xdpcap: XDP Packet Capture

Stefan Lachnit, Sebastian Gallenmiiller*, Dominik Scholz*, Henning Stubbe*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: stefan.lachnit@tum.de, {gallenmu | scholz | stubbe}@net.in.tum.de

Abstract—Xpress Data Path (XDP) is a Linux kernel feature
that allows high performance packet processing using eBPF
programs which are executed before the normal network
stack. This however prevents tools like tcpdump from cap-
turing all traffic. Xdpcap is a recently released network
capturing program, which uses filters compiled to eBPF and
a hook in the tested XDP program to capture packets even
if they are dropped by the XDP program.

This paper explains how xdpcap is implemented and
presents benchmarks, which compare xdpcap to tcpdump.
We show that xdpcap is not able to achieve the same
capturing bandwidth as tcpdump and should thus be used
for debugging and capturing only when packets dropped or
forwarded by an XDP program are of interest.

Index Terms—XDP, eBPF, packet capture

1. Introduction

The ability to capture and filter network packets is
an important aspect of debugging network applications.
To assess and benchmark the performance of these ap-
plications, the recording of large amounts of traffic is
needed. Xpress Data Path (XDP) is a Linux kernel feature,
which allows users to run small programs to modify,
pass, drop or redirect incoming network packets before
they are processed by the rest of the networking stack.
Using XDP yields performance benefits in applications
like Firewalls [1] and DDoS mitigation [2] compared to
other solutions like iptables. Additionally, when using
XDP, traditional network capturing tools like tcpdump
are not able to record all packets, because they could
be dropped or modified before they reach the regular
network stack. To solve this issue, Cloudflare developed
xdpcap [3], a tool which can capture packets (filtered by
a user specified expression) directly from an instrumented
XDP program.

We performed benchmarks to test the performance of
xdpcap and tcpdump by capturing generated test traffic
and analyzing how many packets could be recorded. This
paper describes these tests and evaluates their results.

The paper is structured in the following way. Sec-
tion 2 describes the features used by xdpcap and gives an
overview of how it is implemented. In Section 3 related
work is presented, which discusses XDP and network
capturing. After the software and hardware, which was
used to benchmark xdpcap and tcpdump, is described in
Section 4, the measured data is presented and evaluated in
Section 5. In the last section the results are summarized
and a conclusion is presented.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

41

2. Background

This section describes the basic concepts of the Linux
kernel features used by xdpcap and explains how xdpcap
works.

2.1. ¢cBPF and eBPF

Berkeley Packet Filter (BPF; later renamed to classic
BPF (cBPF)) is a feature in the Linux kernel which
is designed to allow high performance network packet
filtering in kernel space. It introduced a virtual machine
(VM) that allows users to attach small programs to a
network interface, which can parse incoming packets and
decide if they should be copied to userspace. One of its
primary use cases is the tool tcpdump, which is used for
filtering and capturing network traffic for measurements
and debugging. It allows the user to specify filtering
expressions which are then compiled to a BPF program.
Matching packets are copied to userspace where they are
stored to a file or parsed and printed [4].

In kernel version 3.15, extended BPF (eBPF) was
introduced, which improved the original concept by mod-
ifying the VM to allow more complex programs and
adding new features. eBPF programs are no longer limited
to packet filtering and can now process events in other
parts of the kernel. Additionally, the possibility to store
persistent data by using maps, which can also be accessed
in userspace, and the ability to call kernel helper func-
tions were added. A special type of map allows eBPF
programs to dynamically call other eBPF programs, with
the limitation that the control flow cannot return to the
original code (tail call). To ensure high performance, eBPF
programs are compiled to machine code using a just-in-
time (JIT) compiler. Since the eBPF program runs in
kernel space, it is important to ensure the security of
the executed program. This is done by a verifier, which
statically analyzes a program before it is attached (e.g.,
prevents infinite loops, checks if memory accesses are in
a valid range) [5].

2.2. XDP

Xpress Data Path (XDP) adds a hook to the Linux
network stack, which can be used to run an eBPF program
(XDP program) for every packet at the earliest possible
moment after it is processed by the driver of the network
card. On supported drivers, it is run in the context of the
driver or can even be offloaded to specialized hardware
on the NIC [6]. The eBPF program has access to the raw

doi: 10.2313/NET-2021-05-1 09

packet data and can parse and possibly modify it. It is
also possible to add additional metadata to a packet. The
action which is applied to the packet can be specified by
the return code of the program. A packet can be dropped,
passed on to the normal network stack, re-transmitted
from the same interface or redirected (e.g., to a different
network interface or to a userspace socket) [7].

