
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET 2021-05-1Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2020/2021 August 6, 2020 – March 7, 2021

Munich, Germany

Georg Carle, Stephan Günther, Benedikt JaegerEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2020/2021

Munich, August 6, 2020 – March 7, 2021

Editors: Georg Carle, Stephan Günther, Benedikt Jaeger

Network Architectures
and Services
NET 2021-05-1

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Winter Semester 2020/2021

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
Boltzmannstraße 3, 85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Stephan Günther
Chair of Network Architectures and Services (I8)
E-mail: guenther@net.in.tum.de
Internet: https://net.in.tum.de/~guenther/

Benedikt Jaeger
Chair of Network Architectures and Services (I8)
E-mail: jaeger@net.in.tum.de
Internet: https://net.in.tum.de/~jaeger/

Cataloging-in-Publication Data

Seminar IITM WS 20/21
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, August 6, 2020 – March 7, 2021
ISBN: 978-3-937201-72-6

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2021-05-1
Innovative Internet Technologies and Mobile Communications (IITM) NET 2021-05-1
Series Editor: Georg Carle, Technical University of Munich, Germany
© 2021, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~guenther/
https://net.in.tum.de/~jaeger/

Preface

We are pleased to present you the proceedings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM) during the Winter Semester 2020/2021. Each semester, the seminar takes place
in two different ways: once as a block seminar during the semester break and once in the course of the
semester. Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterwards present the results to the other course participants.
To improve the quality of the papers we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar we award one with the Best Paper Award. For this semester the
arwards where given to Han My Do with the paper Collaborative SLAM over Mobile Networks and
Christian Kilb with the paper EDNS NSID Option .

Some of the talks were recorded and published on our media portal https://media.net.in.tum.de.

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, May 2021

Georg Carle Stephan Günther Benedikt Jaeger

III

https://media.net.in.tum.de
https://net.in.tum.de

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Stephan Günther, Technical University of Munich, Germany
Benedikt Jaeger, Technical University of Munich, Germany

Advisors

Jonas Andre (andre@net.in.tum.de)
Technical University of Munich

Sebastian Gallenmüller (gallenmu@net.in.tum.de)
Technical University of Munich

Stephan Günther (guenther@tum.de)
Technical University of Munich

Max Helm (helm@net.in.tum.de)
Technical University of Munich

Kilian Holzinger (holzinger@net.in.tum.de)
Technical University of Munich

Benedikt Jaeger (jaeger@net.in.tum.de)
Technical University of Munich

Marton Kajo (kajo@net.in.tum.de)
Technical University of Munich

Filip Rezabek (rezabek@net.in.tum.de)
Technical University of Munich

Patrick Sattler (sattler@net.in.tum.de)
Technical University of Munich

Dominik Scholz (scholz@net.in.tum.de)
Technical University of Munich

Markus Sosnowski (sosnowski@net.in.tum.de)
Technical University of Munich

Henning Stubbe (stubbe@net.in.tum.de)
Technical University of Munich

Johannes Zirngibl (zirngibl@net.in.tum.de)
Technical University of Munich

Richard von Seck (seck@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ws2021/seminars/

V

https://net.in.tum.de/teaching/ws2021/seminars/

Contents

Block Seminar

Survey of Mesh Networking Messengers . 1
Simon Blöchinger (Advisor: Richard von Seck)

Collaborative SLAM over Mobile Networks . 5
Han Do (Advisor: Marton Kajo)

Time Sensitive Networking - 802.1Qci . 9
Abdalla Mahamid (Advisor: Filip Rezabek, Kilian Holzinger)

Current Developments of IEEE 1588 (Precision Time Protocol) . 13
Kilian Rösel (Advisor: Max Helm, Johannes Zirngibl, Henning Stubbe)

Seminar

SmartNICs: Current Trends in Research and Industry . 19
Tristan Döring (Advisor: Kilian Holzinger, Henning Stubbe)

Debugging QUIC and HTTP/3 with qlog and qvis . 25
Dominik Freiherr von Künßberg (Advisor: Benedikt Jaeger)

Recent Developments in Service Function Chaining . 31
Patricia Horvath (Advisor: Kilian Holzinger, Henning Stubbe)

EDNS NSID Option . 37
Christian Kilb (Advisor: Johannes Zirngibl, Patrick Sattler)

xdpcap: XDP Packet Capture . 41
Stefan Lachnit (Advisor: Sebastian Gallenmüller, Dominik Scholz, Henning Stubbe)

TLS Certificate Analysis . 45
Jonas Lang (Advisor: Markus Sosnowski, Johannes Zirngibl, Patrick Sattler)

Corona Warn-App – Design, Development and Privacy Considerations 51
Oliver Layer (Advisor: Benedikt Jaeger)

Precision Time Protocol - Security Requirements . 57
Tizian Leonhardt (Advisor: Filip Rezabek, Kilian Holzinger)

Network Coding — State of the Art . 63
Florian Stamer (Advisor: Jonas Andre, Stephan Günther)

White Rabbit: High Precision PTP . 67
Edward Waterman (Advisor: Max Helm, Johannes Zirngibl, Henning Stubbe)

Intra-vehicular Data Sources . 73
Paul Wiessner (Advisor: Filip Rezabek, Kilian Holzinger)

VII

Survey of Mesh Networking Messengers

Simon Blöchinger, Richard von Seck∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: simon.bloechinger@tum.de, seck@net.in.tum.de

Abstract—A centralized architecture utilizing one or more
central servers is used by most messenger applications.
The messenger will only work if the server is functioning
and a connection is possible. Mesh networking messengers
use peer-to-peer connections to exchange messages directly,
without the need for central servers.

A decentralized architecture is more resilient against
failures. Mesh networking messengers have privacy benefits
as well. This paper analyzes different mesh networking
messengers and compares their features.

Briar and Technitium Mesh provide secure mesh net-
working messaging for their respective platforms Android
and Windows. Meshenger implements encrypted local audio
and video calls.

Index Terms—mesh networking messenger, mesh messenger,
peer-to-peer messenger, mesh network, peer-to-peer network,
instant messaging

1. Introduction

Most messengers use central servers responsible for
storing and exchanging messages. These messengers only
work when they have access to the Internet and the central
servers are available. In situations where the users cannot
connect to the internet, for example in remote locations
or when the necessary infrastructure fails, the messenger
cannot function. The same is true when the central servers
are not available. Even if a direct connection between the
clients would be possible, messengers relying on central
servers do not work without them.

A connection between peers is called peer-to-peer. As
shown by Akyildiz et al. in [1], when multiple peers are
dynamically interconnected peer-to-peer, this is called a
mesh network. Mesh networks often allow routing through
the client nodes. Messengers that utilize the mesh net-
working approach are called mesh networking messen-
gers. These messengers do not rely on central servers but
connect to each other directly.

The decentralized mesh architecture does not have
a single point of failure. As long as there are enough
redundant connections between the devices forming the
mesh, no device is essential.

Another advantage of mesh networking messengers is
that they are privacy friendly. When there is no central
server storing the messages, central data mining is not
possible. There is also no chance of server data leaks.
Vulnerabilities in the messaging application itself can still
exist.

Because mesh networking messengers are inherently
attractive to people interested in privacy-oriented
messaging, most mesh networking messengers are open-
source as well. This allows users to inspect the code of
the application they are using themselves to make sure
that there are no hidden side effects.

In Section 2 three types of mesh networking systems
are introduced and use cases explored.

In Section 3 different mesh networking messenger
applications are analyzed and compared.

2. Mesh Based Networks

There are three different types of mesh networking
systems [1]. The Infrastructure Mesh Network is differen-
tiating between infrastructure and clients. The infrastruc-
ture is interconnected in a mesh, the clients are connecting
to the infrastructure.

The Client Mesh Network only has a single type of
node, the client. All clients are connected and pose not
only as an end-user device but can also be used to route
messages. The nodes in this network are communicating
using peer-to-peer connections.

The Hybrid Mesh Network combines the infrastruc-
ture and the client approach. The clients can access the
network both through routers, which make up the infra-
structure, and through the other clients.

2.1. Use Cases

Infrastructure Mesh Networks can be used to set up
routers on a large scale to provide a connection to the In-
ternet in an area that is too big for a single router. The area
is set up with multiple routers in such a way that allows
every part of the area to be reached by at least one router.
Then the routers automatically and dynamically form a
mesh network and route messages between them [1].

As presented by Coulouris et al. in [2], Hybrid Mesh
Networks are great for hosting big, immutable files such as
video files on a large scale. Since the files are immutable,
they can be stored in small parts across a distributed
network without worrying about keeping them up to date.
For downloading purposes, the parts can be supplied by
multiple hosts. This makes a bandwidth problem on the
hosters side less likely. After the download, the down-
loader can become a hoster on his own. This can help to
balance out supply and demand for a file.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

1 doi: 10.2313/NET-2021-05-1_01

3. Mesh Networking Messengers

The focus of this paper is the comparison of different
mesh networking messengers. The features of Briar and
Technitium Mesh are evaluated in depth. Also considered
are Meshenger, Serval Mesh/Chat, FireChat and Bridgefy.

3.1. Briar

Briar is an open-source messenger with a strong focus
on privacy that uses a mesh networking approach which
allows users to privately communicate with each other. It
was first released in 2018 for Android [3]. The devices can
connect anonymously over the Internet via Tor or locally
via Wi-Fi or Bluetooth.

All direct communication using Briar can only happen
between contacts. There is no possibility to send messages
directly to a non-contact.

3.1.1. Adding Contacts. A nearby contact can be added
by exchanging QR codes. Using an already existing com-
munication channel, a contact can be added by exchanging
a link. If two users share a common contact, they can be
introduced to each other via this common contact.

Ways of reaching each contact are stored locally on
the user’s device. If a connection via multiple transport
mediums is available, they will be used in parallel.

When adding a contact by exchanging QR codes, the
Bramble QR Code Protocol (BQP) is used [4]. When
adding a contact at a distance by exchanging a link or
by introduction through a common contact, the Bramble
Rendezvous Protocol (BRP) is used [5].

Both protocols are similar and serve the same
purpose: an initial public key exchange is used for
authentication and encryption. As a result of the protocol,
both users know how to reach their contact and have a
shared secret key. This shared secret key is used to derive
other keys from it, which then are used to encrypt the
communication. Both protocols use the Diffie Hellman
key agreement function and are secure, even if an attacker
can read, modify, delete and insert traffic on all transports
at will, as long as the initial public key exchange is not
modified.

During the BQP, a commitment to a public key and
information on how to be reached using Bluetooth and Wi-
Fi, the short-range transports that are supported by Briar,
is shared using a QR code. The participants establish an
insecure connection and share ephemeral public keys. Us-
ing these public keys, a secure connection gets established.
Then the participants agree on a shared master key via the
secure connection.

At the beginning of the BRP, the only information
known to each participant is the public key of the other.
Both parties generate pseudo-random contact details for
themselves and the other’s endpoint using the shared
public keys. A shared secret key is also derived from the
public keys. For the next 48 hours both peers listen on
their network endpoints. If no connection happens within
48 hours, the rendezvous is considered to have failed. If a
connection can be established, the participants exchange
long-term contact details.

3.1.2. Methods of Communication. Briar allows for a
few different methods of communication between hosts:
private chats, private groups, forums and blogs [6]. Each
method of communication can use any of the transport
mediums that are available.

Private chats allow users to chat with one of their
contacts.

Private groups are created by one user. This user is
the owner of the private group. Only the owner can add
his own contacts. If the owner leaves the private group,
the private group will be dissolved.

Forums are similar to private groups with the excep-
tion that every participant is equal. Everyone can invite
their contacts and the forum will not be dissolved if the
original creator leaves.

It is possible for two users who are not each other’s
contacts to be part of the same private group or forum.

The blog behaves similar to a broadcast to all
contacts. Anything that gets published in a blog can be
read by and commented on from all contacts.

New messages in private groups and forums are shared
with all contacts that are in the same private group or
forum. This allows private group or forum updates to
spread to people without a direct connection to the sender
of the update. Note that this sharing only ever happens
with contacts. No sharing happens to users who are in the
private group or forum, but not a contact.

To receive a message, the sender and the receiver need
to be connected with each other. Sending a message that
can get received even when the sender is offline is not
possible. If the receiver is not online when a message
gets sent, the sender periodically tries again until the
message was successfully sent and received. Briar uses
a background task to send and receive messages.

3.1.3. Bramble Transport Protocol. The transport of
data between two parties in the Briar application is done
using the Bramble Transport Protocol (BTP), which pro-
vides a secure channel ensuring confidentiality, integrity,
authenticity and forward secrecy across a wide range of
underlying transports. The protocol is difficult to dis-
tinguish from other protocols. To further hide the use
of Briar, techniques like traffic morphing can be used.
It is suitable for delay-tolerant networks and can even
be used on transports with very high latency, such as
sending a physical storage medium through mail. The BTP
uses rotating keys to encrypt and decrypt the message
stream. [7].

3.1.4. Conclusion. Briar implements secure mesh text
messaging for Android. It is able to establish encrypted
connections via Wi-Fi, Bluetooth and via the Internet
using Tor. Briar is open-source. It is of limited useful-
ness when it comes to communicating with a group of
local strangers in case of infrastructure failure, because
communication can only happen between contacts.

3.2. Technitium Mesh

The mesh networking messenger Mesh by Technitium
is another messenger that provides peer-to-peer commu-
nication. Its alpha version was released in 2019 for Win-
dows. Text messaging and file transfers are possible. It is a

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

2 doi: 10.2313/NET-2021-05-1_01

direct successor to the Bit Chat project. Most of Bit Chat’s
design is found in Mesh as well [8], [9].

3.2.1. Technitium Bit Chat. The concept for Bit Chat
was invented in 2011. It takes many of BitTorrent’s con-
cepts with the goal of instant messaging instead of file
sharing. Connections are made using existing BitTorrent
trackers, which are centralized servers providing informa-
tion about the location of files.

Instead of the location of files, the trackers are
storing who is part of which channel. This is done
by storing the IP addresses of all participants together
with a unique infohash that identifies the channel. After
receiving the IP addresses of the other participants, a
direct authenticated connection can be established via IP.
Public key cryptography is used to achieve authentication
and confidentiality [10].

Bit Chat requires a central user profile registration
based on email. Mesh does not use central user profiles.
Instead users are identified with a user ID generated from
their RSA key pair.

Mesh also removes the BitTorrent trackers and re-
places them with Distributed Hash Tables (DHT). Using
the BitTorrent trackers can lead to connectivity problems
since some ISPs block BitTorrent traffic.

Mesh users can choose to use an anonymous profile
instead of a peer-to-peer profile. Anonymous profiles use
Tor onion services to accept inbound requests. For every
login a new onion domain name is used to prevent track-
ing. Communication between anonymous and peer-to-peer
profiles is possible. Connections using an anonymous
profile are still peer-to-peer connections [9].

3.2.2. Methods of Communication. Mesh provides two
different options for communication: private chat and
group chat [11].

Using the user ID and an optional password, a private
chat can be initiated. These need to be transmitted using
a secure channel not provided by Mesh.

To initiate a group chat, a group name and an optional
password is needed. The name and password have to
be distributed to participants. This can be done through
private chat or any other secure external channel.

3.2.3. Protocols. Mesh uses the symmetric-key algorithm
AES-256. To share the key with all participants, the Diffie-
Hellman key exchange function is used. During the key
exchange, the user IDs of the participants are verified
using RSA. To provide perfect forward secrecy, a new
key exchange is done periodically. Message authenticity is
ensured through the use of HMAC-SHA256. The local data
stored on the user’s devices is encrypted using a secure
key derived from the user’s password by the Password-
Based Key Derivation Function 2 (PBKDF2). In Mesh’s
implementation, PBKDF2 uses the pseudorandom func-
tion HMAC-SHA256.

When a new channel is created, the network ID of
the channel is used to uniquely identify the channel. In
a group chat, the network ID is the hash of the group
name in combination with the group password. In a private
chat, it is the hash of the user IDs of the participants in
combination with the password. This hash is then stored

together with the IP addresses of the channel participants
in a Distributed Hash Table [11].

3.2.4. Conclusion. Technitium Mesh implements en-
crypted peer-to-peer text messaging and file transfer in
pairs and in groups. Communication is possible locally
via LAN/Wi-Fi and globally using IP or using Tor onion
services. Mesh is released on Windows and is open-
source. Mesh does not implement mesh network routing
functionality for messaging.

3.3. Other Messengers

While Briar and Technitium Mesh are analyzed in
detail, other messengers are considered as well.

3.3.1. Meshenger. Meshenger is an open-source peer-
to-peer messenger for audio and video communication
released on Android. The project started in 2018 as part
of the Freifunk initiative [12]. Version 1.0 got released in
2018 [13], followed by a repository change [14].

Meshenger supports encrypted audio and video calls in
local networks with contacts. Text messaging is not sup-
ported. Communication via Bluetooth or via the Internet
is also not supported.

To establish a connection with a contact, primarily
local unicast IPv6 addresses are used. Other IP addresses
or DNS names can be used as well. Meshenger does not
use mesh routing for audio and video calls.

3.3.2. Serval Mesh/Chat. The Serval Project has the
goal to help the geographically, financially or otherwise
unfortunate.

Serval Mesh is an open-source Android app that pro-
vides secure mesh networking text messaging, file sharing
and audio calls using Wi-Fi. Audio calls only work under
good conditions. Group or broadcast messaging is not
supported.

Serval Chat is an iOS app providing secure text
messaging using Apple’s proprietary peer-to-peer wireless
network. Group and broadcast messaging are supported.
Serval Chat is not open-source [15].

Communication between Serval Mesh and Serval Chat
is not possible. While the project in general has interesting
and unique features, there has been no development since
2018 for Serval Mesh/Chat. Serval Mesh is not available in
Google Play anymore and Serval Chat is also not available
in Apple App Store [16].

3.3.3. FireChat. FireChat was a mesh networking mes-
senger that got popular during protests in Iraq and
Hong Kong in 2014 [17], [18]. It has since been discontin-
ued and the official website is not available anymore [19].

3.3.4. Bridgefy. Bridgefy is another mesh networking
messenger. It is released for Android and iOS [20]. A
Bluetooth connection is used to connect the devices. It
got used in Hong Kong in 2019 [21].

While there are code samples for developers, Bridgefy
is not open source [22]. Bridgefy currently still has se-
curity issues and is not able to provide secure messag-
ing [23].

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

3 doi: 10.2313/NET-2021-05-1_01

Briar Mesh Meshenger Serval Mesh/Chat Bridgefy
Communication Contacts Chat rooms Contacts Private & broadcast (iOS) Private & broadcast

Bluetooth Yes No No No Yes
LAN / Wi-Fi Yes Yes Yes Yes (Android) Yes

IP No Yes Yes No No
Tor Yes Yes No No No

Built secure Yes Yes Yes Yes No
Platform Android Windows Android Android, iOS Android, iOS

Open-source Yes Yes Yes Yes (Android) No
Text Yes Yes No Yes Yes

Audio No No Yes Yes (Android, limited) No
Video No No Yes No No

File sharing No Yes No Yes (Android) No

Figure 1: Mesh networking messengers - comparison

4. Conclusion

Briar and Technitium Mesh implement secure mesh
networking text messaging for their respective platforms
Android and Windows. They implement encrypted peer-
to-peer communication both over local and global trans-
port mediums.

Briar only allows communication with contacts,
which limits its usefulness in communicating with local
strangers, for example in case of a local infrastructure
failure.

Mesh allows to connect to an open local LAN cha-
troom without a password. File sharing is also possible.
Mesh does not implement mesh network routing function-
ality for messaging.

Meshenger allows for secure audio and video
communication in local networks. Meshenger also does
not implement mesh networking functionality for audio
and video calls.

A big weakness of these mesh networking messengers
is that they are only able to communicate with other
devices using the same application. Since there is a variety
of mesh networking messengers that come and go, a
messenger is not of great use if there are not enough users.

If a standard would get introduced for mesh network-
ing messaging, the usefulness of these mesh networking
messengers might rise. But because these messengers
use different protocols and have different design goals,
it is unlikely that messengers supporting inter-messenger
communication will become common.

References

[1] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks:
A survey,” Computer networks, vol. 47, no. 4, pp. 445–487, 2005.

[2] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed Sys-
tems: Concepts and Design. pearson education, 2005.

[3] M. Rogers, E. Saitta, T. Grote, J. Dehm, B. Wieder, and
N. Alt, “Briar Release,” https://briarproject.org/news/2018-1.0-
released-new-funding/, 2018, [Online; accessed 03-October-2020].

[4] ——, “Bramble QR Code Protocol,” https://code.briarproject.org/
briar/briar-spec/blob/master/protocols/BQP.md, 2019, [Online; ac-
cessed 21-November-2020].

[5] ——, “Bramble Rendezvous Protocol,” https://code.briarproject.
org/briar/briar-spec/blob/master/protocols/BRP.md, 2019, [Online;
accessed 21-November-2020].

[6] ——, “Briar Manual,” https://briarproject.org/manual/, 2016, [On-
line; accessed 03-October-2020].

[7] ——, “Bramble Transport Protocol,” https://code.briarproject.org/
briar/briar-spec/blob/master/protocols/BTP.md, 2019, [Online; ac-
cessed 21-November-2020].

[8] S. Zare, “Technetium Mesh,” https://mesh.im/, 2019, [Online; ac-
cessed 21-November-2020].

[9] ——, “Technetium Mesh Release,” https://blog.technitium.com/
2019/12/technitium-mesh-released.html, 2019, [Online; accessed
03-October-2020].

[10] ——, “Technetium Bit Chat Release,” https://blog.technitium.com/
2011/07/bitchat-peer-to-peer-instant-messaging.html, 2011, [On-
line; accessed 03-October-2020].

[11] ——, “Technetium FAQ,” https://mesh.im/faq.html#q15, 2019,
[Online; accessed 21-November-2020].

[12] D. Dakhno, “Meshenger Original Repository,” https://github.com/
dakhnod/Meshenger, 2018, [Online; accessed 03-October-2020].

[13] ——, “Meshenger - P2P Local Network Messenger - Fi-
nal Update,” https://blog.freifunk.net/2018/08/14/meshenger-p2p-
local-network-messenger-final-update/, 2018, [Online; accessed
03-October-2020].

[14] ——, “Meshenger 2.0 Repository,” https://github.com/meshenger-
app/meshenger-android, 2018, [Online; accessed 03-October-
2020].

[15] P. Gardner-Stephen, “The Serval Project,” http://servalproject.org/,
2011, [Online; accessed 03-October-2020].

[16] ——, “Serval Project Blog,” https://servalpaul.blogspot.com/,
2011, [Online; accessed 03-October-2020].

