
Debugging QUIC and HTTP/3 with qlog and qvis

Dominik von Künßberg, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: dominikvon.kuenssberg@tum.de, jaeger@net.in.tum.de

Abstract—The powerful properties of the QUIC and HTTP/3
protocols make debugging and inspecting them a challenging
task. The qlog format and the qvis toolsuite have been
introduced to facilitate this problem. We give an overview of
both the format and the visualization tool, introducing and
assessing their respective capabilities.

Index Terms—software-defined networks, measurement,
high-speed networks

1. Introduction

The QUIC protocol is a transport protocol designed to
offer lower latency for HTTP traffic while also meeting se-
curity requirements by encrypting its packets, as described
by Langley et al. [1]. Built on UDP, it forms the basis
for HTTP/3. Lower latency is attributed to several things:
firstly, it streamlines the amount of handshakes needed to
establish a secure connection by exchanging cryptographic
keys and certificates directly in the initial handshake [1]. It
also identifies connections by a connection ID instead of
the IP / port 5-tuple, allowing for immediate reconnection
to a server after changing IP addresses [1]. To avoid head-
of-line-problems like present in the TCP+TLS+HTTP/2
stack, QUIC allows multiple bidirectional streams within a
QUIC connection which are independent of each other [1].
Lastly, QUIC packets are entirely encrypted except for
fields necessary for routing, forwarding and decrypting
the packet [1].

While this is an effective way to protect the packet’s
data, it makes the protocol difficult to analyze and debug.
As there are various implementations of QUIC and its
standardization is still ongoing [2], analysis and debugging
are indispensable tools to verify the protocol’s behavior
and find bugs.

Capturing the available metadata from packets in tran-
sit alone is not sufficient because fields containing states
necessary for analysis are encrypted [3]. Temporarily de-
and encrypting the packets while in transit to extract the
necessary log information is out of the question as this ex-
poses the full payload and requires the respective session
keys [3]. The only places where the later encrypted states
are available are the endpoints which send and receive the
packets [3]. Logging mechanisms have been implemented,
however each is specific to their own implementation of
the protocol which makes them difficult to parse [3] for
further use.

To alleviate this problem, Marx et al. propose a log-
ging format called qlog [3]. Qlog is based on JSON [3]

which allows it to be used across implementations, in-
dependent of language-specific characteristics. Each qlog
event is characterized by a timestamp, a category, the
event type and type-specific data [3]. This format makes
it easily extensible: to log a specific type of event which
is not yet present, it can simply be added. Qlog files from
different connection endpoints can also be aggregated into
one single qlog file [3].

Logging events to analyze the performance and be-
haviour of the QUIC protocol is certainly helpful, however
it might be hard to extract the needed information from
textual logs only. Because of this, Marx et al. also created
the tool qvis to visualize qlogs [3]. This is especially
helpful combined with qlog’s ability to combine logs from
different endpoints; qvis is then able to visualize relations
between the endpoints accurately such as packet loss,
packet order etc [3].

This paper aims to outline the most important aspects
of the qlog format and the qvis visualization tool. We
present the qlog format in Section 2 and address how data
is collected and its scalability in Section 3. In Section
4, we introduce the qvis toolsuite and its scalability.
Section 5 assesses how the qlog format compares to the
pcap format commonly used in the TCP+TLS+HTTP/2
stack. In Section 6, we conclude that both qlog and qvis
are powerful tools for debugging the QUIC protocol and
summarize future plans for qvis.

2. Qlog

The qlog format has so far been defined in two IETF
drafts, one describing the general high-level format of
qlog [4] and the other defining events specific to QUIC
and HTTP/3 [5]. As qlog is a flexible and general format,
it can also be used for protocols other than QUIC such as
DNS or the TCP+TLS stack by defining the events in the
implementation accordingly [3].

Fields inside a qlog file follow a JSON-like format.
The basic format is an object:type pair. Available stan-
dard types are signed and unsigned integers with lengths
varying from 8 to 64 bits, floats and doubles, strings, bytes
(raw 8 bit long values), booleans, enums and any, which
can represent any data type. Additional notations are listed
in the Internet Draft for qlog [4].

