 intermediate certificate signed by DST
CA X3 has a twin with different content. This twin in-
termediate, however, according to crt.sh as of 08/01/2021
has been revoked via OCSP, and CRL by the CA. Those
circumstances make it hard to interpret the gathered data,
but would provide an interesting starting point for further
analysis. If we describe a set of trust chains that lead to
a certificate as a trust chain configuration, we can still
examine the most used trust chain configurations. The
top 20 distinct trust chain configurations combined lead
to 98,22% of valid leaf certificates. None of the top 20
trust chain configurations contained a root certificate that
directly signed a valid leaf certificate.

6. Conclusion and future work

6.1. Conclusion

We have examined several aspects of TLS certificates,
and summarized them. It was possible to build a trust
chain leading to a trusted root for a majority of certificates
in the dataset. Let’s Encrypt currently dominates the TLS
certificate ecosystem. Certain attributes of a certificate are
characteristic for a CA - e.g. 99.55% of all valid leaf
certificates with a ECDSA-SHA256 signature are issued
by Cloudflare. With zLint, almost no misissued certificates
could be found in our dataset. A CA that is known to issue
problematic certificates could be clearly identified.

6.2. Future Work

In this Paper we do not cover every field that may
be present in a TLS Certificate. The analysis could easily
be extended to cover additional fields. Also, zLint is an
established certificate linter that is known to be used
by some CAs [13]. More misissued certificates may be
unconvered by creating additional lints that have not been
published before.

References

[1] Google, “Google Blog,” https://blog.google/products/chrome/
milestone-chrome-security-marking-http-not-secure/, July 2018,
[Online; accessed 7-January-2021].

[2] Mozilla, “Mixed Content Blocking in Firefox,” https:
//support.mozilla.org/en-US/kb/mixed-content-blocking-firefox#
w_what-is-mixed-content-and-what-are-the-risks, [Online;
accessed 7-January-2021].

[3] P. R. Donahue, “Https or bust: Chrome’s plan to
label sites as "not secure",” https://blog.cloudflare.com/
https-or-bust-chromes-plan-to-label-sites-as-not-secure/, [Online;
accessed 7-January-2021].

[4] Mozilla, “How to troubleshoot security error codes on
secure websites,” https://support.mozilla.org/en-US/kb/
error-codes-secure-websites, [Online; accessed 7-January-2021].

[5] Google, “Fix connection errors,” https://support.google.com/
chrome/answer/6098869?hl=en.

[6] IETF, “RFC8555,” https://tools.ietf.org/html/rfc8555.

[7] M. B. Zakir Durumeric, James Kasten, “Analysis of the HTTPS
Certificate Ecosystem.” IMC ’13: Proceedings of the 2013 con-
ference on Internet measurement conference, October 2013.

[8] D. Kumar, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian,
J. Mason, Z. Durumeric, J. Halderman, and M. Bailey, “Tracking
certificate misissuance in the wild,” 05 2018, pp. 785–798.

[9] IETF, “RFC 5280,” https://tools.ietf.org/html/rfc5280.

[10] CAB Forum, “Baseline Requirements Documents
(SSL/TLS Server Certificates),” https://cabforum.org/
baseline-requirements-documents/.

[11] tumi8, “GoScanner,” https://github.com/tumi8/goscanner.

[12] zMap, “zMap Project,” https://zmap.io/.

[13] ——, “zLint,” https://github.com/zmap/zlint.

[14] Mozilla, https://wiki.mozilla.org/CA/Included_Certificates.

[15] zMap, “zCrypto,” https://github.com/zmap/zcrypto.

[16] Mustafa Emre Acer, Emily Stark, Adrienne Porter Felt, Sascha
Fahl, Radhika Bhargava, Bhanu Dev, Matt Braithwaite, Ryan
Sleevi, Parisa Tabriz, “Where the Wild Warnings Are: Root Causes
of Chrome HTTPS Certificate Errors,” CCS’17, 2017.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

48 doi: 10.2313/NET-2021-05-1_10



[17] Mozilla, “SecurityEngineering/Certificate Verification,” https:
//wiki.mozilla.org/SecurityEngineering/Certificate_Verification,
November 2019, [Online; accessed 30-December-2020].

[18] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs,
A. Mislove, A. Schulman, and C. Wilson, “An end-to-end mea-
surement of certificate revocation in the web’s pki,” 10 2015, pp.
183–196.

[19] M. Goodwin, “Revoking Intermediate Certificates: Introducing
OneCRL,” https://blog.mozilla.org/security/2015/03/03/
revoking-intermediate-certificates-introducing-onecrl/, 2015.

[20] The Chromium Projects, “Revoking Intermediate Certificates:
Introducing OneCRL,” https://dev.chromium.org/Home/
chromium-security/crlsets, [Online; accessed 7-January-2021].

[21] P. Nohe, “Maximum TLS certificate validity
now one year,” https://www.globalsign.com/en/blog/
maximum-ssltls-certificate-validity-now-one-year, [Online;
accessed 7-January-2021].

[22] Mozilla, “Common CA Database,” https://www.ccadb.org/.

[23] Ryan Sleevi, https://groups.google.com/g/mozilla.dev.security.
policy/c/dSeD3dgnpzk/m/iAUwcFioAQAJ.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

49 doi: 10.2313/NET-2021-05-1_10