[17] A. Hern, “Firechat Updates as 40,000 Iraquis Download ’Mesh’
Chat App in Censored Baghdad,” https://www.theguardian.
com/technology/2014/jun/24/firechat-updates-as-40000-iraqis-
download-mesh-chat-app-to-get-online-in-censored-baghdad,
2014, [Online; accessed 03-October-2020].

[18] A. Bland, “FireChat - The Messaging App That’s Powering the
Hong Kong Protests,” https://www.theguardian.com/world/2014/
sep/29/firechat-messaging-app-powering-hong-kong-protests,
2014, [Online; accessed 03-October-2020].

[19] O. Garden, “FireChat,” https://www.opengarden.com/firechat,
2014, [Online; accessed 03-October-2020; not available].

[20] “Bridgefy,” https://bridgefy.me/, 2020, [Online; accessed 03-
October-2020].

[21] J. Koetsier, “Hong Kong Protestors Using Mesh Messaging App
China Can’t Block: Usage Up 3685%,” https://www.forbes.com/
sites/johnkoetsier/2019/09/02/hong-kong-protestors-using-mesh-
messaging-app-china-cant-block-usage-up-3685/, 2019, [Online;
accessed 03-October-2020].

[22] “Bridgefy Code Samples,” https://github.com/bridgefy, [Online;
accessed 03-October-2020].

[23] “Bridgefy’s Commitment to Privacy and Security,” https://bridgefy.
me/bridgefys-commitment-to-privacy-and-security/, 2020, [On-
line; accessed 03-October-2020].

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

4 doi: 10.2313/NET-2021-05-1_01

Collaborative SLAM over Mobile Networks

Han My Do, Marton Kajo∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: han-my.do@tum.de, kajo@net.in.tum.de

Abstract—Simultaneous Localization and Mapping (SLAM)
in general is a problem that is key to the path planning of
autonomous robots. The tasks of generating a map of an
unknown environment while keeping track of its position
are accomplished more accurate in a system with multiple
robots. Such collaborative SLAM systems can be found in
modern warehouses, where the logistics chain is performed
by Automated Guided Vehicles (AGVs). With example indus-
try use cases, this paper gives an overview on the main topics
of collaborative SLAM and analyzes the different approaches
to its components, architecture and communication. SLAM
communication methods over mobile networks are analyzed
and provide insights to the synergy potential 5G and SLAM
has to offer.

Index Terms—SLAM, Simultaneous Localization and Map-
ping, mobile networks, collaborative, 5G, logistics, visual,
autonomous

1. Introduction

Due to the need for more automated and flexible
logistics systems, Automated Guided Vehicles (AGVs)
are gaining foothold in the industry and enable a more
efficient way of modernizing the industry. 5G has a lot of
industrial focus with its Ultra Reliable and Low Latency
Communications (URLLC) and broadband use-cases, and
is the perfect fit for the communication solution for these
AGVs.

1.1. Visual SLAM

For autonomous robots to function and navigate in a
secure and robust way in a highly complex environment
such as warehouses, the topic of Simultaneous Localiza-
tion and Mapping (SLAM) is of high interest. SLAM
involves the problem of simultaneously determining the
position of a robot and the generation of a map of its
environment. The interdependence of those two is made
clear when keeping in mind that for path planning of a
robot, not only its own position and orientation, but also
obstacles such as humans and other robots play a role [1].
Therefore, to generate the map of the robot’s environment
different kinds of sensors are used.

Visual SLAM describes those systems that use cam-
eras as the only exteroceptive sensor [2]. Cameras are
lightweight, inexpensive and offer a lot of visual informa-
tion. Thanks to the fast development and improvements
of visual SLAM, as well as the growing computer per-
formance, cameras have become an increasingly popular

sensor for SLAM applications. Especially since inertial
measurement units were integrated into visual SLAM
entities, the system profits from better robustness and
accuracy thanks to the additional inertial information such
as acceleration and angular rate [3].

Typically, a visual SLAM system has two task areas.
The front-end takes care of processing the image and ex-
tracting features to match and track those across different
video frames. The back-end computes the camera poses
and 3D coordinates. This geometric computation is often
done with a filter or a nonlinear least squares optimizer.
Further important SLAM issues are loop closure, re-
localization, outlier rejection and the architecture [3].

Figure 1 shows the categorization of visual SLAM
tasks in front-end and back-end.

Figure 1: The two task areas of visual SLAM [1]

As SLAM research over the years has mainly devel-
oped visual-inertial algorithms, visual SLAM represents
the state-of-the-art [1]. Nonetheless, we will take a short
look at other systems with a different main sensor than
video cameras.

1.2. Nonvisual SLAM

Besides cameras, other exteroceptive sensors in SLAM
systems include sonars, range lasers, and global posi-
tioning systems (GPS). Even though sonars and range
lasers are very precise and offer dense information of
the environment’s setting, they are limited for automated
robots in logistic facilites, since they are heavy and have
large pieces of equipment which makes them unsuitable
for aerial or smaller robots [2]. Furthermore, they do
have difficulties with highly cluttered environments, which
makes it difficult for correctly mapping warehouses or
comparable facilites. GPS sensors face similar complica-
tions when the signal is not available indoors at all times.

To ensure an accurate and robust estimation of the
position of the robot, it is of advantage to combine the
gained information from multiple exteroceptive sensors
and proprioceptive ones. The latter are for example en-

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

5 doi: 10.2313/NET-2021-05-1_02

coders, accelerometers and gyroscopes which measure
velocity, position and acceleration [2].

After this short introduction to the differences of visual
and nonvisual SLAM, the focus will be on collaborative
SLAM which enables the interaction between multiple
entities and their environment.

2. Collaborative SLAM

In the first chapter we introduced the hardware spec-
ifications of a SLAM system and described the different
sensors needed for an autonomous robot. In this part of the
paper the focus will be on the software side of the system.
Different aspects and methods to solve the collaborative
SLAM problem are presented.

What makes multiple-agent SLAM more complex than
single systems is that robots must process available data
to construct a consistent global map while simultaneously
localize themselves within the map [4]. In the following
we provide an overview on researched approaches to
collaborative SLAM.

2.1. Key Components

SLAM exploration and mapping tasks are fulfilled
faster and with more accuracy by multiple robots than
by just one. This also allows for a heterogenous team of
robots with each one having its own specialization [5].

Another advantage is that the whole system is more
robust in a distributed system due to the fact that failure
of one robot does not crash the whole system [4].

However, the main difference between the elements of
single-agent SLAM and multi-agent SLAM is the process-
ing of data from multiple participants [3]. Otherwise, the
building blocks are the same to a single SLAM system.
In the following we will shortly present specific elements
of a multi-robot collaborative SLAM.

There are two prominent approaches to pose estima-
tion: key-frame based and filter-based methods. Key-frame
based methods are more suitable and easier to implement
for sharing information among the different robots. De-
pending on the architecture, the key-frames are sent to
the server and can be downloaded by the participants. This
means that every agent has access to key-frames produced
by the others for their own pose estimation.

After synchronization of the participants’ video frames
a pose estimation between several robots is possible. This
approach considers static points as well as moving points
and enables a robust localization even with moving obsta-
cles in the environment [3]. Figure 2 shows the method
of camera synchronized pose estimation. Even though the
moving object blocks the view of Camera A on the static
background, Camera B is able to detect the background
as well as the moving object.

The key-frame based approaches proved to be an
efficient way for visual SLAM systems as it separates
computation of real-time pose estimation and the complex
mapping tasks. Pose estimation and mapping are calcu-
lated rotationally and can therefore resort to the previously
calculated results. A key-frame contains the detected fea-
ture points and their corresponding coordinates. Aligning
those data from the previous and current key-frame allows

Figure 2: Synchronized pose estimation in collaborative
SLAM [3]

for the localization of the agent. The mapping task is
solved by triangulation of the matching feature points
between different key-frames. On a collaborative level the
mapping is also done by using image information captured
by the different cameras to generate map points.

The filter-based approaches use the Extended Kalman
Filter to estimate the camera pose through iteration. The
state vector also includes the 3D coordinates of landmarks
in the environment. With every iteration these coordinates
and the camera motion are updated and lead to high com-
putation load with an increasing number of landmarks.

Another important task is loop closure, which de-
tects already visited areas to update the map and cor-
rect accumulated inaccuracies. Loop closure is done by
detecting the overlaps in some specific regions among
multiple individual maps for fusion. A globald descriptor
is used to check the similarity of two images to detect the
overlap. Otherwise, collaborative loop closure follows the
same pipeline as in single-agent SLAM algorithms. Such
cooperation among the multiple cameras result in more
accurate and robust estimations [3].

2.2. Architecture

A major challenge of collaborative SLAM is to dis-
tribute the time-consuming computational tasks to differ-
ent agents with limited onboard computational resources
[3]. This involves designing complex distributed algo-
rithms to solve those computational tasks appropriately.

It is also important to consider the communication load
to design the distributed algorithms and consider the strict
bandwidth constraints when applying the decentralized
architecture [3].

Figure 3 illustrates four main issues that arise in the
context of data handling in collaborative SLAM.

The first topic is Data Communication. The SLAM
system has to provide communication channels that al-
low for information sharing between the multiple agents.
Central factors are bandwidth and communication network
coverage.

The Data Sharing can span from exchanging raw
sensor data to refined data. Measurements of exteroceptive
and proprioceptive sensors are understood as raw informa-
tion, while the refined data are those that are processed

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

6 doi: 10.2313/NET-2021-05-1_02

Figure 3: Issues in collaborative SLAM [4]

through filtering or optimization. Examples for processed
data are environment maps or robot poses. Even though
raw data offers more flexibility, the prerequisites for func-
tioning are high bandwidth and stable communication
between the entities. Computational power is essential as
well. While processed information does not have the same
amount of requirements and even reduces redundancy, the
results are determined by the maps’ quality.

Data Processing covers a wide range of methods
and algorithms with filter-based and key-frame based
approaches as their foundation. The choice of the data
processing method is again dependent upon several factors
such as processing power, type of sensor data and memory
space of the entities [4].

For the distribution of data it is possible to deploy
a centralized or decentralized architecture. Most collabo-
rative systems use a central powerful server to collect all
data and to process the computational-intensive tasks such
as map optimization, loop detection and pose graph opti-
mization for each entity [3]. This entity is also responsible
for answering requests and providing information. This
architecture has the disadvantage that the functioning of
the whole system is dependant on the one server to never
fail and to always be reachable. It also has to scale to
the number of participating robots in computation perfor-
mance and bandwidth. Decentralized systems do not suffer
from such bottlenecks [5], but are much more difficult to
deploy as the computational tasks are performed by more
than one robot.

2.3. Communication over Wifi and 5G

To fulfil the needs of communication in decentralized
SLAM systems, it is advisable to take a look at wireless
networks such as Wifi and 5G as they have suitable prop-
erties for the wireless and real-time transmission of huge
amount of data. Not only is Wifi sufficient for communi-
cation, but Wifi sensing can help with the SLAM problem,

too. Due to the wide spread of Wifi Access Points in
urban environments and the availability of Wifi radios on
most robots or mobile devices, [6] and [7] propose to
incorporate Wifi sensing into visual SLAM algorithms.
A general method for the integration of Wifi into visual
SLAM is shown in Figure 4. Similar approaches of using
the signal strength of Bluetooth and LTE can be found in
[8].

Figure 4: Pipeline of Wifi integration into visual SLAM,
proposed by [6]

The use of 5G for SLAM methods, for example for the
estimation of angle and delays of mmWave channels [9] or
for the use of available multipath signals from landmarks
to accomplish the mapping task [10], is promising as many
of the required steps of Wifi integration as shown in Figure
4 can be omitted.

Three usage profiles are defined by the International
Telecommunication Union for the International Mobile
Telecommunications 2020 requirements for 5G networks.
The three key capabilities are enhanced Mobile Broad-
band (eMBB), massive Machine-Type Communications
(mMTC), and Ultra-Reliable and Low-Latency Commu-
nications (URLLC) [11].

URLLC lists specifications for seamless interaction
between robots in real-time applications. Requirements are
robustness, high bandwidth, and low latencies. With such
significant advantages, 5G allows for reliable wireless and
real-time transportation of high amounts of data, which
accelerates the performance and functionalities of mobile
robots. In addition, 5G allows to reserve sections of the
network with a guaranteed Quality of Service [12].

User localization with 5G offers benefits such as high
coverage, high accuracy, low energy consumption and
scalability. The improvements in localization of users are
possible due to the high concentration of base stations,
device-to-device communication and mmWave technology
[13]. For users, such as autonomous vehicles in complex
settings, one crucial topic is accurate positioning. 5G in
combination with collaborative SLAM approaches provide
an optimal basis for the positioning task.

3. Use Cases for SLAM

Lastly, we explore applicable use cases of SLAM
and show potential future research topics. The approaches

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

7 doi: 10.2313/NET-2021-05-1_02

to visual SLAM in a collaborative way over wireless
networks pave the way to some interesting use cases which
are described in the following.

3.1. Logistics

The use of Automated Guided Vehicle (AGV) or au-
tonomous Micro Aerial Vehicles for the automation of
modern logistics systems is quite common. Traditionally,
SLAM is based on laser reflector and triangulation which
is dependant on an established and static structured work-
ing environment, which is rarely the case in warehouses.
With multi-agent visual SLAM algorithms, entities can
localize themselves automatically and trace their path
accurately in a dynamic and unstructured environment.
Visual SLAM improves working efficiency, system flexi-
bility and reduces constructing cost [14].

3.2. Autonomous Driving

Related to AGV is the use case of self-driving cars.
An important aspect is the way data and communication
are handled in a centralized or decentralized way. The
availability of internet connection in the vehicle also
plays a central role. The aspects of real time updates and
offloading critical processing aspects onto the cloud spark
discussions about safety. A future field of work is the
architecture design of software which should be able to
handle data flows and to segment updates [15].

3.3. Augmented Reality

Augmented Reality (AR) applications can benefit from
SLAM systems, because the gained information enriches
the AR experience from a technical aspect. AR systems
face important technical challenges which come down to
the need of specific information that SLAM can offer.
One type of information needed is the current view of the
real environment that is supposed to be augmented, while
others are the shape of the virtual object and its location
within the real world. When combined with other sensors
or tracking systems, well-designed user interaction and
system design, it is possible to widen the extent of AR
to any environment [16]. Such an environment can also
be warehouses where AR can be used for information
exchange between teams and for prevention of errors and
support.

4. Conclusion

In this paper we briefly described the differences be-
tween visual and nonvisual SLAM and went on to analyse
the characteristics of collaborative SLAM. Focus was also
set on the advantages of a decentralized architecture of
multi-agent systems and their communication over wire-
less networks. Based on our findings we referred back to
our introductory example use case of collaborative visual
SLAM in logistics which was followed by further related
use cases of autonomous driving and AR.

Even though visual SLAM in general, as well as in
a collaborative way is already discussed thouroughly in
existing literature, there is space for further research in the

topics of decentralized multi-robot SLAM over wireless
networks. Especially 5G in combination with collaborative
SLAM is not yet comprehensively researched, but offer
many improvements and great potential for synergy as
evaluated in chapter 2.3. of this paper.

References

[1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,
J. Neira, I. D. Reid, and J. J. Leonard, “Simultaneous
localization and mapping: Present, future, and the robust-
perception age,” CoRR, vol. abs/1606.05830, 2016. [Online].
Available: http://arxiv.org/abs/1606.05830

[2] J. Fuentes-Pacheco, J. Ascencio, and J. Rendon-Mancha, “Visual
simultaneous localization and mapping: A survey,” Artificial Intel-
ligence Review, vol. 43, 11 2015.

[3] D. Zou, P. Tan, and W. Yu, “Collaborative visual slam for
multiple agents:a brief survey,” Virtual Reality & Intelligent
Hardware, vol. 1, no. 5, pp. 461 – 482, 2019, 3D Vision.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2096579619300634

[4] S. Saeedi, L. Paull, M. Trentini, and H. Li, “Multiple robot simulta-
neous localization and mapping,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2011, pp. 853–858.

[5] T. Cieslewski, S. Choudhary, and D. Scaramuzza, “Data-efficient
decentralized visual SLAM,” CoRR, vol. abs/1710.05772, 2017.
[Online]. Available: http://arxiv.org/abs/1710.05772

[6] Z. S. Hashemifar, C. Adhivarahan, A. Balakrishnan, and
K. Dantu, “Augmenting visual SLAM with wi-fi sensing for
indoor applications,” CoRR, vol. abs/1903.06687, 2019. [Online].
Available: http://arxiv.org/abs/1903.06687

[7] J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, and
A. Aggarwal, “Efficient, generalized indoor wifi graphslam,” 06
2011, pp. 1038 – 1043.

[8] P. W. Mirowski, T. K. Ho, S. Yi, and M. MacDonald, “Signalslam:
Simultaneous localization and mapping with mixed wifi, bluetooth,
LTE and magnetic signals,” in International Conference on Indoor
Positioning and Indoor Navigation, IPIN 2013, Montbeliard,
France, October 28-31, 2013. IEEE, 2013, pp. 1–10. [Online].
Available: https://doi.org/10.1109/IPIN.2013.6817853

[9] H. Wymeersch and G. Seco-Granados, “Adaptive detection proba-
bility for mmwave 5g slam,” 03 2020, pp. 1–5.

[10] Y. Ge, H. Kim, F. Wen, L. Svensson, S. Kim, and H. Wymeersch,
“Exploiting diffuse multipath in 5g slam,” 2020.

[11] Z. Li, M. A. Uusitalo, H. Shariatmadari, and B. Singh, “5g urllc:
Design challenges and system concepts,” in 2018 15th Interna-
tional Symposium on Wireless Communication Systems (ISWCS),
2018, pp. 1–6.

[12] S. Ludwig, M. Karrenbauer, A. Fellan, H. D. Schotten, H. Buhr,
S. Seetaraman, N. Niebert, A. Bernardy, V. Seelmann, V. Stich,
A. Hoell, C. Stimming, H. Wu, S. Wunderlich, M. Taghouti,
F. Fitzek, C. Pallasch, N. Hoffmann, W. Herfs, E. Eberhardt, and
T. Schildknecht, “A5g architecture for the factory of the future,”
in 2018 IEEE 23rd International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), vol. 1, Sep. 2018, pp.
1409–1416.

[13] S. Zügner and M. Kajo, “User localization in 5g mobile networks.”

[14] Y. Chen, Y. Wu, and H. Xing, “A complete solution for agv slam
integrated with navigation in modern warehouse environment,”
2017 Chinese Automation Congress (CAC), pp. 6418–6423, 2017.

[15] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous lo-
calization and mapping: A survey of current trends in autonomous
driving,” IEEE Transactions on Intelligent Vehicles, vol. 2, no. 3,
pp. 194–220, 2017.

[16] G. Reitmayr, T. Langlotz, D. Wagner, A. Mulloni, G. Schall,
D. Schmalstieg, and Q. Pan, “Simultaneous localization and map-
ping for augmented reality,” International Symposium on Ubiqui-
tous Virtual Reality, vol. 0, pp. 5–8, 07 2010.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

8 doi: 10.2313/NET-2021-05-1_02

Time Sensitive Networking - 802.1Qci

Abdalla Mahamid, Filip Rezabek and Kilian Holzinger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: abedkh.mahamid@tum.de, rezabek@net.in.tum.de, holzinger@net.in.tum.de

Abstract—Time sensitive Networking (TSN) is a task of the
IEEE 802.1 group. It provides a real-time communication
and a large bandwidth to transfer big amount of data in
time that fulfills the TSN communication requirement of end-
devices. This technology plays an important role in several
industries, for instance, IIoT (industrial internet of things),
automotive and self-driving cars, that have to transfer a big
amount of data to the targets that must be collaborating
simultaneously [1] [2]. There are different standards which
can be used to realize this. The main focus of this paper will
be about the IEEE 802.1Qci Standard with its definition
Per-stream filtering and policing (PSFP). PSFP consists of
three main instance tables, first, Stream filter instance table,
second, Stream gate instance table and finally, Flow meter
instance table (see Figure 1). These tables have a relationship
between each other that realize the functionality of PSFP.
Furthermore, there are some other applications that their
integration with PSFP give solutions for end-device TSN-
requirements, for instance, IEEE 802.1Qbv, IEEE 802.1Qav
(Section 3.3) in addition to centralized configuration module
(Section 3.2).

Index Terms—TSN, Time-sensitive Networking, IEEE 802.1,
IEEE 802.1Qci, real-time communication, implementation of
TSN.

1. Introduction

Self-driving cars are a part of the future technology
that requires high efficiency, secured systems with real-
time communication [1]. This technology must avoid the
high latency communication to transport multiple data
flows in addition to the sensitivity of packet loss. Time-
sensitive Networking with its definitions to the Standards
IEEE 802.1Qci, IEEE 802.1Qva and IEEE 802.1Qbv are
technologies that can provide the simultaneous, safe and
secure transfer of data as well as combining time synchro-
nization and transmission scheduling due to the end-points
requirements [3]. It is also an important technology to the
industry likewise Automotive, to enable optimization of
communication in addition to reducing the cost in general
[4].

The Standard IEEE 802.1Qci is supplying the per-
stream filtering and policing (PSFP), which is a task of
the Time-sensitive Networking group IEEE 802.1. Why
is TSN important? TSN gives various of benefits for
the industry, for instance, large bandwidth, security, in-
teroperability and low latency and synchronization [2].
Technology like automotive, industrial internet of things

or self-driving cars have a large amount of data has to
be transferred from one point to another point with low
latency and secure transfer because they are very sensitive
data [2]. The current ethernet technology that the industry
used to use is IEEE 802.3u that limited with 100 Mbit/s of
bandwidth and half-duplex communication [2]. The TSN
will give a solution that provides a high bandwidth trans-
fer and communications [2]. Furthermore, TSN provides
security technology that gives the framework higher level
of defense, protection and performance. For the interop-
erability, it uses existing Standards and integrates them
with new applications to satisfy the TSN-requirements,
in other words, it is no need to develop everything from
zero, TSN application can use existing technologies and
improve them to fulfill the TSN-requirements [2].

Finally, TSN has various advantages against the cur-
rent and common Ethernet Standards (802.3) to reduce the
latency as well as enabling the synchronization between
End-devices. TSN can transfer data taking into consider-
ation the priority and time-requirements while the current
Ethernet does not differentiate between critical data (data
with TSN requirements) and normal data (without TSN
requirements) . Later in this paper it is explained exactly
how it can be secured, and which methods are used in
order to fulfill the TSN requirements. To sum up, the
essential goals of the TSN are the low latency communi-
cation (real-time), security and priority for critical flows.