Every qlog file consists of one top-level file which
must contain a qlog_version field and an array con-
taining traces [4, Section 3]. Further optional fields can
be given such as title, summary, description and
qlog_format [4, Section 3]. The summary can be useful
to get a quick overview of aggregated information about

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

25 doi: 10.2313/NET-2021-05-1_06



all traces that have been logged, being able to list cus-
tomizable features such as total lost packets, total number
of events and whatever information may be needed in a
specific use-case [4, Section 3.1].

2.1. Traces

A trace is a structure which contains the recorded
events and additional metadata, however, it usually rep-
resents the data flow at a single endpoint [4, Section 3.3].
It must contain a vantage_point field to identify which
type of endpoint it logged, and an array of events repre-
senting all logged events at this endpoint [4, Section 3.3].
Other optional fields allowing for more context are title,
description, and, most importantly, the common_fields
list [4, Section 3.3], which will be discussed in Section
2.2.

2.2. Events

Each event must at least contain the fields timestamp,
name, and data [4, Section 3.4]. Usually it is useful
to organize events by assigning them a group_id, a
protocol_type and perhaps a category [4, Section 3.4].
Consequentially, fields such as these typically tend to stay
the same for the majority of events from the same trace,
and thus would need to be constantly logged anew [4,
Section 3.4.8]. To avoid unnecessary duplicate data, a
trace can contain the common_fields list, containing in-
formation which is shared by all events of that trace [4,
Section 3.4.8]. The mentioned fields can then be omitted
in the event itself.

Events can also contain so-called "triggers" in the
data field [4, Section 3.4.6]. Triggers are a set of possible
string values which indicate why an event has occurred [4,
Section 3.4.6]. If the event occurs, the applicable trigger
string is then included in the log. This gives a direct
context to the occurrence of the event and eliminates the
need of analyzing logs within roughly the same timeframe
to find the reason [4, Section 3.4.6].

The QUIC specific events described in [5] have been
divided into three categories: Core, Base, and Extra [5,
Section 2.1].

Core events should be present in all qlog files and are
used to log very basic information [5, Section 2.1]. Exam-
ples of Core events are packet_sent, packet_received,
version_information and packet_lost [5, Sections
5.3, 5.4.5]. The version_information event logs the
QUIC versions available for both client and server, as well
as the version which has been selected [5, Section 5.3.1].

Base events can depend on Core events but are
logged separately for the sake of clarity [5, Sec-
tion 2.1]. They provide more detailed information
which is relevant for debugging. Such events are
for example connection_started, packet_dropped,
packet_buffered, and congestion_state_updated [5,
Sections 5.1.2, 5.3, 5.4.3].

Extra events are usually employed to observe the
internal behavior of the protocol’s implementation, rather
than the protocol itself [5, Section 2.1]. Examples for Ex-
tra events include server_listening, packets_acked,
datagrams_sent and datagrams_received [5, Sections

5.1.1, 5.3]. "Datagrams" in this case refers to UDP-
datagrams [5, Section 5.3.10].

3. Qlog data collection

How and at which points qlog logs its data is entirely
up to the implementation. Any necessary data structures
need to be created as well as functions for forwarding
and writing information to a qlog file. Coupled with the
flexible format of qlogs, it allows for precise logs exactly
where it is needed. As an example, the logging of a qlog
event in the Go implementation is structured as follows.
The file event.go contains and defines all possible events
that can be logged [6]. Each event contains the needed
and optional attributes which can be set [6]. A struct
called connectionTracer acts as the trace explained in
Section 2.1 [6]. It makes use of Go Channels to record
events concurrent to program execution [6]. To avoid race
conditions, a mutex is used on the events channel so that
only one event can be recorded at a time [6]. For instance,
when the server sends a version negotiation packet to the
client, the sentPacket function of the connectionTracer
is invoked, which in turn records the event and adds it
to the events channel [6]. This behavior is essentially
the same across all functions; when a function is called
which necessitates logging, the respective function in the
connectionTracer is called and adds the event to the
log [6]. Upon stopping the server, the aggregated events
are written to the qlog [6].