2.3. xdpcap

Because XDP programs can modify or drop packets
before they reach the Linux network stack, traditional
packet capture tools like tcpdump are not able to record all
traffic. Cloudflare recently released the tool xdpcap with
the goal to recreate tcpdump for applications using XDP.

To achieve this, they wrote a compiler that transforms
a cBPF program into equivalent eBPF bytecode. The cBPF
code is generated from a user-specified filter expression
by libpcap, which is also used by tcpdump.

Packets are captured and filtered by this additional
XDP program (filter program), which is executed after
all other processing steps of the original XDP program
are completed. To be able to dynamically start capturing
and change filters without removing the original XDP
program, the filtering code is executed as a tail call
from the original XDP program. This requires manual
modification of the original program by adding a hook (a
map of filtering XDP programs generated from the filter
expression) and replacing returns by tail calls. To allow
the execution of the originally specified action (without
returning to the original program), xdpcap generates mul-
tiple filter programs with every possible return code hard-
coded and chooses the matching program when executing
the tail call.

When a filter program matches a packet, it has to be
transferred to userspace. This is done by generating a perf
event using the eBPF helper function perf_event_output,
which can contain the packet data and additional meta-
data. Perf events are part of the Linux kernel, which are
normally used for profiling and tracing. In userspace, the
xdpcap tool creates a ring buffer where the data created
by this perf event is put into. When this buffer is filled to a
specified number of bytes (by the parameter watermark),
it is read by this tool and printed or output to a file [3].

3. Related Work

XDP has been used in many applications, which
require high performance packet processing. Firewall
rules, which are faster than existing solutions using ip-
tables [1] [8], efficient DDoS mitigation [2] and an XDP
based L4 load balancer [9], are examples for such appli-
cations.

For capturing network traffic, different approaches
exist. The most common tool for debugging and cap-
turing is the software-based tool tcpdump [4]. Capturing
tools, which bypass the Linux network stack, are capable
of achieving a capturing rate of up to 120 Gbit/s [10]
on commodity hardware. Additionally, hardware-assisted
capturing based on FPGAs [11] or commercially available
capturing hardware (e.g. Endace DAG cards [12]) allows
recording of traffic at high data rates and precision.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

42

TABLE 1: hardware setup

loadgen DuT
oS Debian Buster Debian Buster
Kernel 4.19.0-12-amd64 4.19.0-12-amd64
CPU Intel Xeon E5-2620 v3 Intel Xeon E5-2630 v4
RAM 32 GB 128 GB
NIC Intel 82599ES 10G Intel 82599ES 10G

4. Experiment Setup

To measure and compare the performance of xdpcap
in a reproducible way, benchmarks were performed on
a hardware testbed managed by pos (plain orchestrating
service) [13]. This tool manages all test servers using
an orchestrating server, which handles the allocation of
servers and the execution of benchmarks. Using a script,
the required servers can be rebooted and set up automat-
ically. Additionally, the execution of benchmarks and the
collection of results are handled by this script. Since all
the test servers run live systems in RAM, the required
configuration is done automatically every time the bench-
marks are executed [13].

The hardware setup of the servers, which were used for
the benchmarks in this paper is described in Table 1. The
layout of the benchmark servers is presented in Figure 1.
Both servers are connected by a 10 Gbit/s connection and
managed by an orchestrating server running pos. One of
the servers acts as a load generator sending traffic to
the other server, which is running xdpcap or tcpdump to
capture this traffic.

orchestrating server

loadgen

Figure 1: testbed

To generate test traffic on the loadgen server, Moon-
gen [14] was used. It uses DPDK [15] to bypass the
Linux network stack and generate up to 10 Gbit/s traffic
on a single CPU core with high precision. The packets
can be dynamically created and modified by a Lua-script,
which controls the data of each generated packet [14].
The benchmarks in this paper use a modified version of
the layer2 example script [16] to create Ethernet traffic
with adjustable packet size at a specified bandwidth. For
testing how filtering of traffic influences the performance
of the tested capturing tools, the script was modified to
change the ethertype of every given number of packets to
a different value (Ox1111 instead of 0x1234). The device
under test (DuT) can then filter based on this field.

The other host was set up to capture the packets sent
by the loadgen server. Multiple tests with both xdpcap and
tcpdump were performed. For the benchmarks of xdpcap
an XDP program with two functions (drop all traffic, pass
all traffic) was added to the network interface, which
is connected to the load generator. This program was
modified to contain an xdpcap hook and tail calls, which

doi: 10.2313/NET-2021-05-1 09

are required for capturing using xdpcap. Additionally, the
network interface had to be set to promiscuous mode to
be able to capture packets, which do not match the MAC
address of the network interface. When using tcpdump
with default settings this happens automatically. Both tools
write the incoming data into a pcap file, which is later
analyzed using the command capinfos to collect perfor-
mance metrics (number of packets, packet rate, captured
bandwidth). All benchmarks performed the capturing for
40 seconds.