Self-driving cars technology it is an important fu-
ture technology that needs very secure, efficient, and
low latency communication in addition to protection
against Denial-of-Service (DoS) attacks [1]. IEEE Stan-
dards could not decide if the received data flows are urgent
or not. Therefore, new technologies were developed to
solve these problems. IEEE 802.1Qci is a TSN substan-
dard of IEEE 802.1Q which is TSN substandard of IEEE
802.1 that provide the per-stream filtering and policing
which is given solutions to particular problems. Per-stream
filtering and policing filter and scheduled the ingress flows
due to discarding the non-essential streams and scheduled
high priority streams first. This paper points the workwise
of per-stream filtering and policing and how it guarantees
secured and low latency communication.

There are 4 sections in this paper. Section 2 explaines
and gives a related work, how the Per-stream filtering and
policing works. The 3ed Section shows several implemen-
tations of 802.1Qci, in addition to definitions for important
concepts that will be used in the rest of the paper. Finally,
in the last Section, Section 4, the author’s conclusion will
be presented.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

9 doi: 10.2313/NET-2021-05-1_03

2. Background and Related Work

IEEE 802.1Q Standard technology of layer 2 that
make decisions using Ethernet-Headers and not IP-
Headers. The current used IEEE Ethernet Standards
do not have layer 2 deterministic capability, thus, the
intention of IEEE 802.1Q was to supply deterministic
flows on standard Ethernet. The traditional IEEE
Ethernet Standards give no attention for the sensitive
information and their priorities, in addition to no ensure
for safety, security or protection in a network [3].
IEEE 802.1Q managed and delivered flows to minimize
the transmission time for real-time applications using
scheduling and policing to fulfil deferent requirements of
deferent applications. A Sub-Standard of IEEE 802.1Q,
IEEE 802.1Qci with their definition for "per-stream
filtering and policing" is a Sub-Standard that with other
Standards/Sub-Standards meets the critical requirements
that can realize transmission of frames in a particular and
predictable time due to filtering the sensitive information
and queuing them taking into consideration their priorities
[4].

2.1. Per-Stream Filtering and Policing (PSFP)

IEEE 802.1 Qci defines Per-stream filtering and polic-
ing (PSFP) that consist of three instance tables, Stream
Filters, Stream Gates and Flow Meters. The relationships
between the tables can be seen in Figure 1.

To start with, stream filter instance table. It consists
of several components that help determine which frame
should be processed, for example a Stream Filter Instance
Identifier is an integer value that works as an ID for this
stream and its index in this table [5]. Then, Stream Gate
Instance Table. It is an instance that contains parameters
for each flow. For instance, a stream gate instance iden-
tifier, that nearly the same functionally of above example
without the "index as position". Stream gate state has two
states, OPEN and CLOSE, that determine which flow is
permitted to pass through the gate [5]. Lastly, internal
priority value specification, that have also two options,
the null value and an internal priority value. Each have
different functionality with the same goal to determine
frame’s traffic class [5].

Finally, Flow Meter Instance Table. It is as the Stream
Gate Instance Table contains parameters for each flow,
that gives them a specification. An important specification
called Bandwidth Profile Parameter and Algorithm. (For
more information see [5]).

To sum up how it exactly works, there is an example.
The Figure 1 shows, there is a flow ingress (input) that
passes to the Stream Filter Instance Table where it have
several flows. Each flow has multiple attributes, Stream
(flow) ID, Priority, Gate ID and Meter ID. The stream
filter table with its application can identify each flow from
its unique ID, knows its priority level and which Gate it
should be passed to. After taking into consideration the
priority, a flow will be forwarded to Stream Gates Table
which have different gates. Each Gate is specified with a
unique Gate ID. With a specific application that provides
the ability to match each flow with its correct Gate ID
the flow is passing to the matching Gate. Each gate in the

T00:	o,5

T01:	C,5

T02:	o,4

T03:	C,4

T04:	o,3

T06:	o,6

T07:	C,6

........

T78:	o,1
T79:	C,1

C=closed

o=open

	N=IPV

T05:	C,3

T00:	o,5

T01:	C,5

T02:	o,4

T03:	C,4

T04:	o,3

T06:	o,6

T07:	C,6

........

T78:	o,1
T79:	C,1

C=closed

o=open

	N=IPV

T05:	C,3

Ingress

Stream ID 1
Priority 3
Gate ID 1
Meter ID1

Stream ID 2
Priority 3
Gate ID 1
Meter ID 5

Stream ID 3
Priority *
Gate ID 9
Meter ID 7

Stream ID N
Priority 2
Gate ID 5
Meter ID 5

Stream
Filter

Gate ID 1
gate = C
IPV = 3

Gate ID 5
gate = o
IPV = 2

Gate ID 9
gate = o
IPV = 5

Gate ID P
gate = C
IPV = 6

Stream
Gates

Meter ID 1 Meter ID 5 Meter ID 7 Meter ID Q Flow
Meters

Queuing frames

Gate 1
control list

Gate 9

Figure 1: Per-stream filtering and policing [5]

Stream Gate Table has attributes, for instance, Gate ID,
gate, internal priority value (IPV) etc. Gate ID is a unique
ID that the Stream Filter Table use to match its flow with
the correct Gate. The attribute gate is like a status for a
gate, with two status, OPEN (o) and CLOSE (c). There is
also a Gate Control List that is important to control the
status of a gate and to update it.

Further, IPV gives the priority of a flow that in this
gate. The flow is in the Stream Gate Table and to forward
it, the gate controls the status to know if is allowed to let
the flow pass or not. If the gate status is OPEN, then the
flow allowed to pass to the next table, but if the status
is CLOSE then it is not allowed to pass. When the flow
is passed, each flow in the Flow Meter Table has also
attributes (parameters) that are as specified in Bandwidth
Profile Parameters and Algorithm. Then the flow will be
passed to queue it according to its attributes and priorities.
The algorithm that used to schedule the frames is similar
to the schedule method of IEEE 802.1Qbv. (more info
[5]).

3. Implementations

Before we dive into the details, here some important
terms that will make the rest of the explanation more
understandable.

3.1. Definitions of Important Components

• TSN flow: describes the time-sensitive communi-
cation between end devices. Each stream (flow)
has a different time requirement that it gives no
concessions for its right in strict transmission time
[4].

• End devices: End devices are the hosts or the
source and the destination nodes in our network
that the TSN flows weillcbe transmitted between
them. Each of these devices has to run an appli-
cation that requires deterministic communication
[4].

• Bridges: or "Ethernet Switches" are special
switches that capable to transfer or receive frames
a TSN flow taking into consideration their sched-
ule and priorities. In other words, the TSN
switches should have the ability to forward the

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

10 doi: 10.2313/NET-2021-05-1_03

frames on a schedule and receive frames according
to a schedule [4].

• Central Network Controller (CNC): It can be
defined as a proxy for the Network and the Control
Application, where they are needing determinis-
tic communication. The TSN frames are simply
transmitted on the schedule defined by the CNC.
In other words, it is an application, which pro-
vides configuration frames for TSN bridges. These
frames are response to TNS stream requirements
that received from the Centralized User Configu-
ration (CUC). This application gives it the vendor
of the TSN bridges [4].

• Centralized User Configuration (CUC): CUC is
an application that communicates with the Central
Network Controller (CNC) and End-devices. CUC
makes requests to CNC for TNS flows, where each
flow has deference requirements. In other words,
CUC is an application that receives requests from
End-devices and then CUC will transfer the con-
figuration flows to the CNC in the Network for
processing [4].

3.2. Security Policies

IEEE 802.1Qci avoids traffic overload condition, that
impact the bridges and the end-devices on a network,
that is mean is improving the robustness of a network,
for instance, daniel-of-Service (DoS) attack, error through
streams transmission or likewise if we receive a flow that
is not in the schedule time period then it is dropped [6].

After a while had IEEE 802.1Qci a progress. The
source states that little progress has been made to connect
the standard with existing industrial security systems and
architectures [7].
IEEE 802.1Qci Standard is relatively new addition to
IEEE 802.1Q Standard, The source states that 802.1Qci
does not define how specific policies are created and
deployed. Furthermore, there are not a lot of contribution
to give explicit ways how the security systems can be
deployed and employed, or how the filtering rules are
dynamically updated as the Internet and Networks scaling
up [7]. TSN networks apply the centralized configuration
module, Central User Configuration (CUC) and Central
Network Controller (CNC) [7].

How these Components work together? The CNC is
a software program works on a costumer own network or
premises that communicate with the bridges (a network’s
component) and controls it. CNC has two principle re-
sponsibilities, First, it resolves routes and scheduling TSN
flows, second, it configures the bridges for TSN opera-
tions. The CNC communicates with the CUC to receive
the communications requirements that a network must
provide, then the CNC processes all the communications
requirements to determine the routes and to schedule the
end-to-end transmission for each TNS flow. CNC provides
a unique identifier for each flow (include MAC-Address)
to help the bridges without doubt identify each flow.
Finally, CNC transfers all these processed data flows to
bridges the premise [4].

The progress that happens is to integrate the 802.1Qci
Standard security system with the Centralized Configura-
tions module (CCM). The idea is to centralize the policies

End-
Device

End-
Device

CUC

CNC

Bridge
(switch)

Bridge
(switch)

Policy Server

Figure 2: Centralized Configurations module (CCM) [7]

in a policy server to collect the global security policies for
the network to dynamically and automatically update them
due to the requirements. In the following points it will be
explained how the 802.1Qci Standard is integrated with
the CCM.

The Policy Server communicates with the CNC.Iin
addition, the identifications of TSN endpoints should be
imported as objects, besides, the route of the flow should
be in a secured mode. Then the Policy Server should be
provided on configurated global security policies that are
required to be integrable to integrate with the configured
IEEE 802.1Qci policies and to enable the end-devices
to deal with them. The bridges should be provided with
the security system and the policies. For this reason, the
Policy Server should enable to update the security system
beside to the policies when the requirement for a route
change from CNC that received new information and
requirements from the CUC. At the same time the control
mechanism Quality of Service (QoS) is also should be
updated when the bridges receive new flows. The CNC is
allowed to deal with per-flow shaper but is not allowed
to handle with QoS. Here come the Policy Server to deal
with QoS and to adjust the QoS configuration taking into
consideration its buffer size and the current number of
on-board TSN flows without any meddling from human
resource. In general, the Policy Server communicate with
the bridges on a network as well as with a CNC on the
same premise that configurate the communication require-
ments for each flow. [7]

3.3. Queuing Frames

After a flow passes all the levels from the ingress till
the flow meter, it gets queued taking into consideration all
the communication requirements that the End-devices re-
quired. To be queued there is an important component that
manage this process called Credit Based Meter (CBM). To
explain CBM the Credit Based Shaper (CBS) should be
referred.

CBS is defined in IEEE 802.1Qav that have two
important concepts, idleslope and sendslope. idleslope
is a definition of the reserved Bandwidth and sendslope
is a definition of the Bandwidth subtracted from reserved
Bandwidth. CBS has an important role in the TSN net-
work to keep the maintain of a reserved bandwidth [1].
If two End-devices want to communicate, for security
reasons the route should be protected and reserved for the
sent flow. This reservation takes part from the bandwidth
(or the whole, depend on the communication require-
ments). To control this reservation, it should be controller

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

11 doi: 10.2313/NET-2021-05-1_03

0

t1 t2 t3 t4 t5 t6

R-RA R-RF R-RA

Stream
Frame BE Frame Stream

Frame
Stream
Frame

C
B
M

C
re
di
t

C
B
M

St
at
e

In
gr
es
s

First	incoming		
Stream	Frame Best Efford

delays Stream
Third incoming
Stream Frame

Stream	Frame	receiving	not	allowed

Figure 3: Credit Based Metering example [1]

that manages all the traffic flows. CBS is the method that
has been defined to solve this problem. It shapes the traffic
flows depending on the reservation Bandwidth that gives
information about the maximum interval and size of flow
frames to that allow to enter the network medium [1].

CBM is based on the credit value of the CBS and
others. It takes the two Slopes, idleslope and sendslope.
It also contains further parameters, maximum burst size
parameter (Burstmax), stream frame sending duration
(Tduration), frame size (FSstream) port bandwidth (B),
Ethernet inter frame gap (Tifg) and the maximum credit
value (Creditmax). Burstmax is a parameter that gives
the number of the allowed streams frame to income burst.
Tduration defined as following [1]:

Tduration =
FSstream

B
+ Tifg

Tduration is important to calculate the Creditmax that
defined as following [1]:

Creditmax = sendslop · Tduration · (Burstmax − 1)

In addition to all the definitions, CBM can be in two
different statuses R-RA and R-RF.
R-RA = RUNNING RECEIVING ALLOWED
R-RF = RUNNING RECEIVING FORBIDDEN

As expected, the status at the beginning is R-RA with
credit 0 that will be changed depending on idleslope. The
credit still increasing till a flow frame is incoming or the
credit hit the maximum then stopped. If it stopped because
of creditmax reached, then the credit value stays as it
is till a frame is incoming . As the credit in R-RA can
increase, also it can decrease. sendslope is responsible
for decreasing the credit for receiving duration of a flow.
Also, if it decreased and still has positive value, still acting
normal like before, but if it crosses the zero to the negative
value, then immediately the status will be changed to R-
RF. In the status R-RF no frames from now allowed to
be queued and will be dropped. This will be changed if
the credit again increases to positive value to change it
to R-RA. This will happen by idleslope if an incoming
frame was dropped [1].

4. Future Work

TSN is the future to realize synchronization and si-
multaneous communication to enable future ideas as self-
driving cars the possibility to become true. TSN will be
improving and the standards will be implementing in ap-
plications. Credit Based Meter (CBM) also will be imple-
menting and testing, where the environment is simulated
to analyze and collect more information about the effi-
ciency, performance and the maximum burst configuration
[1]. Furthermore, it will be analyzing how this technology
integrated with other TSN traffic shaper concepts and how
it deals with them in this simulated network [1].

5. Conclusion

Today’s industrial requirements are above the current
standards Ethernet and there ability to fulfill the require-
ments. They are not enabling the communication between
two end-devices simultaneously, low latency or to deter-
ment the critical data and their priority to handle it. There-
fore, a new technology was developed as a solution for
this problem to satisfy the communication requirements.
Time sensitive Networking (TSN) provides low latency
transfer, simultaneous communication between two end-
devices, security and priority for critical data. TSN has
several Standards that provide different functions and
applications.

In this paper 802.1Qci and its definition for Per-
stream filtering and policing was discussed. Because the
technology relatively new, there are some gaps in the
implementation and it still developing. A problem that
802.1Qci have it, when the internet daily scaling up and
a lot of changes happen, how can be the policy of a
network updated to still in full swing with these changes.
A solution was to centralize the policies in one server
that called Policy Server, to controls all the policies and
update them according to the requirements that will take
them from the CNC (look Section/Subsection 3.2).

In addition to these implementations, Credit Based
Meter (CBM) will tested and analyzed in a simulated
environment networks, where also will show how it can
deal with other implementations.

References

[1] P. Meyer, “Preventing DoS Attacks inTime Sensitive Networking
In-Car Networks through Credit Based ingress Metering.”

[2] D. Greenfield, “4 reasons why time sensitive networking matters,”
2016, [Online; accessed 28-September-2020].

[3] J. L. Messenger, “Time-Sensitive Networking: An Introduction.”

[4] Cisco, “Time-sensitive networking: A technical introduction,” 2017.

[5] “Ieee standard for local and metropolitan area networks–bridges and
bridged networks–amendment 28: Per-stream filtering and policing,”
IEEE Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015,
IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std 802.1Qbv-2015, IEEE
Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016), pp. 1–65, 2017.

[6] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks:
The ieee tsn and ietf detnet standards and related 5g ull research,”
IEEE Communications Surveys Tutorials, vol. 21, no. 1, pp. 88–145,
2019.

[7] J. H. Robert Barton, Maik Seewald, “Management of IEEE 802.1Qci
Security Policies for Time Sensitive Networks (TSN),” 2018.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

12 doi: 10.2313/NET-2021-05-1_03

Current Developments of IEEE 1588 (Precision Time Protocol)

Kilian Rösel, Max Helm∗, Johannes Zirngibl∗, Henning Stubbe∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: roeselk@in.tum.de, helm@net.in.tum.de, zirngibl@net.in.tum.de, stubbe@net.in.tum.de

Abstract—Precise synchronization of clocks is essential for
multiple scientific and industrial applications. Synchroniza-
tion in networks can be achieved with the IEEE 1588
Precision Time Protocol. This paper gives an overview of
this protocol and explores recent developments of this stan-
dard. It examines new features for accuracy and security
introduced by the 2020 released IEEE 1588-2019 (PTPv2.1)
edition of this protocol. Sub-nanosecond accuracy gets sup-
ported by the High Accuracy Profile based on the White
Rabbit Extension, utilizing Layer 1 signals and a system
wide calibration procedure. Several approaches to make
the synchronization mechanism more secure are presented.
Finally the paper outlines the expected impact of PTPv2.1
functionality on industrial use cases.

Index Terms—IEEE 1588, precision time protocol, high ac-
curacy

1. Introduction

Precise synchronization of clocks in distributed sys-
tems is a major requirement in several areas such as
telecommunication, finance and power grid. However,
many solutions lack in synchronization accuracy, robust-
ness and security to be properly deployed in real industrial
scenarios [1].

On 16 June 2020 the IEEE 1588-2019 [2] version
of the Precision Time Protocol (PTP) superseded the
previous IEEE 1588-2008 (PTPv2) [3] version. This new
revision includes the High Accuracy Profile (HA), which
allows to achieve sub-nanosecond accuracy as well as
several mechanisms to make PTP systems more secure
and robust.

This paper gives an overview over the PTP protocol in
Section 2. The different PTP devices with their topology
and the synchronization mechanism will be discussed.
The new High Accuracy Profile allows to achieve sub-
nanosecond accuracy. It relies on two key mechanisms:
Firstly, calibration and measurement of asymmetries and
secondly achieving higher precision in timestamping,
presented in Section 3. Furthermore, new features and
guidelines for security are presented in Section 4. This
paper finally discusses new possibilities and challenges
of PTPv2.1 in PTP implementations based on different
industries in Section 5.

2. Background

A PTP network consists of multiple PTP devices and
non-PTP devices, such as switches and routers.

An Ordinary Clock (OC) is a terminal device which
has only one PTP port and maintains the timescale with
its local clock. It can either be the Grandmaster Clock,
such that it acts as the source of time or a slave receiving
time. When it is in the master state, it often uses global
navigation satellite systems (GNSS) or terrestrial radio
links as time reference.

Boundary Clocks (BC) are network devices with mul-
tiple PTP ports. One of them is in the SLAVE state, so
they can synchronize their own local clock to the time
source. The ports in the MASTER state provide time to
other PTP Instances.

End-to-end (E2E) and peer-to-peer (P2P) Transparent
Clocks (TC) are network devices as well, but do not
synchronize their own internal clock. Instead they measure
the residence time of PTP messages and propagate them
after adjusting a correction field.

Management Nodes are devices used for configuring
and monitoring clocks in a PTP network.

Non-PTP devices such as switches and routers, can
cause inaccuracies because they introduce asymmetry in
the network through queueing effects. For achieving high
accuracy it is therefore essential to only use BCs and/or
TCs as network devices.

The logical unit in which the PTP devices synchronize
to one timescale is called a domain. Originally multiple
domains could exist in the same network, but were strictly
separated. The new edition introduces the possibility of
inter-domain interactions between PTP devices. This fea-
ture can get used to enhance security, presented in Sec-
tion 4.

2.1. Master-Slave Hierarchy

The PTP domain has to be organized in a treelike
master-slave hierarchy, with the best suited clock as grand-
master at the root. To select the grandmaster and to
negotiate this topology the Best Master Clock Algorithm
(BMCA) may be used. First OCs and BCs exchange the
following performance properties via Announce messages:

1) priority1: Can be set by administrators to apprise
their preferred master clock.

2) clockClass: Describes the traceability, synchro-
nization state and expected performance.

3) clockAccuracy: Describes the accuracy of the
Local PTP Clock.

4) offsetScaledLogVariance: Describes the stability
of the Local PTP Clock.

5) priority2: Can be set by administrators to arrange
equivalent PTP Instances.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

13 doi: 10.2313/NET-2021-05-1_04

6) clockIdentity: Unique identifier for PTP Instances
to break ties.

Secondly, each PTP Instance computes the states of
its ports according to those properties.

The BMCA also prunes mesh topologies to avoid
cyclic network connections. It does so by setting ports on
PASSIVE state such that there is no time synchronization
on this connection. This way endless circulation of rogue
Announce messages can be avoided. Figure 1 shows an
exemplary PTP network with pruned mesh topolgy [2].

GM TC

BC

BCM

BC

S

S
M P

M

S
OC MS

reference timesource

M: MASTER

S: SLAVE

P: PASSIVE

Port States:

Figure 1: Example PTP network with pruned mesh topol-
ogy [2].

The BMCA is running continuously, even when the
desired topology is already established. This way the
network can reconfigure itself automatically, if for ex-
ample physical connections get lost or the performance
properties of a Grandmaster Clock degrade [2].

The new edition of the standard also includes mecha-
nisms for manual configuration of PTP port states. How-
ever, setting port states manually may result in "timing
islands" where time does not get distributed, illustrated in
Figure 2. Additionally it disables automatic reconfigura-
tion [4].

OC BC

GM in timing
island 1

GM in timing
island 2

M S M BCM M BCS

Figure 2: Adjacent ports in master state result in timing
islands [4].

2.2. Synchronizing Mechanisms

The time synchronization mechanism takes place be-
tween two linked Ordinary and/or Boundary Clocks. One
of them is in the master state, the other one in the slave
state. They are exchanging a series of event and general
messages to calculate the offset of the Slave Clock with
respect to the master clock. Event messages are messages
that get timestamped when they egress or ingress a port.
General messages are not required to be timestamped.
Details on timestamp generation are shown in Section 2.3.
Eventually, all PTP Instances are synchronized to the
grandmaster as time gets distributed through the hierarchy.

To distribute time, the master clock first sends a Sync
message to the Slave and timestamps the departure time
t1. The slave timestamps the arrival of this message t2.
In a two-step setup the master then sends a Follow_Up
message containing t1. In a one-step setup the master clock
would already have included timestamp t1 in the first Sync

message, rendering the Follow_Up message obsolete. In
order to calculate the network delay according to the E2E
mechansim the Slave clock then sends a Delay_Req mes-
sage, and notes the departure time t3. The master creates
timestamp t4 at arrival of this message and communicates
this timestamp via a Delay_Resp to the slave. Figure 4
illustrates this message exchange. When the slave clock
possesses all four timestamps, it can compute the mean
path delay d and its offset to the master o:

d =
(t2 − t1) + (t4 − t3)

2
o = (t2 − t1)− d

Knowing the slave-master offset the slave clock can
adjust its own clock and is then synchronized to the
master.