As this means that qlogs are held in memory and only
written to the disk when the connection is terminated, this
approach might cause unwanted occupation of memory
when logging a large volume of events. As an example,
the large demonstration file on the qvis website [7] rep-
resenting a 100 MB download is 31 MB in size, while
the qlog file for a 500 MB download mentioned in [3]
is 276 MB. Assuming this can be scaled roughly linearly,
logging a 10 GB download will then result in a qlog which
is somewhere between 3,1 and 5,5 GB in memory before
the connection is terminated. It is therefore important to
keep this memory occupation in mind and evaluate which
events actually need to be logged to minimize the resulting
log size, especially when downloading and logging large
quantities of data.

3.1. Scalability

In [3], Facebook employed qlog at internet scale and
concluded that it "is two to three times as large" and
"takes 50 % longer to serialize than their previous in-
house binary format." In Facebook’s case, this processing
surplus was acceptable given the flexibility provided by
qlog [3].

To compress qlog’s size requirements while preserving
the format’s desirable properties, an optimized mode [3]
was introduced. It relies on two aspects: reducing the
initial size of qlogs and encoding the smaller qlogs more
efficiently [3]. The former is accomplished by collecting
repeated values in a dynamic dictionary [3]. The latter is
achieved by using the CBOR (Concise Binary Object Rep-
resentation) format to encode the qlogs and the generated
dictionary [3]. CBOR is a binary format which preserves

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

26 doi: 10.2313/NET-2021-05-1_06



JSON’s key-value pairs in a concise manner and allows
for faster processing than JSON [3].

The combination of these two methods results in
significantly smaller file sizes. The qlog for a 500 MB
download is usually 276 MB; utilizing the optimized mode
results in a file about a third as large as the original one,
ending up at 91 MB [3].

4. Qvis

Qvis encompasses a set of tools which visualizes qlog
files and their data in an understandable and descriptive
manner. It can handle qlog files which contain traces from
several endpoints to deduce and display information from
the provided data, such as round trip time, congestion con-
trol and more [7]. Qvis offers four visualization methods:
sequence, congestion, multiplexing and packetization [7].
It also lists general statistics about the provided qlogs such
as the number and types of events and frames [7]. Qvis is
implemented mainly in TypeScript and Vue and intended
to be used in a browser [7]. Scalability issues arising from
this are discussed in Section 4.5.

4.1. Sequence Tool

The sequence tool generates a sequence diagram as
shown in Figure 1a. The green squares on both sides
represent events. If the event is neither packet_received
nor packet_sent, the event name is added next to it [7].
Besides displaying the information contained in transmit-
ted packets and their respective timestamps, all the green
boxes, event names and packet information can be clicked
which brings up the corresponding qlog file in plaintext,
allowing for further, more detailed packet inspection [7].

4.2. Congestion Tool

The congestion tool shows two diagrams: one which
shows the amount of data sent over time in bytes, and one
displaying the round trip time [7]. What first appears as
a slightly jagged line in the first diagram becomes clearer
when zooming in; it shows the bursts of data being sent in
blue and the acknowledgement of that data in green [7],
as shown in Figure 1b. The gap between the blue and
green blocks on the same height on the y-axis constitutes
the round trip time [7]. The congestion tool, therefore,
makes it easier to identify when data is being sent at a
different rate indicated by a change of the slope of the
graph [7]. It can also display crucial information such as
the congestion window size and lost data [7].

4.3. Multiplexing Tool

The multiplexing tool shows how the data sent was
divided among the existing QUIC streams (shown in
Figure 1d) [7]. It assigns a color to each stream and
displays the sent data as colored blocks strung along the
timeline, each colored block indicating that the corre-
sponding stream has been used to transmit data [7]. It
also indicates which frames had to be resent underneath
the corresponding parts of the diagram [7]. This makes
it simple to identify unwanted behavior in the applied

multiplexing strategy [7]. It is also possible to zoom into
the string of blocks and hover over them to display the
exact timestamp, utilized stream, number and packet size
of the block that is being pointed at [7]. This is especially
helpful when inspecting large qlogs.