The results of both servers (analyzed packet capture,
output of Moongen) are then uploaded to the orchestrating
server where they were evaluated using an interactive
Jupyter notebook.

5. Evaluation

In this section, three benchmarks which were per-
formed using the setup described in Section 4 are pre-
sented.

5.1. Maximum Bandwidth

To analyze the maximum achievable capturing band-
width using both tested tools, benchmarks without filtering
expressions were performed. These tests were run with
a packet size of 64B. The bandwidth of the generated
Ethernet traffic was scaled from 100 Mbit/s to 3 Gbit/s.
For the benchmarks using xdpcap, both an XDP program,
which drops all packets and a program which passes all
received packets were tested.

tcpdump === xdpcap pass xdpcap drop

100
80
60
40
20

0

A

'\‘\

received packets [%]

| | | Tx TT——
0.5 1 1.5 2 2.5
generated bandwidth [Gbit/s]

0 3

Figure 2: captured packet percentage

Figure 2 shows how many percent of the generated
packets could be recorded on the DuT. Tcpdump was able
to capture nearly all traffic up to 1.4 Gbit/s. Xdpcap only
captured all packets for speeds lower than 200 Mbit/s. The
results for xdpcap with different XDP programs (drop all
packets, pass all packets) were nearly identical.

Figure 3 shows results of testing the impact of different
packet sizes by additionally using 128 B packets. It plots
the captured packet rate for transmitted packet rates from
0.1 million packets per second (Mpps) to 5.8 Mpps.
Tcpdump was able to capture nearly all traffic up to 2.5
Mpps for a packet size of 64 B. When more traffic was
generated, it was only able to record the same 2.5 Mpps
and dropped the rest. When using packets with a size of
128 B the maximum number of packets which could be

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

43

tepdump (64B) tepdump (128B)
—— xdpcap pass (64B) === xdpcap pass (128B)

xdpcap drop (64B) xdpcap drop (128B)
- 3 T T T T T
2,
Q |- -
=
[«
£ 9t i
—
T | |
4
Q
g
< L |
5
B | R |
< P 4
© 0 | | | | |

0 1 2 3 4) 6

generated packet rate [Mpps]

Figure 3: captured packet rate

captured only decreased by approximately 5 %, indicating
that the capturing performance of tcpdump is mostly
dependent on the number of captured packets and not on
recorded bandwidth. Xdpcap showed similar results, but
was only able to capture all packets at rates less than 0.5
Mpps with 64 B packets. The achievable packet rates of
dropping or passing all packets in the XDP program were
nearly identical for 64 B packets. Increasing the packet
size to 128 B decreased the possible capturing speed by
about 30 % when using xdpcap.

w=1 buf=8192 w=1 buf=65536
——w=25% buf=8192 =»=- w=25% buf=65536
w=50 % buf=8192 w=>50% buf=65536
——w=75% buf=8192 =»= w=75% buf=65536

100
80
60
40
20

0

received packets [%)]

| | T

l T
0.5 1 1.5 2 2.5
generated bandwidth [Gbit/s]

0

Figure 4: xdpcap parameters: capturing percentage

5.2. Xdpcap Parameters

The userspace xdpcap program offers parameters to
tune the buffer size and the "perf watermark”, which is
used to specify when packets are read from the perf ring
buffer. To test the impact of these settings, the percentage
of captured packets for different combinations of parame-
ters was tested. The generated bandwidth was scaled from
100 Mbit/s to 3 Gbit/s. The buffer size was set to (the
default of) 8192 B and 65536 B. The watermark was set

doi: 10.2313/NET-2021-05-1 09

to 1 (default: transfer immediately), 25 %, 50 % and 75 %
of the buffer size.

Figure 4 shows the results of these tests. When the
generated bandwidth is low (less than 200 Mbit/s), in-
creasing the watermark value allowed xpdcap to capture
more packets than with the default configuration. For
bandwidths above 500 Mbit/s of test traffic, the best re-
sult was achieved when transferring packets immediately
(watermark 1). Increasing the buffer size to 65536 B with
a watermark of 1 increased the number of captured packets
by approximately 10 %. All other values of the watermark
and other buffer sizes result in nearly identical or slower
capturing speeds.