Calculation of the network delay can also be done with
the P2P mechansim. This mechanism does not calculate
the network delay between a master and slave port, but
between directly neighbouring nodes. The P2P network
delay then gets added up along the whole path. Figure 3
illustrates the difference between P2P and E2E.

OC E2E TCM E2E TC OCS

OC P2P TCM P2P TC OCS

Delay-Request
Delay-Response

Figure 3: PTP Delay Mechanism [5]

This model assumes the master-slave (tms) and slave-
master (tsm) propagation delay to be symmetric, i.e. mes-
sages need the same time to travel in either direction.
However, to achieve high accuracy in real scenarios one
must take steps to account for asymmetries in the network.
The HA therefore defines a system wide calibration pro-
cedure, shown in Section 3.1.

t1

t4

t2

t3

tms
Sync

Follow_Up

tsm
Delay_Req

Delay_Resp

Master
Clock
Time

Slave
Clock
Time

Timestamps
known by slave
PTP instance

t2

t1, t2

t1, t2, t3

t1, t2, t3, t4

Figure 4: Basic end-to-end PTP Timing Message Ex-
change [2]

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

14 doi: 10.2313/NET-2021-05-1_04

2.3. Timestamp Generation

Precise timestamp generation is crucial for the accu-
racy of round trip time measurement. A timestamp is
defined as the instance the message timestamp point of
an event message crosses the reference plane between
medium and PTP port. Though in implementations times-
tamping might take place in the Application Layer (C), in
the kernel interrupt service routines (B) or in the physical
layer (A), illustrated in Figure 5. Traveling through the
protocol stack can introduce latencies, thus it is preferable
to choose a point near to the physical layer. In this
case, specialized hardware assists in the generation of the
timestamp. Nevertheless, any offset from the reference
plane has to be compensated for by measurement and
calibration [2].

IEEE 1588 Code
(application layer)

OS

MAC

PHY

Hardware Assist

Network

A

B

C

reference plane

Preamble Header

Message Timestamp point

Figure 5: Protocol Stack and Message Timestamp
Point [2]

3. High Accuracy

The High-Accuracy Profile is based on the White
Rabbit Extension (WR) for PTPv2. WR was developed
to renovate the control and timing system at CERN [6]
and was later generalized and included in the standard by
the P1588 working group [7].

It allows to achieve sub-nanosecond synchronization
accuracy by relying on two mechanisms and method-
ologies: (1) Various sources of asymmetry get recog-
nized, measured and calibrated to compensate for their
effects, described in Section 3.1. (2) Utilizing physical
transmission and receive signals to increase precision in
the hardware assisted timestamping process of PTP event
messages, described in Section 3.2 [8].

3.1. Calibration

Asymmetries between two PTP Instances introduce
inaccuracy in the synchronization process. There are two

sources of asymmetry: timestamp generation latencies and
medium asymmetry. Knowing the values allows to com-
pensate for their effects when calculating the offset from
the master.

Timestamp generation latencies get introduced on
egress and ingress of messages, e.g. because timestamps
are captured at a point removed from the reference plane,
see Section 2.3. Medium asymmetries originate from the
physical communication medium. They can for example
be caused by the use of different wavelengths of light in
single-strand fibers. The standard defines several proce-
dures, how to calibrate these latencies and asymmetries.
Because of different optical phenomena in long distance
optical links, these procedures are only intended for Local
Area Networks [2]. However, deployment of long distance
fiber links has already been investigated [9].

3.2. Precise Timestamping

The accuracy of delay measurements relies on the
resolution and precision of timestamping. Timestamps are
created by the Local PTP Clock whenever the message
timestamp point crosses the implemented point in the
protocol stack, see Section 2.3. However, usually the
receive and transmit signals on the Physical Layer (L1)
are different from the Local PTP Clock signal used for
timestamping. This may result in timestamping impreci-
sion. For example, a Local PTP Clock with a frequency
of 125 MHz is limited to a resolution of 8 ns [8].

To correct for this imprecision, knowledge about the
phase offset between the L1 transmit clock signal (clktxL1),
L1 receive clock signal (clkrxL1), and the Local PTP
Clock (clklocalPTP) is required. The L1 tx/rx signals are
the physical signals used by the medium to transport
signals over the wire. The reception phase offset (xrx)
and transmission phase offset (xtx) is the offset between
the Local PTP Clock signal to the L1 receive signal and
L1 transmission signal respectively. This relationship gets
demonstrated in Figure 6. Note that the transmit signal
of Clock A is the receive signal of Clock B. Knowing
the value of xrx and xtx at the instance of the timestamp
allows then to compensate the offsets in the calculation
process.

clktxL1_A

clklocalPTP_A

clkrxL1_A

xtx_A

xrx_A

Tx

Rx Tx

Rx

xrx_B

xtx_B

clkrxL1_B

clktxL1_B

clklocalPTP_B

Figure 6: Link Reference Model between two Clocks [8]

Quantifying the phase offsets depends on the vari-
ability of the offset. In the simplest case the offsets are
constant. That means the L1 tx/rx signals and the Local
PTP clock signal are coherent, i.e., they operate on the
same frequency. To achieve coherency, ports can base their
Local PTP Clock signal on the L1 rx signal recovered
from the medium and generate their L1 tx signal from
the Local PTP Clock. With this relationship in place, the

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

15 doi: 10.2313/NET-2021-05-1_04

constant offsets can be measured, for example by using
Digital Dual Mixer Time Difference (DDMTD) phase
detection [10].

Syntonization in networks can for example be
achieved with Synchronous Ethernet (ITU-T Recommen-
dations G.8261 [11] and G.8262 [12]). The PTP Clocks
can then take advantage of the Layer 1 syntonization to
enhance their timestamping precision [8].

4. Security Mechanisms

Security concerns have long been neglected in the
development of PTP. Especially in critical infrastructures
such as the power grid this might prove fatal. However,
PTPv2.1 describes several mechanisms to make PTP more
secure [13].

PTP Integrated Security Mechanism. PTP messages
can be extended by a type, length, value (TLV) extension
mechanism in order to transfer additional information.
There are several different types of TLVs defined.

The AUTHENTICATION TLV, providing a way to
authenticate PTP messages, was already introduced in
PTPv2. But test implementations of this feature have
shown little additional security at the expense of over-
head [14]. PTPv2.1 revised the AUTHENTICATION TLV
feature.

The included integrity check value (ICV) verifies all
fields from the PTP Header up to the AUTHENTICATION
TLV without including the ICV itself. Also included in the
calculation is a secret key. This key has to be distributed
by a key management system. Depending on this system
two different verification schemes are possible: (1) Imme-
diate security processing enables verification of the mes-
sage immediately. To achieve this, the secret key has to be
known to the communication partners before processing.
This approach also allows mutable fields. For example a
transparent clock can adjust the correction field and can
then recompute the ICV. (2) Delayed processing enables
to share the secret key after message transmission. With
this approach the receiver has to store the message until
he receives the key to verify it. Those two approaches can
also be combined. Figure 7 shows this case. Everything
after the first AUTHENTICATION TLV is immediately
verified. This method allows to add TLVs that can be
modified by intermediate devices [13].

Transport
Header

PTP
Header

PTP
Payload

Other PTP
TLVs

AUTHENTICATION TLV
delayed processing ICV Other PTP

TLVs
AUTHENTICATION

TLV
immediate processing

ICV Transport
Trailer

Integrity protected by delayed processing

Integrity protected by immediate processing

Figure 7: Authentication TLV [2]

The key management system is responsible for the
distribution of keys, however the standard does not yet
define such a system, but merely gives guidelines [15].

PTP External Transport Security Mechanisms. The
standard suggests using MACSec and IPSec as external
security mechanisms. Those protocols provide protection
against several attacks, as shown by [16].

Architecture Mechanisms. The standard presents various
guidelines to enhance security by architectural choices
based on redundancy: (1) Redundancy by complementary
timing systems means that end-users of time obtain a
second reference through a non-PTP way, for example by
GPS. This way they can detect malicious behaviour. (2)
Multiple domains with separate Grandmaster Clocks work
together through inter-domain interactions. End users then
can obtain time in a voting process from multiple domains
and are therefore able to exclude malfunctioning time
information. (3) Lastly redundant network paths between
nodes can ensure distribution of timing messages even
when some connections get lost [2].

Monitoring and Management Mechanisms. Monitoring
and managing the performance of the PTP network can
reveal clues about potential security attacks, e.g. delay
attacks. These can be identified by detecting unexpected
offset jumps or large changes in measured path delays.
The new version has also introduced a standardized format
in which all PTP devices can share their performance data
in an uniform way with Management Nodes [2].

5. Applications of PTPv2.1 Functionality

The White Rabbit Extension has already proven useful
in multiple scientific applications, e.g. in particle accelera-
tors. But also other sectors have already made endeavours
in adapting this technology [17]. Deutsche Börse, for
example, uses WR to synchronize their own timestamping
devices. Additionally they provide means for their trading
partners to synchronize their own clocks to theirs [18]. As
the WR technology matures through the standardization as
High Accuracy Profile, it will grow even more attractive
for industrial use. So it is to be expected to see an adaption
in multiple areas. Especially the operation of power grids
can profit from increased timing accuracy. As the grid
evolves to being powered by sustainable but unpredictable
energy sources, precise monitoring is essential. For exam-
ple, multiple synchrophasers can detect characteristic volt-
age spikes caused by malfunctioning equipment. When the
measurements are precisely synchronized conclusions on
the origin can be drawn [19].

Deployment in such critical infrastructure was previ-
ously hampered by security concerns. An implementation
of the AUTHENTICATION TLV feature for Linux PTP
has already proven to be feasible with a low computational
overhead [13]. This result and the other security guidelines
may encourage adopters in utilizing PTPv2.1 functionality
in their own implementations.

6. Conclusion and Future Work

The new version includes options for achieving high
accuracy and mitigating security risks. These two features
are essential for PTP to be further adapted as time syn-
chronization technology. This paper has presented these
new features and has briefly outlined their impact on in-
dustrial scenarios. However, PTPv2.1 includes even more
innovations, not presented in this paper, such as profile
isolation, special PTP ports and mixed multicast/unicast
operation [20].

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

16 doi: 10.2313/NET-2021-05-1_04

References

[1] F. Girela-López, J. López-Jiménez, M. Jiménez-López, R. Ro-
dríguez, E. Ros, and J. Díaz, “IEEE 1588 High Accuracy Default
Profile: Applications and Challenges,” IEEE Access, vol. 8, pp.
45 211–45 220, 2020.

[2] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-
2019 (Revision of IEEE Std 1588-2008), pp. 1–499, 2020.

[3] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-
2008 (Revision of IEEE Std 1588-2002), pp. 1–300, 2008.

[4] D. Arnold, “What’s in IEEE 1588-2019: DIY PTP
Port States,” https://blog.meinbergglobal.com/2020/07/24/
whats-in-ieee-1588-2019-diy-ptp-port-states/, 2020, [Online;
accessed 24-September-2020].

[5] Z. Idrees, J. Granados, Y. Sun, S. Latif, L. Gong, Z. Zou, and
L. Zheng, “IEEE 1588 for Clock Synchronization in Industrial IoT
and Related Applications: A Review on Contributing Technologies,
Protocols and Enhancement Methodologies,” IEEE Access, vol. 8,
pp. 155 660–155 678, 2020.

[6] “The White Rabbit Project,” https://white-rabbit.web.cern.ch/
Default.htm, 2020, [Online; accessed 26-September-2020].

[7] “IEEE P1588 Working Group,” https://sagroups.ieee.org/1588/,
2020, [Online; accessed 26-September-2020].

[8] O. Ronen and M. Lipinski, “Enhanced Synchronization Accuracy
in IEEE1588,” 2015 IEEE International Symposium on Precision
Clock Synchronization for Measurement, Control, and Communi-
cation (ISPCS), pp. 76–81, 2015.

[9] E. F. Dierikx, A. E. Wallin, T. Fordell, J. Myyry, P. Koponen,
M. Merimaa, T. J. Pinkert, J. C. J. Koelemeij, H. Z. Peek, and
R. Smets, “White Rabbit Precision Time Protocol on Long Distance
Fiber Links,” IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 63, no. 7, pp. 945–952, 2016.

[10] P. Moreira, P. Alvarez, J. Serrano, I. Darwezeh, and T. Wlostowski,
“Digital Dual Mixer Time Difference for Sub-Nanosecond Time
Synchronization in Ethernet,” pp. 449–453, 2010.

[11] “Timing and Synchronization Aspects in Packet Networks,” ITU-T
G.8261/Y.1361, pp. 1–120, 2019.

[12] “Timing Characteristics of Synchronous Equipment Slave Clock,”
ITU-T G.8262/Y.1361, pp. 1–44, 2018.

[13] E. Shereen, F. Bitard, G. Dán, T. Sel, and S. Fries, “Next Steps
in Security for Time Synchronization: Experiences from imple-
menting IEEE 1588 v2.1,” 2019 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS), pp. 1–6, 2019.

[14] C. Önal and H. Kirrmann, “Security Improvements for IEEE
1588 Annex K: Implementation and Comparison of Authentication
Codes,” pp. 1–6, 2012.

[15] D. Arnold, “The PTP AUTHENTICATION TLV,” https://blog.
meinbergglobal.com/2020/06/04/the-ptp-authentication-tlv/, 2020,
[Online; accessed 29-September-2020].

[16] T. Mizrahi, “Time Synchronization Security Using IPsec and MAC-
sec,” 2011 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication,
pp. 38–43, 2011.

[17] M. Lipiński, E. van der Bij, J. Serrano, T. Włostowski, G. Daniluk,
A. Wujek, M. Rizzi, and D. Lampridis, “White rabbit applica-
tions and enhancements,” 2018 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS), pp. 1–7, 2018.

[18] “High Precision Time (White Rabbit) Pilot,” https:
//www.eurexchange.com/ex-en/find/initiatives/technical-changes/
high-precision-time-white-rabbit-pilot, 2019, [Online; accessed
3-October-2020].

[19] A. Jarc, “Use Cases for Timing in Power
Grids,” https://blog.meinbergglobal.com/2019/07/16/
use-cases-for-timing-in-power-grids/, 2019, [Online; accessed
3-October-2020].

[20] D. Arnold, “What’s In the 2019 Edition of IEEE
1588?” https://blog.meinbergglobal.com/2017/09/24/
whats-coming-next-edition-ieee-1588/, 2017, [Online; accessed
3-October-2020].

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

17 doi: 10.2313/NET-2021-05-1_04

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

18

SmartNICs: Current Trends in Research and Industry

Tristan Döring, Henning Stubbe∗, Kilian Holzinger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: tristan.doering@tum.de, stubbe@net.in.tum.de, holzinger@net.in.tum.de

Abstract—With ever rising demand, modern cloud environ-
ments had to evolve fast in the last years. One of these novel
problems are the increasing speed requirements in com-
bination with present Software-Defined Networks (SDNs).
This paper gives an overview on a new hardware trend
resulting from this. We illustrate the demand, development,
implementation and use of the network accelerating Smart-
NICs. SmartNICs tackle existing problems of NIC-hardware
such as the lack of flexibility, a requirement for virtualized
networks. Furthermore the SmartNIC term will be analyzed
to provide an universal definition.

Index Terms—SmartNIC, network accelerator, data process-
ing unit, fpga-based smartnic, asic-based smartnic, soc-based
smartnic

1. Introduction

Demand for network performance grows with the ex-
panded use of the internet and the increasing popularity of
cloud-based computing. The combination of standard net-
work interface controllers, dedicated networking hardware
and software based virtual packet routing can not keep up
with the increasing speed requirements. One reason for the
slowing development of CPU performance is the decline
of Moore’s law. E.g. network speeds in the Microsoft
Azure platform improved by 50 times between 2009 and
2017, but CPU performance did not improve in the same
speed [1]. Therefore cloud service providers, data center
operators etc. had to think about new solutions which
enable them to provide their services to the growing and
performance demanding audience with faster and cost ef-
ficient performance. A problem known to exist is the lack
of programmability/flexibility in regular NIC hardware
which is built for a number of specific predefined use cases
and at heart still serves the functionality as an interface
from the host CPU to the network. This leaves much of
the workload to the CPU. This static functionality does not
comply with evolving Software Defined Network (SDN)
policies and Virtual Network Functions (VNF) which are
key parts of current virtualized network environments.
There is an increasing demand for better performance
compared to software solutions without compromising
too much flexibility. This leads to the development of
the SmartNIC. The novel NICs should be able to handle
more complex tasks independent of the CPU to a certain
degree. This is called an in-Network Interface Card (in-
NIC) processing approach.

2. Trends and Technological Demands in
Cloud/Hosting Industry

Before diving deeper into the topic of SmartNICs this
section will give a short overview on the current state
of the industry. The new guiding trend is the virtualiza-
tion of networks, storage, GPUs etc. These techniques
generate network related workloads not only on network
devices as virtualization can not independently run on e.g.
NICs. The network processing can be divided into two
categories, i.e. the data plane and the control plane. The
control plane is responsible for the control of the network
structure, i.e. communications between network devices
and assigning tasks to network devices. In other words
it is the implementation of network policies. The data
plane handles the actual movement and modification of
application data packets. The legacy hardware layout in a
server is a combination of standard NICs and CPU cores.
Here the CPU handles the control and data plane. The
NICs on the other hand at best accelerate certain data
plane functions to ease up load on the CPU. That means
in current server environments the network traffic can use
up a significant amount of CPU resources [1, section 3]
(see also section 5.3).

The following paragraphs will explain a few common
network technologies present in typical up-to-date server
environments that are demanding on the CPU.

Software-Defined Networking (SDN) decouples the
network structure from its realization in hardware. That
means the control plane is controlled by software control
plane policies. These policies are mapped to the data plane
and executed in hardware. That imposes additional packet
steering and processing requirements and adds additional
workload to the CPU. E.g. Open vSwitch (OVS), an open-
source software implementation of a multilayer switch, is
part of such a virtual network stack.

For example storage virtualization also called
Software-Defined Storage (SDS) is part of the virtualiza-
tion trend. The idea is to share storage between different
servers over the network. Virtualization and abstraction
is used to make the storage look local to applications.
That means all the data traffic has to go through the
network. This brings up some challenges to overcome with
even more stress on the CPU which will further increase
with higher bandwidths. The newest technology is Non-
Volatile Memory express over Fabrics (NVMe-oF) which
combines the low latency NVMe-protocol with virtualized
storage addressing over the network.

For efficient implementations of these protocols,
SmartNIC acceleration is vastly beneficial.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

19 doi: 10.2313/NET-2021-05-1_05

3. What is a SmartNIC?

Network environments develop to be more complex
and the trend shifts to more and more virtualized net-
work environments. This involves too much networking
overhead on the CPU cores. With rising network speeds
of currently up to 200Gbps per link the expensive CPU
spends too much work for networking. Even though the
true value of CPUs lies in their ability for general process-
ing e.g. applications and data analysis. The virtualization
trend makes this even worse with increasing local network
traffic in servers due to SDS, SDN and big data. An
obvious solution is to offload this kind of processing to
specialized external devices. There are already some NIC
devices that are not considered smart but assist the CPU
by performing a huge diversity of network function accel-
eration including Network virtualization. These functions
are hardcoded into these NICs. They are considered the
first step that led to the development of SmartNICs. This
combination of standard NICs and servers is not able to
deliver enough performance to meet the rising demands
for network speed because of the required application of
SDN policies [1, section 2.3]. SmartNICs in comparison
to CPU and NIC combinations target to offer a faster,
more efficient and lower cost solution including the im-
portant reduction of CPU usage. Another important factor
is the required flexibility that current software solutions
offer. The programmable SmartNICs also try to meet this
demand by offering various development kits or even the
possibility to run existing software to engineers. We will
see later how different manufacturers handle this problem.

3.1. The Term SmartNIC

"Also called a ’network interface card’ (NIC), a net-
work adapter is a plug-in card that enables a computer to
transmit and receive data on a local network. [...]" [2]

On the basis of this definition of a classic NIC and
also the knowledge of some SmartNIC functions and use
cases a proper definition is worked out. A definition that is
applicable to the new type of network accelerators called
SmartNICs. The term SmartNIC implicates that it is an
extension of standard NIC devices, but it is not as simple
as just an increased functionality. The keyword “Smart”
implies some kind of intelligence or the ability to act
somewhat smart to solve complex tasks. The smartness
in this new device class lies in the ability to perform
numerous tasks independently and to be flexible enough to
tackle future and current network tasks [1, section 3]. This
was achieved by adding some kind of general processing
unit to a NIC.

3.2. Other SmartNIC Definitions

There are numerous attempts to define what the term
SmartNIC means. A widely spread definition is written
by Alan Freedman, the author of a tech encyclopedia: “A
network interface card (network adapter) that offloads pro-
cessing tasks that the system CPU would normally handle.
Using its own on-board processor, the smartNIC may be
able to perform any combination of encryption/decryption,
firewall, TCP/IP and HTTP processing. SmartNICs are
ideally suited for high-traffic Web servers” [3]. But this

definition lacks one of the most important properties of
a SmartNIC, the programmability, the biggest difference
to a regular NIC. In today’s rapidly changing software-
defined networks updatability is key to have a future proof
network environment. Microsoft also supports this opinion
in their paper “Azure Accelerated Networking: SmartNICs
in the Public Cloud” where they list "Maintain host SDN
programmability of VFP” [1] as one of their design goals
for their in-development Microsoft Azure SmartNIC. Also
contrary to the definition by Alan Freedman use cases or
application environments should not be mentioned in the
definition as these are broad and ever changing.

Mellanox’s Vice President of marketing Kevin Deier-
ling goes even further and defines three different kinds
of NIC devices: Foundational NICs, Intelligent NICs and
DPU based SmartNICs [4]. This variety exists because
Mellanox has customers who ask for a SmartNIC because
they need functionality they refer to as smart and which
is superior to that of a Foundational NIC. But these func-
tionalities were also supported by their base line of NIC
products, the so-called Intelligent NICs which Mellanox
does not refer to as smart. Kevin Deierling’s approach is to
differentiate NICs by their offered functionality. The fur-
ther differentiation does make sense for Mellanox, because
they want customers to perceive their products superior to
standard NICs. Mellanox defines an Intelligent NIC as a
NIC with extended functionality that is not programmable.
The further differentiation may be confusing because the
border between NICs and Intelligent NICs can not be
properly defined. In the future the comprehension of what
extended NIC functionality is will probably change and
with it the definition for Intelligent NICs.