Additionally, it is possible to enable two more supple-
mentary diagrams: the waterfall and byterange diagram
(waterfall diagram shown in Figure 1c) [7]. The waterfall
diagram displays a colored bar for each stream between
the first and last time it received a frame [7]. This makes
it easier to determine roughly when a stream was active,
especially when a large number of frames was transmit-
ted [7]. The byterange diagram displays the range of bytes
transmitted by the frames which are shown at the current
zoom level [7].

4.4. Packetization Tool

The packetization tool visualizes how QUIC pack-
ets are composed of QUIC frames and HTTP/3 frames
(shown in Figure 1e) [7]. Each layer represents one struc-
ture: in ascending order, those are QUIC packets, QUIC
frames, HTTP/3 frames and the stream IDs present in
the corresponding packet [7]. Headers within packets and
frames are represented by taking up half the height of the
line compared to the payload. Packet / Frame boundaries
can be discerned by the alternating colors within each
layer [7]. As with the other tools, it is possible to zoom
in on a specific spot and hover over it to view packet or
frame information [7].

4.5. Scalability

While it is possible to load large files in qvis and
the authors of qvis describe in [3] that qvis "scales to
loading hundreds of MB in JSON", it significantly impacts
the performance of the tool. It is recommended to use a
Chromium-based browser, as using another might affect
performance even more [8].

Loading the demonstration file of 31 MB representing
a 100 MB download [7] is certainly possible but switching
between the different tools, using the zoom function to
view packet details and other actions noticeably slow
down the web browser. Tools especially affected are the
sequence, multiplexing and packetization tools.

We observed that the sequence tool initially takes
between 10 and 15 seconds to load the entries. However,
once everything is loaded, the tools work perfectly fine.

The packetization tool also takes about the same time
to initially load as the sequence tool. The congestion tool
is the quickest to respond of all tools, the zoom works
without delay. This is due to the fact that it uses canvas-
based rendering [8].

Both the multiplexing and packetization tools share a
performance issue with large files concerning the zoom
function. Zooming in becomes more important as qlogs
get bigger to analyze sections of the graph more closely.
To dissect this issue, it is helpful to analyze how the
depiction of the diagrams is implemented. Both tools use
rendering of scalable vector graphics (SVG) to display
the diagrams [8]. Each packet / frame is a separate SVG
entity [8]. When zooming in or out, the dimensions of
every entity has to be recalculated, which is slow with

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

27 doi: 10.2313/NET-2021-05-1_06



(a) Sequence diagram.

(b) Congestion diagram.
Request received Colored while stream is "active" (between first and last STREAM frame received)

(c) Waterfall diagram.

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000
Count of STREAM frames received (regardless of size, includes retransmits)

(d) Multiplexing diagram.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

QUIC packets

QUIC frames

HTTP/3

Stream IDs

Bytes received max receiving size client: 65527 max receiving size server: 65527

(e) Packetization diagram.

Figure 1: Qvis diagrams.

such big qlogs as this results in tens of millions of SVG
entities being resized [8]. Therefore, this large workload
is especially noticeable when using the packetization tool,
as it contains far more SVG entities than the multiplexing
diagram [7].

The SVG rendering approach was chosen because
hover effects to display packet / frame information is easier
to implement this way compared to the canvas-based
rendering used by the congestion tool [8]. However, there
are plans to port the remaining tools to the same rendering
method for performance reasons [8].

5. Comparison with TCP+TLS+HTTP/2

The TCP+TLS+HTTP/2 (TTH) stack is most com-
monly debugged with tools such as Wireshark [9] or tcp-
trace [10]. For this purpose, the log consists of timestamps
and the captured packets exactly as they were represented
during transmission [3]. As the TTH stack shows most
information necessary for debugging in the (unencrypted)
headers of the packets, this is sufficient. For QUIC, this
would not work as important metadata for debugging
purposes such as frame numbers, frame type and stream
IDs are in the encrypted section of the packet [3]. This
makes a direct analysis of packets similar to that of the
TTH stack regarding these properties infeasible.