5.3. Filtered Traffic

To evaluate a more realistic measurement and bench-
mark scenario, where only a small part of the received
traffic is of interest, we tested how filtering the incoming
traffic would impact the ability to capture all (matching)
packets at high data rates. For this, the modified Moongen
script described in Section 4 was used to generate Ethernet
traffic and set the ethertype of every 1000th packet to a
different value. Only this traffic was recorded by speci-
fying the filtering expression "ether proto Ox1111". The
packet size was set to 64 B and the generated bandwidth
was scaled from 500 Mbit/s to 6 Gbit/s.

tcpdump === xdpcap

100 -
80
60 |-
40

received packets [%]

0 1 2 3 4) 6

generated bandwidth [Gbit/s]

Figure 5: filtered packet capture rate

Figure 5 shows the results of this benchmark. When
only capturing a small percentage of the traffic, xdpcap
was able to capture all matching packets at rates less
than 500 Mbit/s. This is a significant increase from the
200 Mbit/s which could be recorded when no filter was
applied. The maximum recording bandwidth of tcpdump
decreased compared to the test in Section 5.1. All packets
could only be recorded for generated traffic of 1Gbit/s
or less. For every amount of generated traffic, tcpdump
captured about 15 % more traffic than xdpcap.

6. Conclusion

The results of the presented benchmarks show that in
the measured test scenario, xdpcap performs significantly
worse when capturing all packets. Small improvements
can be achieved by increasing the ring buffer size and
keeping the watermark at the default value. When apply-
ing filters, tcpdump was affected more than xdpcap, but
still yielded better performance.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

44

Because of this, we conclude that xdpcap should not
be used as a tcpdump replacement. However, when used
for its intended purpose of debugging or monitoring ex-
isting XDP programs, it can be applied where packets are
processed before tools like tcpdump can capture them.

References

[1] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and
G. Carle, “Performance implications of packet filtering with linux
ebpf,” in 2018 30th International Teletraffic Congress (ITC 30),

vol. 01, 2018, pp. 209-217.

“L4Drop: XDP DDoS Mitigations,” https://blog.cloudflare.com/
l4drop-xdp-ebpf-based-ddos-mitigations/, accessed: 2020-12-29.

[3] “xdpcap: XDP packet capture,”’

xdpcap/, accessed: 2020-12-01.

S. McCanne and V. Jacobson, “The bsd packet filter: A new
architecture for user-level packet capture,” in Proceedings of the
USENIX Winter 1993 Conference Proceedings on USENIX Winter
1993 Conference Proceedings, ser. USENIX’93. USA: USENIX
Association, 1993, p. 2.

M. A. M. Vieira, M. S. Castanho, R. D. G. Pacifico, E. R. S.
Santos, E. P. M. C. Junior, and L. E M. Vieira, “Fast packet
processing with ebpf and xdp: Concepts, code, challenges, and
applications,” ACM Comput. Surv., vol. 53, no. 1, Feb. 2020.
[Online]. Available: https://doi.org/10.1145/3371038

https://blog.cloudflare.com/

[4]

(5]

[6] “Netronome Agilio SmartNICs,” https://www.netronome.com/
products/agilio-software/agilio-ebpf-software/, accessed: 2021-01-

09.

T. Hgiland-Jgrgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path:
Fast programmable packet processing in the operating system
kernel,” in Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 54—66. [Online]. Available: https://doi.org/10.
1145/3281411.3281443

A. Deepak, R. Huang, and P. Mehra, “ebpf/xdp based firewall and
packet filtering,” in Linux Plumbers Conference, 2018.

(71

(8]

[9] accessed:

“katran,” https://github.com/facebookincubator/katran,
2021-01-03.

P. Emmerich, M. Pudelko, S. Gallenmiiller, and G. Carle, “Flows-
cope: Efficient packet capture and storage in 100 gbit/s networks,”
in 2017 IFIP Networking Conference (IFIP Networking) and Work-
shops, 2017, pp. 1-9.

Y. E. Kwasi and R. Rojas-Cessa, “High-resolution hardware-based
packet capture with higher-layer pass-through on netfpga card,”
in 2014 23rd Wireless and Optical Communication Conference
(WOCC), 2014, pp. 1-6.

“endace,” https://www.endace.com/, accessed: 2021-01-03.

S. Gallenmiiller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich,
and G. Carle, “High-performance packet processing and measure-
ments,” in 2018 10th International Conference on Communication
Systems Networks (COMSNETS), 2018, pp. 1-8.

P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and
G. Carle, “Moongen: A scriptable high-speed packet generator,”
in Proceedings of the 2015 Internet Measurement Conference,
ser. IMC "15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 275-287. [Online]. Available: https://doi.org/
10.1145/2815675.2815692

“DPDK,” https://www.dpdk.org/, accessed: 2020-12-27.

[10]

[11]

[12]
[13]

[14]

[15]

[16] “Moongen 12-load-latency example,” https://github.com/emmericp/
MoonGen/blob/525d9917¢98a4760db72bb733cf6ad30550d6669/

examples/12-load-latency.lua.

doi: 10.2313/NET-2021-05-1 09