3.3. Definiton of SmartNIC

Going off of multiple press and industry definitions
we decided to work out a definition of our own that is
universally applicable:

A SmartNIC is a device which connects to a network
and a computer that specializes in hardware-acceleration
of various standard and software-based network related
tasks. The innovation drivers for its development are free-
ing up CPU resources, the requirement for formerly un-
reachable speeds and more efficiency. It is able to perform
control and data plane functions by combining NICs with
flexible processing units. That also allows SmartNICs to
offer programmable and updatable functionalities. It can
also be called programmable network function accelera-
tor.

4. SmartNIC Hardware Architectures

This section explains different hardware approaches
to SmartNICs. There are three different processing units
to build a SmartNIC upon. Figure 1 is a presentation
slide of Microsofts paper "Azure accelerated networking:
Smartnics in the public cloud" [1] and shows 5 different
options to accelerate SDN speeds. Also the reciprocity
of the flexibility versus the efficiency of the hardware
solutions is illustrated. This paper will not explain the
G/NPU hardware approach because there are no such
devices released yet.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

20 doi: 10.2313/NET-2021-05-1_05

FPGAs

EFFICIENCY

Control
Unit
(CU)

Registers

Arithmetic
Logic Unit

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs G/NPUs
ASICs

Option 5: Don’t offload at all, instead make SDN more efficient
with e.g. poll-mode DPDK

Figure 1: Overview on the different implementation op-
tions and their flexibility versus efficiency [1]

4.1. FPGA-based SmartNICs

The field-programmable gate array is an integrated
circuit which is reconfigurable. This software-like pro-
grammability paired with faster performance and lower
latency close to that of an Application-Specific Integrated
Circuit (ASIC) makes it a perfect fit for SmartNIC hard-
ware. The FPGA achieves faster performance with parallel
processing of data flows in comparison to instruction by
instruction temporal computing in CPUs. The downside is
the comparatively difficult implementation of new func-
tions as it requires expertise in Hardware Description
Language (HDL) to make efficient use of the chip. Hir-
ing dedicated development teams with sufficient skills is
not a big problem for hyperscalers such as Microsoft,
Amazon and Google FPGAs. Thus FPGAs are often used
in these hyperscale environments. Though manufacturers
try to facilitate development by offering compatibility
with common developer environments such as the Data
Plane Development Kit (DPDK). Microsoft estimates that
the size of an FPGA compared to an ASIC with the
same functionality is "around 2-3x larger" because of
the flexibility they offer [1, section 4.1.3]. This generally
makes them more expensive than ASICs. There are not
many example products in the current market that only
rely on FPGAs. One rare instance is the Intel FPGA
Programmable Acceleration Card (PAC) N3000 that we
will discuss later.

4.2. SoC-based SmartNICs

SmartNICs with a System-on-a-Chip work like em-
bedded Linux servers [4, section 4.1.2]. They handle the
data and control plane in a traditional manner as they
basically run software-based VNFs on their SoC. Due
to their compact size format and thus shorter distances
between memory, processing unit and network interface
efficiency and speed are usually better. Often some kind
of other more specialized processing unit like FPGAs or
ASICs are paired with SoCs, e.g. in the Silicom N5110A
SmartNIC [5]. Many SoC-based SmartNICs offer easy
C-programmability. Compared to FPGAs SoCs are eas-
ier to program, but slower/less efficient alternatives. As
no special programming skills are required SoC based
SmartNICs are well-suited for smaller companies e.g.
the Broadcomm Stingray SmartNIC architecture which is
specifically marketed as easy to deploy [6].

4.3. ASIC-based SmartNICs

Application-Specific Integrated Circuits (ASICs)
achieve higher efficiency/performance by sacrificing
the flexibility present in an FPGA. ASIC development
traditionally means designing a specification and test
methodology for everything that a system could possibly
want to do over its lifetime upfront. As basic NICs
usually rely on ASICs, it results in their development
cycles being similar. FPGAs on the other hand allow
hardware developers to be far more agile in their
approach. The development phase of an ASIC chip can
take up to 2 years from requirements engineering to the
ready silicon parts [1, section 4.1.1]. But in that time
the functional requirements of a NIC probably already
changed because new network technologies are being
developed all the time. Additionally ASICs are only able
to perform data plane functions. To counter these issues
manufacturers often add embedded CPU cores to handle
new functionality and the control plane. These cores
are comparatively slow and can consequently cause a
bottleneck when more and more functionality is added
to them. In every SmartNIC there is a foundational level
of functionalities that is known during the development
phases that benefits from the power and cost efficiency
of ASICs. As a result ASICs in SmartNICs still play the
role of a NIC but only in combination with other flexible
compute units.

5. Two SmartNIC Products in Detail

At first sight the market of SmartNICs seems very
confusing because every product is marketed for almost
every application domain. Performance specifications are
rare and differences must be found in the details. Thus the
direct comparison of different SmartNIC products is hard.
To illustrate the diversity of products two vastly different
approaches were chosen to be displayed.

5.1. Intel FPGA PAC N3000

The FPGA-based Intel FPGA PAC N3000 is part
of Intels newest line of FPGA-based accelerator cards.
This Intel device combines the worlds of programmable
accelerator cards (PACs) and SmartNICs into one product.
It allows for optimization of data plane performance to
achieve lower costs while maintaining a high degree of
flexibility. The built-in Intel Arria 10 GT FPGA delivers
up to 1.5 TFLOPS [7, section 2.2.1]. As a board man-
agement controller the Intel Max 10 FPGA is responsible
for controlling, monitoring and giving low-level access
to board features [7, section 2.4]. The Intel XL710-BM2
NIC is directly connected to the FPGA to provide basic
ethernet connectivity, some virtualization and I/O Features
[8]. Consequently the Intel Arria 10 GT can accelerate
network traffic at up to 100 Gbps [7]. The Root-of-Trust
technology prevents the loading or executing of unautho-
rized workloads and the unauthorized access to key inter-
faces and on-board flash storage. The scopes of application
are Network Function Virtualizaton (NFV), Multi-Access
Edge Computing (MEC), Video Transcoding, Cyber Secu-
rity, High Performance Computing (HPC) and Finance [8].
Intel tries to make development as comfortable as possible

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

21 doi: 10.2313/NET-2021-05-1_05

with the implemented compatibility with various develop-
ing environments. The Intel Acceleration Stack for Intel
Xeon CPU with FPGAs provides an allround development
platform. The supported Open Programmable Accelera-
tion Engine (OPAE) technology provides a consistent API
across FPGA product generations and platforms. Also the
popular Data Plane Development Kit (DPDK) is supported
and provides control over both the FPGA and the Ethernet
Controller. Due to its lack of a SoC the Intel FPGA PAC
N3000 can not offload everything from the CPU as some
functions like Internet Protocol Security (IPSec) still need
additional CPU resources [9]. The Intel FPGA PAC N3000
compromises on flexibility to offer a network acceleration
speed of up to 100 Gbps. It is mostly advertised to
telecommunications service providers.

5.2. NVIDIA Bluefield-2 DPU

With the Bluefield-2 DPU, Nvidia fuses specialized
network processing and general processing into one SoC.
The SoC consist of a Nvidia Mellanox ConnectX-6 Dx
intelligent NIC, two Very Long Instruction Word (VLIW)
Acceleration Engines and a 64bit Arm processing unit
[10]. It offers full programmability to the user. The Arm
NEON SIMD execution unit is optimized for vector
processing with an extended Instruction Set Architec-
ture (ISA). Nvidia advertises the Bluefield-2 as a DPU
made for data movement and security processing. In this
case DPUs are defined as programmable Data Center
Infrastructure-on-a-Chip. With the built-in Nvidia Mel-
lanox ConnectX-6 Dx Nvidia integrated the fastest NIC
in the ConnectX product line [11]. The general idea is to
combine easy programmability of an Arm chip with the
accelerator especially built for parallel data processing.
Even though Nvidia rarely calls it a SmartNIC, it falls
in this category when looking at the specifications and
features. The DPUs features include some which are com-
monly seen in SmartNICs such as NFV, en-/ decryption
and many other network, security or storage virtualizations
such as IPSec, NVMeoF, OVS etc. GPUDirect, a family
of technologies that enhances data movement and access
for NVIDIA data center GPUs is also supported. Using
GPUDirect, network adapters and storage drives can di-
rectly read and write to/from GPU memory, eliminating
unnecessary memory copies, decreasing CPU overheads
and reducing latency, resulting in significant performance
improvements. This is an important functionality for AI
computing. The Nvidia DOCA SDK integrates industry-
standard open APIs for software-defined networking and
storage, security services, and programmable P4 func-
tionality. The DOCA SDK was just announced with the
Bluefield-2 and is meant to become the standard SDK
with intercompatibility to all other Bluefield devices [12].
Another product announcement based on the Bluefield-
2 worth mentioning is the so-called AI-Powered DPU
Bluefield-2X. With the addition of a Nvidia Ampere GPU
it is the first instance of a GPU-based SmartNIC. The GPU
enhances AI-based functions like real-time security ana-
lytics, identifying of abnormal traffic and dynamic security
orchestration [13]. In conclusion the Nvidia Bluefield-2
DPU presents a novel approach to SmartNICs. It com-
bines the hardware acceleration of the data plane with the

addition of an easy-to-programm control plane which both
run on the custom SoC.

5.3. Nvidia Bluefield-2 performance benchmark

To illustrate the independence of the Bluefield-2 its
performance in a DPDK 20.08 benchmark is compared to
that of a Nvidia Mellanox ConnectX-6Dx so-called intel-
ligent NIC. Nvidia benchmarked the throughput at zero
packet loss at a linerate of 2x25 Gbps. The ConnectX-
6Dx uses 4 additional CPU cores, while the BlueField-
2 SmartNIC is on its own. The ConnectX-6Dx CPU
combination achieves to throughput the maximum amount
of packages per second possible at the specified line rate.
The BlueField-2 is only slightly slower (maximum 2.06%
slower) but uses none of the CPU cores [14].

6. DDoS Mitigation Use Case

The reference paper [15] for this section was published
by IEEE, it explores the use of SmartNICs for DDoS
attack mitigation. The idea is to offload a portion of the
DDoS Mitigation rules from the server to the SmartNIC.
For comparison they try three different approaches to the
problem.

6.1. Host-based Mitigation

All traffic is processed by the host CPU. The packets
matching a given blacklist are dropped. The Linux-Kernel-
based solution with iptables and its derivatives is too slow
for modern DDoS attacks. The opposite solution using
specialized NIC and network drivers in combination with
an userspace applications proves to be faster, but requires
allocating a fixed number of CPU cores. A mix of the
previous solutions is XDP, in essence a kernel framework.
The early kernelspace program is injected by userspace
before the netfilter framework, hence performing an order
of magnitude faster. Also its event-driven execution allows
it to use CPU resources only when necessary.

6.2. SmartNIC-based Mitigation

The idea is to spare the CPU cores by prefiltering
all packets in the SmartNIC. Depending on its hardware
features there are different options to do so. If available the
built-in hardware filters should be used, which can only
hold a certain number of mitigation policies. That means
the SmartNICs CPU has to apply the remaining ones
by using custom programs. The surviving traffic is then
directed to the server applications in the host system. This
option works well until the number of mitigation policies
is too big to store for the hardware tables. When addi-
tional use of the SmartNICs CPU becomes unavoidable,
it presents a bottleneck resulting in declining performance.

6.3. Hybrid (SmartNIC + XDP Host)

A mix of the above combines the SmartNICs hardware
tables which run at line rate and the enormous processing
power of the host CPU. If the hardware tables prove to be
too small to hold all mitigation rules the remaining ones
will be implemented by XDP on the CPU.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

22 doi: 10.2313/NET-2021-05-1_05

6.4. Conclusion

In the experiments performed by IEEE, the hardware
offloading approaches prove to be the most effective [15].
Precious CPU resources are protected as long as possible
and even when additional CPU cores are required due to
an increasing number of attack sources the hardware tables
provide a proper prefiltering for CPU-based mitigation ap-
plications. SmartNICs can help mitigate the network load
on congested servers, but only to a certain extent. In a real
server environment a DDoS-aware load balancer would
come in handy to distribute the load among multiple hosts
and thus limit the number of mitigation policies.

7. SmartNICs: Conclusion

In this paper we discussed why the development
of SmartNICs is inevitable, the different hardware ap-
proaches, two product instances and finally an interesting
real world application of them. Beside all good about
them it is clearly that their performance is not yet strong
enough to solely handle high bandwidth throughput of
a server. Often there is still no other choice but to use
additional CPU cores as they still exceed the SmartNICs
performance as seen in the DDoS Mitigation use case.

The future seems bright for SmartNICs. In the last
years most companies in the sector announced their first
line of products, e.g. Nvidia, Intel, Broadcom, Silicom,
Inventec etc. Also AMD will probably try to enter the
market with its acquisition of Xilinx, one of the major
FPGA developers. In the future the development will be
driven by even faster network speeds. E.g. Nvidia plans to
increase the throughput of their devices to 400 Gbps in-
cluding a 100-times performance improvement until 2023
[13]. The market is expected to grow substantially, with
it the hardware-acceleration trend and the utilization of
SmartNICs.

References

[1] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung,
H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier,
N. Lam, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Srivastava,
A. Verma, Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A. Maltz,
and A. Greenberg, “Azure accelerated networking: Smartnics in
the public cloud,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 18). Renton, WA:
USENIX Association, Apr. 2018, pp. 51–66. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/firestone

[2] A. Freedman, “Definition: network adapter,” 2020, accessed:
2021-01-05. [Online]. Available: https://www.computerlanguage.
com/results.php?definition=network%20adapter

[3] A. Freedman, “Definition: SmartNIC,” 2020, accessed: 2020-
12-29. [Online]. Available: https://www.computerlanguage.com/
results.php?definition=Smart+NIC

[4] K. Deierling, “Defining the DPU (Data Processing Unit) based
SmartNIC : What is a SmartNIC and How to Choose the
Best One,” 2018, accessed: 2020-12-29. [Online]. Available:
https://blog.mellanox.com/2018/08/defining-smartnic/

[5] Silicom Limited, “Silicom N5110A SmartNIC Intel® based
- Server SmartNIC with Advanced Computing and 100Gbps
Network Switching,” 2021, accessed: 2021-02-28. [On-
line]. Available: https://www.silicom-usa.com/pr/fpga-based-cards/
100-gigabit-fpga-cards/n5110a-pcie-smartnic-intel-based/

[6] Fazil Osman, Broadcom Limited, “Using SmartNICs as New
Platform for Storage Services,” 2019, accessed: 2020-12-
30. [Online]. Available: https://www.snia.org/educational-library/
using-smartnics-new-platform-storage-services-2019

[7] Intel Corporation, Intel FPGA Programmable Acceleration Card
N3000 Data Sheet, Intel Corporation, 2020, accessed: 2021-01-
01. [Online]. Available: https://www.intel.com/content/www/us/en/
programmable/documentation/dfy1538000574521.html

[8] Intel Corporation, “Product Brief Intel® Ethernet 700
Series Network Adapters Intel® Ethernet Converged Network
Adapter XL710,” 2020, accessed: 2021-01-03. [Online].
Available: https://www.intel.de/content/www/de/de/products/docs/
network-io/ethernet/network-adapters/ethernet-xl710-brief.html

[9] Intel Corporation, “Accelerating IPSec with Arrive Technologies
on the Intel® FPGA Programmable Acceleration Card
N3000,” Intel Corporation, Tech. Rep., 2019, accessed:
2021-01-05. [Online]. Available: https://www.intel.de/content/
dam/www/programmable/us/en/pdfs/literature/solution-sheets/
sb-accelerating-ipsec-arrive-technology-intel-fgpa-pac3000.pdf

[10] Nvidia Corporation, “NVIDIA BLUEFIELD-2 DPU Data Center
Infrastructure on a chip,” 2020, accessed: 2021-01-05. [Online].
Available: https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf

[11] Tolly Group, “NVIDIA Mellanox ConnectX-5 25GbE Ethernet
Adapter Adapter Performance vs Broadcom NetXtreme E,” no.
219130, Oct. 2019.

[12] Nvidia Corporation, “Nvidia doca sdk data center infrastructure
on a chip architecture,” 2021, accessed: 2021-01-08. [Online].
Available: https://developer.nvidia.com/networking/doca

[13] Nvidia Corporation, “Nvidia Bluefield Data Processing
Units Software-Defined, Hardware-Accelerated Data Center
Infrastructure on a Chip,” 2021, accessed: 2021-01-05.
[Online]. Available: https://www.nvidia.com/de-de/networking/
products/data-processing-unit/

[14] NVIDIA Corporation, “Mellanox NIC’s Performance Report with
DPDK 20.08 Rev 1.1,” 2020, accessed: 2020-12-30. [Online].
Available: http://fast.dpdk.org/doc/perf/DPDK_20_08_Mellanox_
NIC_performance_report.pdf

[15] S. Miano, R. Doriguzzi-Corin, F. Risso, D. Siracusa, and
R. Sommese, “Introducing smartnics in server-based data plane
processing: The ddos mitigation use case,” IEEE Access, vol. 7,
pp. 107 161–107 170, 2019.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

23 doi: 10.2313/NET-2021-05-1_05

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

24

Debugging QUIC and HTTP/3 with qlog and qvis

Dominik von Künßberg, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: dominikvon.kuenssberg@tum.de, jaeger@net.in.tum.de

Abstract—The powerful properties of the QUIC and HTTP/3
protocols make debugging and inspecting them a challenging
task. The qlog format and the qvis toolsuite have been
introduced to facilitate this problem. We give an overview of
both the format and the visualization tool, introducing and
assessing their respective capabilities.

Index Terms—software-defined networks, measurement,
high-speed networks

1. Introduction

The QUIC protocol is a transport protocol designed to
offer lower latency for HTTP traffic while also meeting se-
curity requirements by encrypting its packets, as described
by Langley et al. [1]. Built on UDP, it forms the basis
for HTTP/3. Lower latency is attributed to several things:
firstly, it streamlines the amount of handshakes needed to
establish a secure connection by exchanging cryptographic
keys and certificates directly in the initial handshake [1]. It
also identifies connections by a connection ID instead of
the IP / port 5-tuple, allowing for immediate reconnection
to a server after changing IP addresses [1]. To avoid head-
of-line-problems like present in the TCP+TLS+HTTP/2
stack, QUIC allows multiple bidirectional streams within a
QUIC connection which are independent of each other [1].
Lastly, QUIC packets are entirely encrypted except for
fields necessary for routing, forwarding and decrypting
the packet [1].

While this is an effective way to protect the packet’s
data, it makes the protocol difficult to analyze and debug.
As there are various implementations of QUIC and its
standardization is still ongoing [2], analysis and debugging
are indispensable tools to verify the protocol’s behavior
and find bugs.

Capturing the available metadata from packets in tran-
sit alone is not sufficient because fields containing states
necessary for analysis are encrypted [3]. Temporarily de-
and encrypting the packets while in transit to extract the
necessary log information is out of the question as this ex-
poses the full payload and requires the respective session
keys [3]. The only places where the later encrypted states
are available are the endpoints which send and receive the
packets [3]. Logging mechanisms have been implemented,
however each is specific to their own implementation of
the protocol which makes them difficult to parse [3] for
further use.

To alleviate this problem, Marx et al. propose a log-
ging format called qlog [3]. Qlog is based on JSON [3]

which allows it to be used across implementations, in-
dependent of language-specific characteristics. Each qlog
event is characterized by a timestamp, a category, the
event type and type-specific data [3]. This format makes
it easily extensible: to log a specific type of event which
is not yet present, it can simply be added. Qlog files from
different connection endpoints can also be aggregated into
one single qlog file [3].

Logging events to analyze the performance and be-
haviour of the QUIC protocol is certainly helpful, however
it might be hard to extract the needed information from
textual logs only. Because of this, Marx et al. also created
the tool qvis to visualize qlogs [3]. This is especially
helpful combined with qlog’s ability to combine logs from
different endpoints; qvis is then able to visualize relations
between the endpoints accurately such as packet loss,
packet order etc [3].

This paper aims to outline the most important aspects
of the qlog format and the qvis visualization tool. We
present the qlog format in Section 2 and address how data
is collected and its scalability in Section 3. In Section
4, we introduce the qvis toolsuite and its scalability.
Section 5 assesses how the qlog format compares to the
pcap format commonly used in the TCP+TLS+HTTP/2
stack. In Section 6, we conclude that both qlog and qvis
are powerful tools for debugging the QUIC protocol and
summarize future plans for qvis.

2. Qlog

The qlog format has so far been defined in two IETF
drafts, one describing the general high-level format of
qlog [4] and the other defining events specific to QUIC
and HTTP/3 [5]. As qlog is a flexible and general format,
it can also be used for protocols other than QUIC such as
DNS or the TCP+TLS stack by defining the events in the
implementation accordingly [3].

Fields inside a qlog file follow a JSON-like format.
The basic format is an object:type pair. Available stan-
dard types are signed and unsigned integers with lengths
varying from 8 to 64 bits, floats and doubles, strings, bytes
(raw 8 bit long values), booleans, enums and any, which
can represent any data type. Additional notations are listed
in the Internet Draft for qlog [4].

Every qlog file consists of one top-level file which
must contain a qlog_version field and an array con-
taining traces [4, Section 3]. Further optional fields can
be given such as title, summary, description and
qlog_format [4, Section 3]. The summary can be useful
to get a quick overview of aggregated information about

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

25 doi: 10.2313/NET-2021-05-1_06

all traces that have been logged, being able to list cus-
tomizable features such as total lost packets, total number
of events and whatever information may be needed in a
specific use-case [4, Section 3.1].

2.1. Traces

A trace is a structure which contains the recorded
events and additional metadata, however, it usually rep-
resents the data flow at a single endpoint [4, Section 3.3].
It must contain a vantage_point field to identify which
type of endpoint it logged, and an array of events repre-
senting all logged events at this endpoint [4, Section 3.3].
Other optional fields allowing for more context are title,
description, and, most importantly, the common_fields
list [4, Section 3.3], which will be discussed in Section
2.2.

2.2. Events

Each event must at least contain the fields timestamp,
name, and data [4, Section 3.4]. Usually it is useful
to organize events by assigning them a group_id, a
protocol_type and perhaps a category [4, Section 3.4].
Consequentially, fields such as these typically tend to stay
the same for the majority of events from the same trace,
and thus would need to be constantly logged anew [4,
Section 3.4.8]. To avoid unnecessary duplicate data, a
trace can contain the common_fields list, containing in-
formation which is shared by all events of that trace [4,
Section 3.4.8]. The mentioned fields can then be omitted
in the event itself.