In terms of log size, pcap files created with e.g.
Wireshark can be of varying size depending on the applied

options. With default settings, the pcap file for a 500 MB
download will exceed 500 MB, as all packets are directly
ingested into the log file. However, there are options
to limit the capture size of each incoming packet [11],
dropping most of the payload. This can dramatically
decrease the file size. Measurements showed that when
downloading a 500 MB file using Wireshark with default
settings results in a pcap file of 550 MB. Restricting the
size of each logged packet to 100 B to account for headers,
the pcap file size drops to 65 MB.

The qlog file for a 500 MB download is 276 MB or
91 MB [3] when using the optimized mode explained in
Section 3.1. This is evidently a noticeable difference in
size.

Despite this, qlog has the advantage of offering a more
detailed analysis of internal variables such as congestion
window, lost packets and bytes in flight [3] in comparison
to TCP traces and being able to visualize them accordingly
with qvis via the congestion tool [3].

6. Conclusion

Qlog is a powerful logging tool which has tremen-
dous potential for debugging internet protocols, QUIC
in particular. Its ability to define custom events and to
combine multiple traces into one qlog, paired with the
terrific visualization capabilities of qvis, makes it a solid
basis for anyone debugging QUIC.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

28 doi: 10.2313/NET-2021-05-1_06



Porting qvis to native code for better performance is
currently not planned by the original developers of the
tool [8]. While one of the goals is to write qlog importers
for existing native tools such as Windows Performance
Analyzer, this is not planned for the immediate future [8].
However, the performance issues due to SVG rendering
are being worked on as it is planned to convert the
respective tools to canvas-based rendering [8].

References

[1] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. B. Krasic, C. Shi,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. C.
Dorfman, J. Roskind, J. Kulik, P. G. Westin, R. Tenneti, R. Shade,
R. Hamilton, V. Vasiliev, and W.-T. Chang, “The QUIC transport
protocol: Design and internet-scale deployment,” 2017.

[2] D. Madariaga, L. Torrealba, J. Madariaga, J. Bermúdez, and
J. Bustos-Jiménez, “Analyzing the adoption of QUIC from
a mobile development perspective,” in Proceedings of the
Workshop on the Evolution, Performance, and Interoperability
of QUIC, ser. EPIQ ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 35–41. [Online]. Available:
https://doi-org/10.1145/3405796.3405830

[3] R. Marx, M. Piraux, P. Quax, and W. Lamotte, “Debugging QUIC
and HTTP/3 with qlog and qvis,” in Proceedings of the Applied
Networking Research Workshop, ser. ANRW ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 58–66.
[Online]. Available: https://doi.org/10.1145/3404868.3406663

[4] R. Marx, “Main logging schema for qlog,” Inter-
net Engineering Task Force, Internet-Draft, 2020, work
in Progress. [Online]. Available: https://quiclog.github.io/
internet-drafts/draft-marx-qlog-main-schema.html

[5] ——, “Quic and http/3 event definitions for qlog,”
Internet Engineering Task Force, Internet-Draft, 2020, work
in Progress. [Online]. Available: https://quiclog.github.io/
internet-drafts/draft-marx-qlog-event-definitions-quic-h3.html

[6] L. Clemente, “A QUIC implementation in pure go,” 2020.
[Online]. Available: https://github.com/lucas-clemente/quic-go

[7] R. Marx, “qvis: tools and visualizations for QUIC and HTTP/3,”
2020, https://qvis.edm.uhasselt.be/.

[8] ——, “Qvis performance,” 2020. [Online]. Available: https:
//github.com/quiclog/qvis/issues/38

[9] “Wireshark,” 2020. [Online]. Available: https://www.wireshark.org/

[10] “Tcptrace,” 2020. [Online]. Available: https://linux.die.net/man/1/
tcptrace

[11] “Wireshark documentation,” 2020. [Online]. Available: https:
//www.wireshark.org/docs/wsug_html/

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

29 doi: 10.2313/NET-2021-05-1_06