Events can also contain so-called "triggers" in the
data field [4, Section 3.4.6]. Triggers are a set of possible
string values which indicate why an event has occurred [4,
Section 3.4.6]. If the event occurs, the applicable trigger
string is then included in the log. This gives a direct
context to the occurrence of the event and eliminates the
need of analyzing logs within roughly the same timeframe
to find the reason [4, Section 3.4.6].

The QUIC specific events described in [5] have been
divided into three categories: Core, Base, and Extra [5,
Section 2.1].

Core events should be present in all qlog files and are
used to log very basic information [5, Section 2.1]. Exam-
ples of Core events are packet_sent, packet_received,
version_information and packet_lost [5, Sections
5.3, 5.4.5]. The version_information event logs the
QUIC versions available for both client and server, as well
as the version which has been selected [5, Section 5.3.1].

Base events can depend on Core events but are
logged separately for the sake of clarity [5, Sec-
tion 2.1]. They provide more detailed information
which is relevant for debugging. Such events are
for example connection_started, packet_dropped,
packet_buffered, and congestion_state_updated [5,
Sections 5.1.2, 5.3, 5.4.3].

Extra events are usually employed to observe the
internal behavior of the protocol’s implementation, rather
than the protocol itself [5, Section 2.1]. Examples for Ex-
tra events include server_listening, packets_acked,
datagrams_sent and datagrams_received [5, Sections

5.1.1, 5.3]. "Datagrams" in this case refers to UDP-
datagrams [5, Section 5.3.10].

3. Qlog data collection

How and at which points qlog logs its data is entirely
up to the implementation. Any necessary data structures
need to be created as well as functions for forwarding
and writing information to a qlog file. Coupled with the
flexible format of qlogs, it allows for precise logs exactly
where it is needed. As an example, the logging of a qlog
event in the Go implementation is structured as follows.
The file event.go contains and defines all possible events
that can be logged [6]. Each event contains the needed
and optional attributes which can be set [6]. A struct
called connectionTracer acts as the trace explained in
Section 2.1 [6]. It makes use of Go Channels to record
events concurrent to program execution [6]. To avoid race
conditions, a mutex is used on the events channel so that
only one event can be recorded at a time [6]. For instance,
when the server sends a version negotiation packet to the
client, the sentPacket function of the connectionTracer
is invoked, which in turn records the event and adds it
to the events channel [6]. This behavior is essentially
the same across all functions; when a function is called
which necessitates logging, the respective function in the
connectionTracer is called and adds the event to the
log [6]. Upon stopping the server, the aggregated events
are written to the qlog [6].

As this means that qlogs are held in memory and only
written to the disk when the connection is terminated, this
approach might cause unwanted occupation of memory
when logging a large volume of events. As an example,
the large demonstration file on the qvis website [7] rep-
resenting a 100 MB download is 31 MB in size, while
the qlog file for a 500 MB download mentioned in [3]
is 276 MB. Assuming this can be scaled roughly linearly,
logging a 10 GB download will then result in a qlog which
is somewhere between 3,1 and 5,5 GB in memory before
the connection is terminated. It is therefore important to
keep this memory occupation in mind and evaluate which
events actually need to be logged to minimize the resulting
log size, especially when downloading and logging large
quantities of data.

3.1. Scalability

In [3], Facebook employed qlog at internet scale and
concluded that it "is two to three times as large" and
"takes 50 % longer to serialize than their previous in-
house binary format." In Facebook’s case, this processing
surplus was acceptable given the flexibility provided by
qlog [3].

To compress qlog’s size requirements while preserving
the format’s desirable properties, an optimized mode [3]
was introduced. It relies on two aspects: reducing the
initial size of qlogs and encoding the smaller qlogs more
efficiently [3]. The former is accomplished by collecting
repeated values in a dynamic dictionary [3]. The latter is
achieved by using the CBOR (Concise Binary Object Rep-
resentation) format to encode the qlogs and the generated
dictionary [3]. CBOR is a binary format which preserves

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

26 doi: 10.2313/NET-2021-05-1_06

JSON’s key-value pairs in a concise manner and allows
for faster processing than JSON [3].

The combination of these two methods results in
significantly smaller file sizes. The qlog for a 500 MB
download is usually 276 MB; utilizing the optimized mode
results in a file about a third as large as the original one,
ending up at 91 MB [3].

4. Qvis

Qvis encompasses a set of tools which visualizes qlog
files and their data in an understandable and descriptive
manner. It can handle qlog files which contain traces from
several endpoints to deduce and display information from
the provided data, such as round trip time, congestion con-
trol and more [7]. Qvis offers four visualization methods:
sequence, congestion, multiplexing and packetization [7].
It also lists general statistics about the provided qlogs such
as the number and types of events and frames [7]. Qvis is
implemented mainly in TypeScript and Vue and intended
to be used in a browser [7]. Scalability issues arising from
this are discussed in Section 4.5.

4.1. Sequence Tool

The sequence tool generates a sequence diagram as
shown in Figure 1a. The green squares on both sides
represent events. If the event is neither packet_received
nor packet_sent, the event name is added next to it [7].
Besides displaying the information contained in transmit-
ted packets and their respective timestamps, all the green
boxes, event names and packet information can be clicked
which brings up the corresponding qlog file in plaintext,
allowing for further, more detailed packet inspection [7].

4.2. Congestion Tool

The congestion tool shows two diagrams: one which
shows the amount of data sent over time in bytes, and one
displaying the round trip time [7]. What first appears as
a slightly jagged line in the first diagram becomes clearer
when zooming in; it shows the bursts of data being sent in
blue and the acknowledgement of that data in green [7],
as shown in Figure 1b. The gap between the blue and
green blocks on the same height on the y-axis constitutes
the round trip time [7]. The congestion tool, therefore,
makes it easier to identify when data is being sent at a
different rate indicated by a change of the slope of the
graph [7]. It can also display crucial information such as
the congestion window size and lost data [7].

4.3. Multiplexing Tool

The multiplexing tool shows how the data sent was
divided among the existing QUIC streams (shown in
Figure 1d) [7]. It assigns a color to each stream and
displays the sent data as colored blocks strung along the
timeline, each colored block indicating that the corre-
sponding stream has been used to transmit data [7]. It
also indicates which frames had to be resent underneath
the corresponding parts of the diagram [7]. This makes
it simple to identify unwanted behavior in the applied

multiplexing strategy [7]. It is also possible to zoom into
the string of blocks and hover over them to display the
exact timestamp, utilized stream, number and packet size
of the block that is being pointed at [7]. This is especially
helpful when inspecting large qlogs.

Additionally, it is possible to enable two more supple-
mentary diagrams: the waterfall and byterange diagram
(waterfall diagram shown in Figure 1c) [7]. The waterfall
diagram displays a colored bar for each stream between
the first and last time it received a frame [7]. This makes
it easier to determine roughly when a stream was active,
especially when a large number of frames was transmit-
ted [7]. The byterange diagram displays the range of bytes
transmitted by the frames which are shown at the current
zoom level [7].

4.4. Packetization Tool

The packetization tool visualizes how QUIC pack-
ets are composed of QUIC frames and HTTP/3 frames
(shown in Figure 1e) [7]. Each layer represents one struc-
ture: in ascending order, those are QUIC packets, QUIC
frames, HTTP/3 frames and the stream IDs present in
the corresponding packet [7]. Headers within packets and
frames are represented by taking up half the height of the
line compared to the payload. Packet / Frame boundaries
can be discerned by the alternating colors within each
layer [7]. As with the other tools, it is possible to zoom
in on a specific spot and hover over it to view packet or
frame information [7].

4.5. Scalability

While it is possible to load large files in qvis and
the authors of qvis describe in [3] that qvis "scales to
loading hundreds of MB in JSON", it significantly impacts
the performance of the tool. It is recommended to use a
Chromium-based browser, as using another might affect
performance even more [8].

Loading the demonstration file of 31 MB representing
a 100 MB download [7] is certainly possible but switching
between the different tools, using the zoom function to
view packet details and other actions noticeably slow
down the web browser. Tools especially affected are the
sequence, multiplexing and packetization tools.

We observed that the sequence tool initially takes
between 10 and 15 seconds to load the entries. However,
once everything is loaded, the tools work perfectly fine.

The packetization tool also takes about the same time
to initially load as the sequence tool. The congestion tool
is the quickest to respond of all tools, the zoom works
without delay. This is due to the fact that it uses canvas-
based rendering [8].

Both the multiplexing and packetization tools share a
performance issue with large files concerning the zoom
function. Zooming in becomes more important as qlogs
get bigger to analyze sections of the graph more closely.
To dissect this issue, it is helpful to analyze how the
depiction of the diagrams is implemented. Both tools use
rendering of scalable vector graphics (SVG) to display
the diagrams [8]. Each packet / frame is a separate SVG
entity [8]. When zooming in or out, the dimensions of
every entity has to be recalculated, which is slow with

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

27 doi: 10.2313/NET-2021-05-1_06

(a) Sequence diagram.

(b) Congestion diagram.
Request received Colored while stream is "active" (between first and last STREAM frame received)

(c) Waterfall diagram.

10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000
Count of STREAM frames received (regardless of size, includes retransmits)

(d) Multiplexing diagram.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

QUIC packets

QUIC frames

HTTP/3

Stream IDs

Bytes received max receiving size client: 65527 max receiving size server: 65527

(e) Packetization diagram.

Figure 1: Qvis diagrams.

such big qlogs as this results in tens of millions of SVG
entities being resized [8]. Therefore, this large workload
is especially noticeable when using the packetization tool,
as it contains far more SVG entities than the multiplexing
diagram [7].

The SVG rendering approach was chosen because
hover effects to display packet / frame information is easier
to implement this way compared to the canvas-based
rendering used by the congestion tool [8]. However, there
are plans to port the remaining tools to the same rendering
method for performance reasons [8].

5. Comparison with TCP+TLS+HTTP/2

The TCP+TLS+HTTP/2 (TTH) stack is most com-
monly debugged with tools such as Wireshark [9] or tcp-
trace [10]. For this purpose, the log consists of timestamps
and the captured packets exactly as they were represented
during transmission [3]. As the TTH stack shows most
information necessary for debugging in the (unencrypted)
headers of the packets, this is sufficient. For QUIC, this
would not work as important metadata for debugging
purposes such as frame numbers, frame type and stream
IDs are in the encrypted section of the packet [3]. This
makes a direct analysis of packets similar to that of the
TTH stack regarding these properties infeasible.

In terms of log size, pcap files created with e.g.
Wireshark can be of varying size depending on the applied

options. With default settings, the pcap file for a 500 MB
download will exceed 500 MB, as all packets are directly
ingested into the log file. However, there are options
to limit the capture size of each incoming packet [11],
dropping most of the payload. This can dramatically
decrease the file size. Measurements showed that when
downloading a 500 MB file using Wireshark with default
settings results in a pcap file of 550 MB. Restricting the
size of each logged packet to 100 B to account for headers,
the pcap file size drops to 65 MB.

The qlog file for a 500 MB download is 276 MB or
91 MB [3] when using the optimized mode explained in
Section 3.1. This is evidently a noticeable difference in
size.

Despite this, qlog has the advantage of offering a more
detailed analysis of internal variables such as congestion
window, lost packets and bytes in flight [3] in comparison
to TCP traces and being able to visualize them accordingly
with qvis via the congestion tool [3].

6. Conclusion

Qlog is a powerful logging tool which has tremen-
dous potential for debugging internet protocols, QUIC
in particular. Its ability to define custom events and to
combine multiple traces into one qlog, paired with the
terrific visualization capabilities of qvis, makes it a solid
basis for anyone debugging QUIC.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

28 doi: 10.2313/NET-2021-05-1_06

Porting qvis to native code for better performance is
currently not planned by the original developers of the
tool [8]. While one of the goals is to write qlog importers
for existing native tools such as Windows Performance
Analyzer, this is not planned for the immediate future [8].
However, the performance issues due to SVG rendering
are being worked on as it is planned to convert the
respective tools to canvas-based rendering [8].

References

[1] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. B. Krasic, C. Shi,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. C.
Dorfman, J. Roskind, J. Kulik, P. G. Westin, R. Tenneti, R. Shade,
R. Hamilton, V. Vasiliev, and W.-T. Chang, “The QUIC transport
protocol: Design and internet-scale deployment,” 2017.

[2] D. Madariaga, L. Torrealba, J. Madariaga, J. Bermúdez, and
J. Bustos-Jiménez, “Analyzing the adoption of QUIC from
a mobile development perspective,” in Proceedings of the
Workshop on the Evolution, Performance, and Interoperability
of QUIC, ser. EPIQ ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 35–41. [Online]. Available:
https://doi-org/10.1145/3405796.3405830

[3] R. Marx, M. Piraux, P. Quax, and W. Lamotte, “Debugging QUIC
and HTTP/3 with qlog and qvis,” in Proceedings of the Applied
Networking Research Workshop, ser. ANRW ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 58–66.
[Online]. Available: https://doi.org/10.1145/3404868.3406663

[4] R. Marx, “Main logging schema for qlog,” Inter-
net Engineering Task Force, Internet-Draft, 2020, work
in Progress. [Online]. Available: https://quiclog.github.io/
internet-drafts/draft-marx-qlog-main-schema.html

[5] ——, “Quic and http/3 event definitions for qlog,”
Internet Engineering Task Force, Internet-Draft, 2020, work
in Progress. [Online]. Available: https://quiclog.github.io/
internet-drafts/draft-marx-qlog-event-definitions-quic-h3.html

[6] L. Clemente, “A QUIC implementation in pure go,” 2020.
[Online]. Available: https://github.com/lucas-clemente/quic-go

[7] R. Marx, “qvis: tools and visualizations for QUIC and HTTP/3,”
2020, https://qvis.edm.uhasselt.be/.

[8] ——, “Qvis performance,” 2020. [Online]. Available: https:
//github.com/quiclog/qvis/issues/38

[9] “Wireshark,” 2020. [Online]. Available: https://www.wireshark.org/

[10] “Tcptrace,” 2020. [Online]. Available: https://linux.die.net/man/1/
tcptrace

[11] “Wireshark documentation,” 2020. [Online]. Available: https:
//www.wireshark.org/docs/wsug_html/

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

29 doi: 10.2313/NET-2021-05-1_06

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

30

Recent Developments in Service Function Chaining

Patricia Horvath, Kilian Holzinger, Henning Stubbe∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: patricia.horvath@tum.de, holzinger@net.in.tum.de, stubbe@net.in.tum.de

Abstract—A network’s infrastructure consists of multiple
network functions some of which may include distinct inter-
mediate steps that need to be applied in a particular order.

In order to ensure the right order of application while
still striving for goals such as improving the network’s flexi-
bility, improving its independence from physical structure
and reducing infrastructure complexity, Service Function
Chaining (SFC) is applied.

The resulting service function chains are comprised of
an ordered set of network functions that are applied to data
packets handled in the network. This technique is beneficial
for use in fixed broadband networks, where it is deployed
behind the broadband network gateway, as well as in mobile
networks for optimization of services such as TCP, and in
data centers. This paper gives an in-depth overview over the
basic functionality of network function chains and compares
the advantages and drawbacks of various implementations
for different use cases.

Index Terms—network architecture, service function chain-
ing, monitoring, load balancing, service function

1. Introduction

The infrastructure of a network heavily relies on net-
work services which are applied to the data packets that
are being transmitted within the network. These network
services are comprised of multiple network functions
which may be hardware components or implemented as
virtual components. Examples for such network services
include firewalls, load balancing, parental control, network
address translation and deep packet inspection to name a
few.

Grouping these service functions in service function
chains (SFC) ensures that the order in which the functions
are applied remains unchanged. More specifically, using
SFC also allows for an optimization of the network’s
configuration flexibility, for more independence from its
hardware implementation and for less complexity, as the
particular order of a set of network functions can be
adjusted dynamically to adapt to any necessary changes or
external influences, for example in the case of a malicious
attack on the network.

In this paper, use cases of the SFC architecture as
well as present available implementations, especially in
the field of the Internet of Things (IoT), are discussed,
while also giving an overview over possible challenges
such as monitoring and load balancing and highlighting
current trends. The remaining content of this paper is or-
ganized as follows: Section 2 provides the background on

SFC architectures and describes their basic functionalities.
Section 3 discusses use cases and available implemen-
tations of SFC in fixed broadband networks, in mobile
networks and in data centers as well, while Section 4
examines possible challenges for SFC that are encountered
by different implementations and their solutions. Finally,
Section 5 summarizes the above content and concludes
this paper.

2. Architectural Theory of SFC

SFCs are comprised of an ordered set of multiple
service functions (SF) which are applied to packets and
specify if packets should be, for example, directed to a
firewall or a caching engine as described in RFC 7665
[1]. Additionally, the mechanism to express results of
applying a more granular policy and constraints to the
abstract constraints is called Service Function Path (SFP),
some of which may be vague. It is noteworthy that an SF
can be part of multiple SFCs and SFPs.

The logical core components of an SFC are classifiers,
Service Function Forwarders (SFFs), the SFs themselves,
and SFC proxies which are interconnected by SFC en-
capsulation which, although is not a transportation encap-
sulation itself, is the mechanism that allows for a SFP
selection while sharing metadata or context information if
required and carrying explicit information to identify the
SFP.

The service functions a SFP contains may also be
altered and result in selecting a new SFP or an update
of the related metadata, which is the result of a process
called "reclassification". If both of the above occur, this
process is specified as "branching". Reclassification and
branching are especially needed, if an attack on the traffic
within the network has been detected. In this case, traffic
can be rerouted to a new SF, e.g. a firewall, to be able
to enforce security policies. Keep also in mind that any
network transport may be used to carry SFC encapsulated
traffic [1].

Beyond that, a tool called Service Function Forwarder
is needed to control the flow of packets within the net-
work. A SFF’s responsibilities include forwarding packets
and frames to one or more SFs associated with a given
SFF by utilizing the information transmitted in the SFC
encapsulation, terminating SFPs when all required SFs of
a SFC have been passed and maintaining the flow state of
an SFF, as they may be stateful. A SFC can be abstracted
as a graph, where each node signifies a SF.

As such, SFCs may contain cycles and may be uni-
directional, in which case the SFC has an ordered path,

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

31 doi: 10.2313/NET-2021-05-1_07

Service
Classification

Function

SFC
Encapsulation Service

Function
Path

SF1 ... SFn

SFC-enabled Domain

Figure 1: A diagram of a SFP as described in RFC 7665
[1].

or bidirectional, in which case the traffic is symmetric.
Furthermore it is necessary to differentiate between SFC-
aware and SFC-unaware SFs as SFC-unaware SFs need
a SFC Proxy to function as a gateway to the SFC en-
capsulation by using a local attachment circuit to deliver
packets to SFC-unaware SFs. In addition to enabling SFC-
unaware SFs to be able to function in a SFC architecture,
SFC proxies are also handling the removal of SFC encap-
sulation.

The SFC-enabled domain contains all SFC Proxies
and their corresponding SFC-unaware SFs. Furthermore,
the SFC control plane is responsible for managing the
resources of the SFC architecture. The responsibilities
entail constructing SFPs, translating SFCs to forwarding
paths and propagating path information to participating
nodes, e.g. SFs.

Further utensils for SFC Operations, Administration
and Maintenance (OAM) are subject to ensure fault de-
tection and isolation, as well as performance management
and are either in-band, meaning OAM packets are handled
the same way user packets are handled, or out-of-band,
meaning the tools function in a layer beyond the actual
data plane [1].

SFC-unaware
Service Function

SFC-aware
Service
Function

SFC-aware
Service
Function

SFC Proxy

SFF

SFC
Encapsulation

No SFC
Encapsulation

SFC
Encapsulation

SFC
Encapsulation

SFC Encapsulation

SFC-enabled Domain

Network Overlay
Transport

Network

Figure 2: A diagram of the components of the SFC
architecture after the initial classification as described in
RFC 7665 [1].

3. Analysis of SFC

The following section introduces the reader to use
cases of SFC and gives examples for available implemen-
tations.

3.1. Use Cases of SFC

The SFC architecture is used in multiple environments
which include fixed broadband networks, data centers [2]
and cloud customer premises equipment [3].

Fixed broadband network are accessed by their users
commonly using technologies such as DSL, Ethernet or
Passive Optical Networks, whereas in mobile networks,
the Internet is accessed by using SFs (sometimes referred
to as "enablers") [2].

In fixed broadband networks, SFC is responsible for
services such as Deep Packet Inspection (DPI), NAT44,
which is an extension to Network Address Translation,
DS-Lite, a tool allowing applications which use IPv4 to
access the internet via IPv6, NPTv6, a technology allow-
ing IPv6 to IPv6 Network Prefix Translation, parental con-
trol, firewall, load balancer and cache. In mobile networks
many SFs are implemented in the Gi interface, which is
a reference point between the Gateway GPRS Support
Node and an external Public Data Network [4]. Examples
for SFs encompass functions such as DPI, billing and
charging, TCP optimization, web optimization and video
optimization. The answer as to why SFC are used is being
able to facilitate resource optimization and a seamless
service switchover from one network to the other. Addi-
tionally, SFCs are also used to facilitate addressing con-
vergence needs [2]. These network services are comprised
of multiple network functions which may be hardware
components or implemented as virtual components. Using
SFCs is also beneficial in data centers. Traffic flow in data
centers can be categorized as either north-south traffic,
where traffic originates from outside the data center, or as
east-west traffic, where all traffic originates from within
the data center [2].

A simple example for north-south traffic is given when
a remote worker accesses a specific data center server
resulting in incoming traffic for the data center. As you
can see, north-south traffic generates the need for traffic
analysis, identification of application and its users, autho-
rization of transactions and mitigation and elimination of
security threats since communication partners are outside
of the data center and as such unknown and potentially
dangerous. To be able to fulfill these needs, SFCs are im-
plemented in permutations of service nodes through which
the traffic has to flow. Permutations of the service nodes
are necessary because not every present service function
is suitable to be applied to a certain type of traffic and vice
versa. For example, certain SFs are not able to be applied
to virtual private network traffic. Furthermore within the
network of a data center, SFCs can be either classified
as Access SFCs or as Application SFCs depending on
the destination of the data packets to whom the SFCs are
applied, as highlighted in [2]. Access SFCs assist traffic
which enters and leaves the data center, thus making such
SFCs suitable for north-south traffic, whereas Application
SFCs service traffing destined to applications, which is
suitable for east-west traffic.

The following example helps illustrate east-west traf-
fic: In a three-tiered architecture, requests come to the
webserver which trigger interaction with the application
servers. In turn, interaction with the database servers is
triggered and SFs are then applied to enforce security
policies between the tiers, while monitoring SFs enable
visibility into the application traffic [2]. Along with the
above mentioned use cases, there is also the scenario of
a SFC architecture consisting of centralized value-added
SFs, which are configured by subscribers and enabled in
the network side, while the subscriber side box is limited

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

32 doi: 10.2313/NET-2021-05-1_07

to only Layer 2 and Layer 3 functionalities, which is the
case when using Cloud Customer Premises Equipment
(CPE). In this case, Cloud CPE translates the subscribers’
service requests into SFCs [3]. The ability to reconfigure
SFPs as needed allows for pay-per-use and on-demand
server-side services.

3.2. Available Implementations

Various frameworks and policies exist where SFC is
used. The following section highlights some of these to
give some insight into networks with SFC architecture.

One growing field where SFC can be applied to is IoT.
In [5], the authors propose using the SFC orchestration
system PRSFC-IoT to meet IoT providers’ demand of
being able to process both the increasing traffic amount
and the increasing amount of varied IoT traffic require-
ments. SFC orchestration can be beneficial to optimize
performance and resource consumption. To fulfill the
above goals, the authors suggest the use of PRSFC-IoT
considering that it encompasses functionalities that enable
meeting deadlines while guaranteeing a stable packet rate
including efficient resource management.

SFCs are also used in edge computing where high
flexibility and low latency are important in regards to the
quick execution of various functionalities. In [6] an on-
line orchestration framework for cross-edge SFCs, which
strives to improve cost efficiency by improving both re-
source provisioning and traffic routing, is introduced. In
this approach, SFs are split into edge clouds to mitigate
the cost of dynamically launching new SFs.

To summarize, SFC is highly beneficial to environ-
ments where networks need to be able to adapt to changes
quickly and dynamically.

4. Challenges in SFC Architectures

This section discusses some of the prevalent chal-
lenges in various SFC architectures and possible solutions.

4.1. Flexibility

Scalability, which results in more flexibility, is an
import requirement for SFC architectures as it is needed
to be able to accommodate changing demands of the user
side, for example in data centers where the number of
clients accessing server-side services may change drasti-
cally. When using static SFCs, there may be a need to
readjust the service nodes by adding or removing some
to be able to accommodate new obligations. In other
words, static SFCs cannot scale well. Furthermore, SFCs
cannot pass metadata which is needed to enforce policies
consistently across all of the network. Beyond the above
problem, physical and static SFC mechanisms cannot be
mixed with virtual and dynamic SFC mechanisms which
is problematic as one cannot use the benefits of both
implementations at the same time [2].

Another issue regarding flexibility occurs when man-
aging large scale, multi-region data centers with mul-
tiple operational teams. In [7], the authors propose an
implementation of hierarchical SFC using OpenDaylight
platform in a SDN environment to fulfill this demand. The

Figure 3: A diagram of a hierarchical SFC architecture
[7].

OpenDaylight platform is an open-source project which
enables modularity, flexibility, scalability in a multiproto-
col SDN controller infrastructure.

4.2. Monitoring

Another functionality which plays a big role in SFC
deployments is the monitoring of traffic as it is needed
for quality and congestion control as well as anomaly
detection and capacity planning among other things.

As there is no standard method of monitoring and
detecting failure, the authors in [8] have implemented an
alarm-based monitoring with a focus on high availabil-
ity in SFC for cloud environments using the OpenStack
project API and the ODL driver in Tacker. In general,
a Virtual Network Function (VNF) Manager’s tasks in-
clude VNF instantiation, updating and upgrading software,
modification, collecting performance measurement results
as well as information regarding events and faults, ter-
minating instances when needed and lastly managing the
integrity of the VNF instance. Tacker, which is a Generic
VNF Manager and NFV Orchestrator and OpenStack
project based on ETSI MANO Architectural Framework,
deploys and operates Network Services and VNFs and
can add functions such as monitoring and auto healing
[9]. As Tacker needs a monitoring tool to be able to per-
form the above introduced functionalities, an alarm-based
monitoring tool is needed. Due to alarms being related
to hardware resources such as CPU and memory usage,
Tacker is used in combination with Openstack Ceilometer,
which is responsible for collecting measurements within
OpenStack [8].

VNFs are built in such a way that each VNF can
be identified with an unique VNF ID which aids in
VNF failure detection. Additionally, SFC reliability can
be achieved by means of using Ceilometer as a monitoring
driver which sends a notification message to the SFC
driver after analyzing the alarm message [8].

Another approach to improve network monitoring with
the goal for this implementation to be adjustable to recent
and future technologies is proposed in [10]. The birth
of trends such as network function virtualization (NFV),
software-defined networking (SDN) and cloud computing,
led to the demand to monitor different planes inside a
network, such as the (virtual) infrastructure plane, the user
plane and the service plane, having grown considerably.
As proposed in [10], using a monitoring framework, that

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

33 doi: 10.2313/NET-2021-05-1_07

is able to control monitoring in a network as well as in a
cloud infrastructure, is favorable to combine the operators’
need to monitor end user subscribers’ traffic as well as
tenant customers’ traffic.

As a result, monitoring is not hindered by cloud, physi-
cal and virtual boundaries anymore. Moreover, the authors
in [10] also recommend classifying traffic flows based on
Layer 4-7 information and controlling these flows with
a different monitoring approach with the assistance of
the new network service header (NSH) and the metadata
it carries. The monitoring process of the above men-
tioned framework is logically centralized. Furthermore,
the framework enables for probes to be consolidated based
on monitoring requests and for the monitoring of rule
consolidations which possibly facilitates the use of mon-
itoring resources in a more efficient manner. Moreover,
the authors suggest using Layer 4-7 information to use
classifiers to be able to mark packets that pass along the
SFPs. The classifier then has the ability to modify the
packet’s NSH.

In addition, the authors in [10] introduce three possible
implementations for the markers: Using coloring markers,
which requires a new metadata header that is capable of
carrying the color of the packet and the point of time
when the marking was done, or timestamp markers, which
entails the NHS to carry a new metadata type-length-value
that is used to save the timestamps from each probe, and
finally, using interception markers, where the intercept
metadata is used to gather parts of the packet headers
while on their packet data paths. Also, the framework is
able to use SFs as well to re-classify or re-mark packets
and to modify the metadata field of the NSH. Further,
the authors in [10] discuss the classifier function to be
adjustable in regards to the deep packet inspection (DPI)
function being applied at all. If there is no DPI function,
a separate classifier is responsible for a shallow packet
inspection, meaning a Layer 2-4 inspection. Otherwise,
there is the possibility of using indirect DPI-classifier
communication, direct DPI-classifier communication or
using an integrated DPI-classifier, where the classifier is
part of the DPI engine and the Layer 4-7 classification
and marking of the packets is done by the same entity.

Yet another approach to improve monitoring is intro-
duced in [11] which proposes employing in-band network
telemetry optimization for NFV service chain monitoring,
specifically using a scalable telemetry system called In-
tOpt that uses active probing, thus making this technique
especially effective in dynamic service chaining archi-
tectures. Furthermore, this telemetry system also enables
specifying monitoring requirements for individual service
chains, which are mapped to telemetry item collection
jobs. A SDN controller creates the minimal number of
monitoring flows needed to monitor the deployed ser-
vice chains as per the telemetry demands. Moreover, the
simulated annealing based random greedy metaheuristic
(SARG) is utilized to minimize the overhead caused by
active probing and collecting of telemetry items. The
IntOpt controller then determines the set of optimal mon-
itoring flows which minimize the total overhead of the
network monitoring through use of the SARG approach.
In this way, the optimal probing frequency as well as
the total number of telemetry items to be monitored for
each link in order to cover all service flows with minimal

overhead at the data plane as well at the controller is
calculated. Reducing the overhead caused by the monitor-
ing allows for dynamic service chaining architectures to
function more efficiently as less resources are pointlessly
used which can the be rather used by other important
tasks so the network retains its fast response time. Next,
the the proper telemetry sources, forwarders as well as
sinks are calculated by the controller, thus filling in the
flow tables. The authors have ascertained that using the
above heuristic considerably reduces the total monitoring
overhead, including the delays induced by the telemetry
operations. Moreover, [11] explains that such a systematic
technique can be incorporated with the existing monitor-
ing frameworks to achieve high scalability without losing
the generality and expressiveness of the systems.

4.3. Load Balancing

Another important issue that has to be accounted for is
load balancing for optimizing response times and making
the network work more efficiently. As shown in [12],
a joint network and server load balancing algorithm for
chaining VNFs is proposed for this purpose. As network
load balancing and server load balancing, e.g. in data cen-
ter environments, are both two separate issues that need
to be addressed, the authors propose an algorithm called
Nearest First and Local-Global Transformation (NF-LGT)
which can address both issues. The above algorithm
consists of two phases that are executed consecutively.
The first phase involves constructing service chains by
a greedy strategy which considers both network latency
and server latency. The strategy encompasses choosing
the VNF whose latency from the current location is the
smallest as the next destination, repeating this process it-
eratively, until the service chain includes all required NFs.
Afterwards, the second phase commences which involves
applying a searching technique to improve the result of
phase 1. This is accomplished by attempting to find a
better service chain, in regards to possessing smaller la-
tency, by replacing a selected VNF with another candidate
and swapping the order of VNFs in the SFC. The authors
propose using a SDN/OpenFlow concept to implement
the above explained algorithm, specifically separating the
control plane and data plane from each other. To provide
evidence for the superiority of this approach, [12] shows
the results of benchmarking tests demonstrating that NF-
LGT improves the system bandwidth utilization by up to
45%.

In conclusion, to be able to fully be advantageous,
especially in a dynamic context where high and fast adapt-
ability is needed, the main issues in SFC architectures
that need to be tackled are monitoring and load balancing
as described above. Please keep in mind that the above
highlighted implementations are merely an overview over
possible solutions and that research in regards to these
matters is still being conducted while also touching on
adjacent topics that surpass the limits of this paper.

5. Conclusion

In this paper, I presented the fundamentals of service
function chains and their composition. SFCs consist of
ordered service functions that are consecutively applied

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

34 doi: 10.2313/NET-2021-05-1_07

to the frames that are being passed through the network.
These functions include vital services such as firewalls and
caching. SFCs are hugely beneficial to (mobile) networks
as well as data centers in particular because they improve
latency and promote efficient resource management, mod-
ularity and scalability, which are indispensable attributes
for managing high volumes of traffic.

Indeed, service function chaining including network
function virtualization is because of its dynamic properties
of high value for many different application implementa-
tions but using service function chains also comes with
challenges that need to be addressed to achieve the full
potential of the above-mentioned benefits in dynamic en-
vironments. In particular, optimizing the load balancing of
traffic is necessary, even more so to be able to process the
aforementioned high volumes of traffic, to be able to retain
response times that are as short as possible, as well as
being able to efficiently monitor the network traffic, which
is an imperative requisite to be able to properly analyze
traffic in order to adapt accordingly to any changes.

References

[1] J. Halpern and C. Pignataro, “Service function chaining
(sfc) architecture,” Internet Requests for Comments, RFC
Editor, RFC 7665, October 2015. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc7665.txt

[2] S. Kumar, M. Tufail, S. Majee, C. Captari, and S. Homma,
“Service function chaining use cases in data centers,”
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-sfc-dc-
use-cases-06, February 2017, http://www.ietf.org/internet-drafts/
draft-ietf-sfc-dc-use-cases-06.txt. [Online]. Available: http:
//www.ietf.org/internet-drafts/draft-ietf-sfc-dc-use-cases-06.txt

[3] W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann,
Q. Fu, Q. Sun, C. Pham, C. Huang, J. Zhu, and
P. He, “Service function chaining (sfc) general use
cases,” Working Draft, IETF Secretariat, Internet-Draft
draft-liu-sfc-use-cases-08, September 2014, http://www.ietf.org/

internet-drafts/draft-liu-sfc-use-cases-08.txt. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-liu-sfc-use-cases-08.txt

[4] J. Korhonen, J. Soininen, B. Patil, T. Savolainen, G. Bajko, and
K. Iisakkila, “IPv6 in 3rd Generation Partnership Project (3GPP)
Evolved Packet System (EPS),” Internet Requests for Comments,
RFC Editor, RFC 6459, January 2012.

[5] J. Wang, H. Qi, K. Li, and X. Zhou, “PRSFC-IoT: A Performance
and Resource Aware Orchestration System of Service Function
Chaining for Internet of Things,” IEEE Internet of Things Journal,
vol. 5, no. 3, pp. 1400–1410, 2018.

[6] Z. Zhou, Q. Wu, and X. Chen, “Online Orchestration of Cross-Edge
Service Function Chaining for Cost-Efficient Edge Computing,”
IEEE Journal on Selected Areas in Communications, vol. 37, no. 8,
pp. 1866–1880, 2019.

[7] A.-V. Vu and Y. Kim, “An Implementation of Hierarchical Service
Function Chaining using OpenDaylight Platform,” in 2016 IEEE
NetSoft Conference and Workshops (NetSoft). IEEE, 2016, pp.
411–416.

[8] L. Yang, D. Van Tung, M. Kim, and Y. Kim, “Alarm-based
Monitoring for High Availability in Service Function Chain,” in
2016 International Conference on Cloud Computing Research and
Innovations (ICCCRI). IEEE, 2016, pp. 86–91.

[9] S. Ramaswamy and Brocade. (2015) Tacker: VNF Lifecycle
Management and Beyond. IETF. [Online]. Available: https:
//www.ietf.org/proceedings/93/slides/slides-93-nfvrg-25.pdf

[10] M. Shirazipour, H. Mahkonen, M. Xia, R. Manghirmalani,
A. Takacs, and V. S. Vega, “A Monitoring Framework at Layer4–7
Granularity Using Network Service Headers,” in 2015 IEEE Con-
ference on Network Function Virtualization and Software Defined
Network (NFV-SDN). IEEE, 2015, pp. 54–60.

[11] D. Bhamare, A. Kassler, J. Vestin, M. A. Khoshkholghi, and
J. Taheri, “IntOpt: In-band Network Telemetry Optimization for
NFV Service Chain Monitoring,” in ICC 2019-2019 IEEE Inter-
national Conference on Communications (ICC). IEEE, 2019, pp.
1–7.

[12] M.-T. Thai, Y.-D. Lin, and Y.-C. Lai, “A Joint Network and Server
Load Balancing Algorithm for Chaining Virtualized Network Func-
tions,” in 2016 IEEE International Conference on Communications
(ICC). IEEE, 2016, pp. 1–6.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

35 doi: 10.2313/NET-2021-05-1_07

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

36

EDNS NSID Option

Christian Kilb, Johannes Zirngibl∗, Patrick Sattler∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: christian.kilb@tum.de, zirngibl@net.in.tum.de, sattler@net.in.tum.de

Abstract—The DNS Name Server Identifier (NSID) Option is
a DNS extension that helps disambiguate name servers which
share IP addresses in anycast setups. NSID is useful for DNS
analysis by name server administrators and researchers.
This paper evaluates the usage of NSID by 89k name
servers authoritative for 533k Alexa Top Sites. It analyzes in
particular how widespread its usage is and how identifiers
are chosen. The evaluation shows that about a third of name
server IP addresses provide NSID support and two-thirds of
Alexa domains have at least one name server with support.
81% of observed NSID values are valid UTF-8 strings. Every
third NSID value is a domain name. In two out of three
cases, these domains resolve back to the name servers’ IP
addresses.

Index Terms—Domain Name System, EDNS, NSID, network
measurement

1. Introduction

In DNS anycast setups, multiple name servers share
a single IP address. DNS queries to that IP address are
then answered by one of the name servers, for low latency
ideally by one in close physical proximity to the client.
The DNS response however does not make it apparent to
the client which concrete anycast name server handled the
query. When researching or debugging anycast, it might be
useful or necessary to learn the identity of the responding
name server. The DNS Name Server Identifier (NSID)
Option, specified in RFC 5001 [1], is a DNS extension
that standardizes such a mechanism. It allows name servers
to include a name server identifier in their DNS responses,
if requested by a client. This NSID value can then be used
to disambiguate the anycast name servers.

This paper contributes a usage evaluation of the NSID
DNS extension. The analysis addresses the question of how
widely it is supported by the most popular name servers.
It also evaluates how the NSID values are chosen and
whether they follow certain patterns, which is of interest
because NSID values are specified as arbitrary byte strings.
An NSID dataset obtained from a DNS scan of the Alexa
ranked domains is the basis for the usage evaluation.

In Section 2 of this paper, background information
about NSID and its requirement EDNS (Extension Mecha-
nisms for DNS) is given. Afterwards, related concepts and
work are outlined in Section 3. In Section 4, a DNS scan
dataset is evaluated and the usage of EDNS and NSID is
analyzed, with a focus on NSID. Finally, a conclusion is
drawn and future work is suggested in Section 5.

2. Background

Should name server administrators choose to support
the NSID Option, they first have to provide EDNS support,
on which NSID is built.

2.1. EDNS

The “Extension Mechanisms for DNS” (EDNS) [2]
extends DNS [3] in multiple ways. It increases the maxi-
mum DNS message payload size over UDP from 512 B
to 65 535 B. It also extends the number of possible return
codes and flags.

Classical DNS messages over UDP have a fixed
maximum payload size of 512 B. DNS over TCP could be
used to circumvent this size limit, which however would
be inefficient for single DNS request-response exchanges,
as a TCP handshake would have to be performed. EDNS
was therefore created to allow for efficient DNS messages
over UDP with extended limits in a backward-compatible
manner.

EDNS in its version 0 defines a new (pseudo) resource
record called “OPT”. It contains meta information, but
no actual DNS data. DNS clients that support EDNS can
include an OPT resource record in the “additional data”
section of their request. A DNS server with EDNS support
would then process it accordingly and add a corresponding
OPT record to its response.

The format of the OPT resource record is shown in
Figure 1. Some resource record fields have a different
meaning compared to regular DNS records. The NAME field
always has value 0 to indicate the root domain. A type
value of 41 has been assigned to the OPT resource record,
to which the TYPE field is set. In the reinterpreted CLASS
field, the requestor specifies the maximum UDP response
payload size it is able to receive. The extended return code,
EDNS version number and extended flags are embedded
in the reinterpreted TTL field. The last resource record
field RDATA contains a list of “options” in the form of
attribute-value pairs. The size of the RDATA field is found
in the preceding field RDLEN.

Figure 2 shows the format of an option. They consist of
the fields CODE, LENGTH and DATA. The length field specifies
the size of the option data. If a DNS client includes an
option in its OPT resource record and the DNS server
understands it, a corresponding option will be included in
the response. Unsupported option codes would be ignored
instead.

One example for an extension to DNS that builds on
EDNS is the DNS security extension DNSSEC [4]. It

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

37 doi: 10.2313/NET-2021-05-1_08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NAME = 0 (only one byte for OPT)

· · · (originally variable length)

TYPE = 41

“CLASS”

EXTENDED-RCODE VERSION

FLAGS

}
“TTL”

RDLENGTH

RDATA

· · ·

Figure 1: OPT Resource Record Format

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

OPTION-CODE

OPTION-LENGTH

OPTION-DATA
· · ·

Figure 2: OPT Option Format

introduces new resource records that hold security-related
information and also allocates a new EDNS flag in the
FLAGS section of the OPT resource record.

2.2. NSID

With DNS anycast, multiple name servers can share
a single IP address. In such a scenario, the IP address is
not enough to tell which of the name servers responded
to a query. In order to reliably learn the identity of the
responding name server, it would have to include a server
identifier directly in the response.

The DNS Name Server Identifier (NSID) Option [1] is
a DNS extension that realizes this. With an NSID in the
DNS response, clients can disambiguate the name servers
with shared IP addresses. This can be useful for debugging
DNS problems as well as for internet research.

NSID is realized as an EDNS Option. It is assigned
the option code 3. DNS clients can request an NSID by
including an EDNS Option with code 3 and empty option
data in their request. Should the DNS server support NSID,
it includes its identifier in the response, embedded in the
OPTION-DATA field.

The meaning of NSID values in this option data field is
however undefined. NSIDs are specified as raw byte strings
or sequences of hexadecimal digits. It is up to the name
server administrators to decide on the meaning of NSID
values for their servers. Several suggestions are given in
the RFC for the NSID meaning. Possible choices are a
“real” host name or IP address, a static identifier derived
from the name or IP address, a dynamically generated
identifier or an encrypted identifier. The administrators can
therefore decide whether the NSID should be meaningful
for everyone or only for a specific group of people, such as
themselves. Should the value be meaningful for everyone,

an appropriate encoding must also be chosen, for example
UTF-8.

NSID is a hop-by-hop DNS extension, i.e. requests for
NSID values are not recursively forwarded by resolvers.
Instead, clients learn the NSID value of the DNS server or
recursive resolver that they directly addressed with their
NSID request.

3. Related work

Work related to EDNS and NSID is rather sparse. In
2020, Stipovic [5] analyzed the RFC compliance of EDNS
implementations in popular DNS server software such as
BIND.

Before the introduction of NSID in 2007, there was
another, non-standard mechanism to query for a name
server identifier [6]. A BIND name server could be
configured to return the server host name when queried
for a TXT resource record of the special domain “HOST-
NAME.BIND.”. Usually the CLASS of DNS requests is “IN”
for “Internet”. For such an identifier query however, the
“Chaosnet” (CH) class was used instead. Similar “CHAOS”
queries also allowed clients to request the BIND server
version.

Fan et al. [7] made use of such CHAOS queries in
combination with traceroutes in 2013 to evaluate DNS
anycast. They enumerated as many DNS anycast nodes
as they could find. They did however intentionally not
use the NSID extension in their scans, due to the lack of
standardized NSID values, the lack of recursive queries
and too little NSID deployment at that time.

Li et al. [8] also used CHAOS queries in 2018 instead
of NSID in their analysis of internet anycast. No specific
reason was given this time, but they mentioned that such
queries were commonly used to analyze anycast.

4. Evaluation

The Alexa Top Sites [9] domain list provided the basis
for a DNS scan with the goal of creating an NSID dataset.
The list from 23rd Nov 2020 contained 532 839 entries.
Based on these domains, an exhaustive DNS scan was
performed one day later. All name servers authoritative for
these domains and higher-level domains such as top-level
domains were scanned, resulting in 14 782 146 executed
queries in total. The query parameters and the server
responses have been recorded.

Not all rows of the DNS scan dataset are considered
in the NSID evaluation. Queries that resulted in an error
response are for example filtered out. The analysis is further
being limited to queries for domains from the Alexa Top
Sites list. All queries with a NAME that is not on the Alexa
list are therefore filtered out. The same applies to queries
with a TYPE other than “A” or “AAAA”. The remaining
2 885 428 rows of the dataset (19.5 %) have been included
in the following analysis.

4.1. EDNS and NSID usage

89 003 unique name server IP addresses have been
found to be directly responsible for the Alexa domains.
87 739 (98.6 %) of these NS IPs supported EDNS, as

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

38 doi: 10.2313/NET-2021-05-1_08

TABLE 1: Analysis of EDNS and NSID usage

Description #IPs Rel. %

All NS IPs 89 003 100.0
Consistent EDNS support 87 285 98.1
No EDNS support 1264 1.4
Inconsistent EDNS support 454 0.5

NS IPs with EDNS support 87 739 100.0
Consistent NSID support 28 100 32.0
No NSID support 59 203 67.5
Inconsistent NSID support 436 0.5

NS IPs with NSID support 28 536 100.0
Consistent NSID value 25 123 88.0
Varying NSID value 3413 12.0

Description #Domains Rel. %

Alexa Top Sites 474 254 100.0
Any NSID support 312 223 65.8
No NSID support 162 031 34.2

TABLE 2: Analysis of NSID support of top TLDs of the
Alexa Top Sites

TLD #Domains %Supp. TLD #Domains %Supp.

com 255 759 65.8 ua 7050 65.4
ru 32 946 60.0 au 4814 99.9
net 19 113 67.9 tr 4705 63.8
org 16 421 69.4 co 4512 76.7
ir 15 441 31.7 uk 4012 85.0
in 7577 80.4 gr 3913 50.5

their inclusion of OPT records in DNS responses show. A
small amount of servers (454 IPs) however only provided
inconsistent EDNS support, i.e. for some queries they did
support it and for other queries they did not. Out of all
unique name server IPs, 28 536 (32.1 %) supported NSID
in addition to EDNS and included name server identifiers
in their responses. Similarly, there was a small portion
(436 NS IPs) with only inconsistent NSID support.

Most name server IPs that did return an identifier only
identified themselves with that single NSID. This applies
to 25 123 (88.0 %) of the NS IPs that sometimes or always
supported NSID. The other 3413 (12.0 %) IPs have replied
with different NSIDs for multiple queries. Such varying
NSIDs are an indicator for the presence of anycast, in
which case multiple queries to the same IP would have
been answered by different name servers. It is however
no proof for anycast, as the RFC specification of NSID
also allows for dynamic identifiers. In that case, the same
name server would respond to possibly every query with
a different NSID, whose meaning might only be apparent
to the server’s administrators.

While only about a third of name server IPs supported
NSID, two-thirds of Alexa domains actually did provide at
least some NSID support. 312 223 (65.8 %) of the Alexa
Top Sites name servers responded with an NSID at least
once.

Table 1 summarizes the EDNS and NSID usage find-
ings. In Table 2, the NSID support percentages of the Alexa
domains are shown, grouped by the top-level domains with
most occurrences. Similar to above, a domain is counted
as one that supports NSID if and only if one of its name
servers responded with an NSID at least once.

TABLE 3: Analysis of NSID values

Description #NSIDs Rel. %

Decodable NSIDs 33 864 80.9

Valid domain name 13 792 40.7

IPv4-like 350 1.0
IPv6-like 0 0.0

Contains IATA airport code 10 253 30.3

Contains “ns” or “dns” 7482 22.1
Hyphenated alphanumeric 14 089 41.6
Specific 32-hex-char pattern 4828 14.3

Non-decodable NSIDs 7973 19.1

TABLE 4: Analysis of NSID domains

Description #NSIDs Rel. %

All NSID domains 8090 100.0
Resolved to an IP 6687 82.7

Mapped to original NS IP 5214 78.0
Mapped to multiple IPs 999 14.9
Mapped to IPv4 only 5752 86.0
Mapped to IPv4 and IPv6 932 13.9
Mapped to IPv6 only 3 0.0

4.2. NSID values

In the DNS scan dataset, 41 837 unique (NSID, NS
IP)-pairs could be observed (with 10 473 unique NSIDs).
The NSID values and their possible meaning are evaluated
in the following. NSIDs are counted multiple times if and
only if different IPs announce the same NSID. Table 3
gives a summary of the findings.

4.2.1. Decodable NSIDs. 33 864 (80.9 %) of the NSIDs
could be decoded to valid UTF-8 strings. These NSIDs
were between 1 B and 74 B long. They have been subjected
to further automated analysis that tries to match them to
certain regular expressions. Subsequent percentage num-
bers are given relative to the number of UTF-8-decoded
NSIDs.

Domain names. In a check of each NSID against a
regular expression for valid domain names, 13 792 (40.7 %)
of NSIDs fully matched the domain name syntax and
14 148 (41.8 %) NSIDs partially matched, i.e. had a domain
string embedded in the NSID. In order to find out whether
the fully matching domain strings actually resolve to an
IP address, a follow-up DNS scan has been performed on
22nd Dec 2020 on the 8090 unique NSID domain strings.
6687 (82.7 %) of NSID domains indeed resolved to an
IP address. A majority of these (5214 or 78.0 %) also
mapped back to their original name server IP. Some of the
resolved NSID domains pointed to multiple IP addresses
(999 or 14.9 %). In most cases, the resolved IPs were IPv4
addresses (5752). In 932 cases, the NSID domain resolved
to both an IPv4 and IPv6 address. In three cases, it resolved
to an IPv6 address only. A summary of the domain string
statistics is given in Table 4.

IP addresses. Next to domain names, name server
administrators could also choose to set an IP address
as identifier. A check of each NSID against a regular
expression for valid IP addresses however revealed that
almost none were doing so. Only 15 NSIDs fully matched
the syntax of IPv4 addresses and zero that of IPv6

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

39 doi: 10.2313/NET-2021-05-1_08

addresses. 34 (0.1 %) of NSIDs partially matched the IPv4
syntax, often in form of the IP address being embedded
in a domain name, with still zero IPv6 matches. In the
presence of domain names, it might be beneficent to format
IP addresses without dots within them. After modifying
the IP regular expressions by replacing dots and colons
with hyphens, more matching NSIDs have been found. 316
(0.9 %) of NSIDs contained an IPv4 address with hyphens,
often as part of a domain name. IPv6 addresses did not
seem to appear in any NSID, independent of colon or
hyphen as separator.

Airport codes. Sometimes server administrators
choose to include a regional identifier in domain names.
NSID values could also contain such regional identifiers.
Airport codes [10] are one type of location identifier. A
check against the three-lettered IATA airport codes revealed
that 10 253 (30.3 %) of NSIDs seemed to contain such an
airport code. To reduce the amount of false positives, this
check has been conducted with some additional conditions
applied to the regular expression. The airport code had
to appear as whole word and before any dot, limiting
its appearance to any first domain label. Additionally, a
number of codes have been blacklisted due to them also
being technical abbreviations, for example “cdn”, “srv”
and “vps”.

Miscellaneous. Some more arbitrary regular expres-
sion checks have also been performed. With 7482 (22.1 %)
NSIDs, quite a few identifiers contained the string “ns” or
“dns” as whole word in lower- or uppercase. 144 (0.4 %)
identifiers were just integer numbers. 715 (2.1 %) NSIDs
purely consisted of alphabet letters, i.e. a to z in lower-
or uppercase. Many NSIDs (14 089 or 41.6 %) consisted
of only alphabet letters, digits and hyphens. A small
number of IDs were found to be so called “globally unique
identifiers” (87 IDs or 0.3 %). Some NSIDs followed a
very specific pattern, consisting of 32 hexadecimal digits,
followed by two spaces and a dash. This was the case for
4828 NSIDs (14.3 %).

4.2.2. Non-decodable NSIDs. 7973 of the NSID values
(19.1 %) could not be decoded to valid UTF-8 strings.
These NSIDs were between 2 B and 48 B long. Almost
all of the non-decodable NSIDs were duplicates (99.5 %).
Only 42 values were unique.

The 7973 NSID values have then be subjected to
another decoding attempt. This time however, invalid bytes
have been ignored in the decoding process. 84.1 % of the
bytes could be decoded to partial NSID UTF-8 strings this
way.

A manual review of these partial strings led to more
insights. In all except three cases, the string started with
the sequence of non-printable ASCII characters NUL SOH
CAN. In most cases (6458 or 81.0 %), this sequence was
only extended by another NUL. Sometimes, the sequence
continued with NUL ETX NUL instead.

Only 1494 partially decoded NSIDs contained printable
ASCII characters. There was one repeating ASCII pattern
in some of the NSIDs, containing the word “proxy”,
a number and presumably a location abbreviation. One
example for this is “proxy-121-defra.hivecast-121-defra”,
where “defra” seems to mean Frankfurt, Germany. In
a similar find, “nlams” apparently means Amsterdam,
Netherlands, which solidifies the interpretation as location

code. Such proxy patterns were always preceded by a
sequence of non-printable characters. The similarities of
the proxy text patterns suggest that these NSIDs belong
to the same service.

It did not become apparent what the meaning of
the other, non-UTF-8 bytes was. As the RFC defines
NSID values as arbitrary byte strings, the name server
administrators could have chosen a more obscure meaning
here.

5. Conclusion and future work

This paper analyzed the usage of the NSID DNS
extension by the name servers of the Alexa domains.
About a third of the name server IP addresses did support
NSID, while about two-thirds of domains supported it at
least sometimes. Most NSID values could successfully be
decoded to UTF-8 strings. Many of these name server
identifiers have been found to be domain names, most of
which even resolved back to their original name server IP
address.

In future work, a closer look could be taken at the IP
addresses and domain names of the name servers that are
using NSID in order to learn more about who is using it, in
addition to if and how. Next to name servers responsible
for the Alexa domains, the use of NSID by other name
servers could also be investigated. These could be root
servers, TLD servers or other, less popular name servers.
Another idea for future research is to evaluate the usage of
anycast with the help of multiple NSID scans performed
from geographically distinct locations.

References

[1] R. Austein, “DNS Name Server Identifier (NSID) Option,” RFC
5001, Aug. 2007. [Online]. Available: https://rfc-editor.org/rfc/
rfc5001.html

[2] J. L. S. Damas, M. Graff, and P. A. Vixie, “Extension Mechanisms
for DNS (EDNS(0)),” RFC 6891, Apr. 2013. [Online]. Available:
https://rfc-editor.org/rfc/rfc6891.html

[3] P. Mockapetris, “Domain Names - Implementation and
Specification,” RFC 1035, Nov. 1987. [Online]. Available:
https://rfc-editor.org/rfc/rfc1035.html

[4] S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends, “DNS
Security Introduction and Requirements,” RFC 4033, Mar. 2005.
[Online]. Available: https://rfc-editor.org/rfc/rfc4033.html

[5] I. Stipovic, “Analysis of an Extension Dynamic Name Service – A
Discussion on DNS Compliance with RFC 6891,” 2020.

[6] D. R. Conrad and S. Woolf, “Requirements for a Mechanism
Identifying a Name Server Instance,” RFC 4892, Jun. 2007.
[Online]. Available: https://rfc-editor.org/rfc/rfc4892.html

[7] X. Fan, J. Heidemann, and R. Govindan, “Evaluating Anycast in
the Domain Name System,” in 2013 Proceedings IEEE INFOCOM,
2013, pp. 1681–1689.

[8] Z. Li, D. Levin, N. Spring, and B. Bhattacharjee, “Internet
Anycast: Performance, Problems, & Potential,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on
Data Communication, ser. SIGCOMM ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 59–73. [Online].
Available: https://doi.org/10.1145/3230543.3230547

[9] Alexa Internet, Inc., “Alexa Top Sites,” Nov. 2020. [Online].
Available: https://www.alexa.com/topsites

[10] Fubra Limited, “World Airport Codes,” Dec. 2020. [Online].
Available: https://www.world-airport-codes.com/

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

40 doi: 10.2313/NET-2021-05-1_08

xdpcap: XDP Packet Capture

Stefan Lachnit, Sebastian Gallenmüller∗, Dominik Scholz∗, Henning Stubbe∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: stefan.lachnit@tum.de, {gallenmu | scholz | stubbe}@net.in.tum.de

Abstract—Xpress Data Path (XDP) is a Linux kernel feature
that allows high performance packet processing using eBPF
programs which are executed before the normal network
stack. This however prevents tools like tcpdump from cap-
turing all traffic. Xdpcap is a recently released network
capturing program, which uses filters compiled to eBPF and
a hook in the tested XDP program to capture packets even
if they are dropped by the XDP program.

This paper explains how xdpcap is implemented and
presents benchmarks, which compare xdpcap to tcpdump.
We show that xdpcap is not able to achieve the same
capturing bandwidth as tcpdump and should thus be used
for debugging and capturing only when packets dropped or
forwarded by an XDP program are of interest.

Index Terms—XDP, eBPF, packet capture

1. Introduction

The ability to capture and filter network packets is
an important aspect of debugging network applications.
To assess and benchmark the performance of these ap-
plications, the recording of large amounts of traffic is
needed. Xpress Data Path (XDP) is a Linux kernel feature,
which allows users to run small programs to modify,
pass, drop or redirect incoming network packets before
they are processed by the rest of the networking stack.
Using XDP yields performance benefits in applications
like Firewalls [1] and DDoS mitigation [2] compared to
other solutions like iptables. Additionally, when using
XDP, traditional network capturing tools like tcpdump
are not able to record all packets, because they could
be dropped or modified before they reach the regular
network stack. To solve this issue, Cloudflare developed
xdpcap [3], a tool which can capture packets (filtered by
a user specified expression) directly from an instrumented
XDP program.

We performed benchmarks to test the performance of
xdpcap and tcpdump by capturing generated test traffic
and analyzing how many packets could be recorded. This
paper describes these tests and evaluates their results.

The paper is structured in the following way. Sec-
tion 2 describes the features used by xdpcap and gives an
overview of how it is implemented. In Section 3 related
work is presented, which discusses XDP and network
capturing. After the software and hardware, which was
used to benchmark xdpcap and tcpdump, is described in
Section 4, the measured data is presented and evaluated in
Section 5. In the last section the results are summarized
and a conclusion is presented.

2. Background

This section describes the basic concepts of the Linux
kernel features used by xdpcap and explains how xdpcap
works.

2.1. cBPF and eBPF

Berkeley Packet Filter (BPF; later renamed to classic
BPF (cBPF)) is a feature in the Linux kernel which
is designed to allow high performance network packet
filtering in kernel space. It introduced a virtual machine
(VM) that allows users to attach small programs to a
network interface, which can parse incoming packets and
decide if they should be copied to userspace. One of its
primary use cases is the tool tcpdump, which is used for
filtering and capturing network traffic for measurements
and debugging. It allows the user to specify filtering
expressions which are then compiled to a BPF program.
Matching packets are copied to userspace where they are
stored to a file or parsed and printed [4].

In kernel version 3.15, extended BPF (eBPF) was
introduced, which improved the original concept by mod-
ifying the VM to allow more complex programs and
adding new features. eBPF programs are no longer limited
to packet filtering and can now process events in other
parts of the kernel. Additionally, the possibility to store
persistent data by using maps, which can also be accessed
in userspace, and the ability to call kernel helper func-
tions were added. A special type of map allows eBPF
programs to dynamically call other eBPF programs, with
the limitation that the control flow cannot return to the
original code (tail call). To ensure high performance, eBPF
programs are compiled to machine code using a just-in-
time (JIT) compiler. Since the eBPF program runs in
kernel space, it is important to ensure the security of
the executed program. This is done by a verifier, which
statically analyzes a program before it is attached (e.g.,
prevents infinite loops, checks if memory accesses are in
a valid range) [5].

2.2. XDP

Xpress Data Path (XDP) adds a hook to the Linux
network stack, which can be used to run an eBPF program
(XDP program) for every packet at the earliest possible
moment after it is processed by the driver of the network
card. On supported drivers, it is run in the context of the
driver or can even be offloaded to specialized hardware
on the NIC [6]. The eBPF program has access to the raw

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

41 doi: 10.2313/NET-2021-05-1_09

packet data and can parse and possibly modify it. It is
also possible to add additional metadata to a packet. The
action which is applied to the packet can be specified by
the return code of the program. A packet can be dropped,
passed on to the normal network stack, re-transmitted
from the same interface or redirected (e.g., to a different
network interface or to a userspace socket) [7].

2.3. xdpcap

Because XDP programs can modify or drop packets
before they reach the Linux network stack, traditional
packet capture tools like tcpdump are not able to record all
traffic. Cloudflare recently released the tool xdpcap with
the goal to recreate tcpdump for applications using XDP.

To achieve this, they wrote a compiler that transforms
a cBPF program into equivalent eBPF bytecode. The cBPF
code is generated from a user-specified filter expression
by libpcap, which is also used by tcpdump.

Packets are captured and filtered by this additional
XDP program (filter program), which is executed after
all other processing steps of the original XDP program
are completed. To be able to dynamically start capturing
and change filters without removing the original XDP
program, the filtering code is executed as a tail call
from the original XDP program. This requires manual
modification of the original program by adding a hook (a
map of filtering XDP programs generated from the filter
expression) and replacing returns by tail calls. To allow
the execution of the originally specified action (without
returning to the original program), xdpcap generates mul-
tiple filter programs with every possible return code hard-
coded and chooses the matching program when executing
the tail call.

When a filter program matches a packet, it has to be
transferred to userspace. This is done by generating a perf
event using the eBPF helper function perf_event_output,
which can contain the packet data and additional meta-
data. Perf events are part of the Linux kernel, which are
normally used for profiling and tracing. In userspace, the
xdpcap tool creates a ring buffer where the data created
by this perf event is put into. When this buffer is filled to a
specified number of bytes (by the parameter watermark),
it is read by this tool and printed or output to a file [3].

3. Related Work

XDP has been used in many applications, which
require high performance packet processing. Firewall
rules, which are faster than existing solutions using ip-
tables [1] [8], efficient DDoS mitigation [2] and an XDP
based L4 load balancer [9], are examples for such appli-
cations.

For capturing network traffic, different approaches
exist. The most common tool for debugging and cap-
turing is the software-based tool tcpdump [4]. Capturing
tools, which bypass the Linux network stack, are capable
of achieving a capturing rate of up to 120 Gbit/s [10]
on commodity hardware. Additionally, hardware-assisted
capturing based on FPGAs [11] or commercially available
capturing hardware (e.g. Endace DAG cards [12]) allows
recording of traffic at high data rates and precision.

TABLE 1: hardware setup

loadgen DuT

OS Debian Buster Debian Buster
Kernel 4.19.0-12-amd64 4.19.0-12-amd64
CPU Intel Xeon E5-2620 v3 Intel Xeon E5-2630 v4
RAM 32 GB 128 GB
NIC Intel 82599ES 10G Intel 82599ES 10G

4. Experiment Setup

To measure and compare the performance of xdpcap
in a reproducible way, benchmarks were performed on
a hardware testbed managed by pos (plain orchestrating
service) [13]. This tool manages all test servers using
an orchestrating server, which handles the allocation of
servers and the execution of benchmarks. Using a script,
the required servers can be rebooted and set up automat-
ically. Additionally, the execution of benchmarks and the
collection of results are handled by this script. Since all
the test servers run live systems in RAM, the required
configuration is done automatically every time the bench-
marks are executed [13].

The hardware setup of the servers, which were used for
the benchmarks in this paper is described in Table 1. The
layout of the benchmark servers is presented in Figure 1.
Both servers are connected by a 10 Gbit/s connection and
managed by an orchestrating server running pos. One of
the servers acts as a load generator sending traffic to
the other server, which is running xdpcap or tcpdump to
capture this traffic.

loadgen DuT

orchestrating server

Figure 1: testbed

To generate test traffic on the loadgen server, Moon-
gen [14] was used. It uses DPDK [15] to bypass the
Linux network stack and generate up to 10 Gbit/s traffic
on a single CPU core with high precision. The packets
can be dynamically created and modified by a Lua-script,
which controls the data of each generated packet [14].
The benchmarks in this paper use a modified version of
the layer2 example script [16] to create Ethernet traffic
with adjustable packet size at a specified bandwidth. For
testing how filtering of traffic influences the performance
of the tested capturing tools, the script was modified to
change the ethertype of every given number of packets to
a different value (0x1111 instead of 0x1234). The device
under test (DuT) can then filter based on this field.

The other host was set up to capture the packets sent
by the loadgen server. Multiple tests with both xdpcap and
tcpdump were performed. For the benchmarks of xdpcap
an XDP program with two functions (drop all traffic, pass
all traffic) was added to the network interface, which
is connected to the load generator. This program was
modified to contain an xdpcap hook and tail calls, which

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

42 doi: 10.2313/NET-2021-05-1_09

are required for capturing using xdpcap. Additionally, the
network interface had to be set to promiscuous mode to
be able to capture packets, which do not match the MAC
address of the network interface. When using tcpdump
with default settings this happens automatically. Both tools
write the incoming data into a pcap file, which is later
analyzed using the command capinfos to collect perfor-
mance metrics (number of packets, packet rate, captured
bandwidth). All benchmarks performed the capturing for
40 seconds.

The results of both servers (analyzed packet capture,
output of Moongen) are then uploaded to the orchestrating
server where they were evaluated using an interactive
Jupyter notebook.

5. Evaluation

In this section, three benchmarks which were per-
formed using the setup described in Section 4 are pre-
sented.

5.1. Maximum Bandwidth

To analyze the maximum achievable capturing band-
width using both tested tools, benchmarks without filtering
expressions were performed. These tests were run with
a packet size of 64 B. The bandwidth of the generated
Ethernet traffic was scaled from 100 Mbit/s to 3 Gbit/s.
For the benchmarks using xdpcap, both an XDP program,
which drops all packets and a program which passes all
received packets were tested.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

generated bandwidth [Gbit/s]

re
ce
iv
ed

p
a
ck
et
s
[%

]

tcpdump xdpcap pass xdpcap drop

Figure 2: captured packet percentage

Figure 2 shows how many percent of the generated
packets could be recorded on the DuT. Tcpdump was able
to capture nearly all traffic up to 1.4 Gbit/s. Xdpcap only
captured all packets for speeds lower than 200 Mbit/s. The
results for xdpcap with different XDP programs (drop all
packets, pass all packets) were nearly identical.

Figure 3 shows results of testing the impact of different
packet sizes by additionally using 128 B packets. It plots
the captured packet rate for transmitted packet rates from
0.1 million packets per second (Mpps) to 5.8 Mpps.
Tcpdump was able to capture nearly all traffic up to 2.5
Mpps for a packet size of 64 B. When more traffic was
generated, it was only able to record the same 2.5 Mpps
and dropped the rest. When using packets with a size of
128 B the maximum number of packets which could be

0 1 2 3 4 5 6
0

1

2

3

generated packet rate [Mpps]

ca
p
tu
re
d
p
a
ck
et

ra
te

[M
p
p
s]

tcpdump (64B) tcpdump (128B)

xdpcap pass (64B) xdpcap pass (128B)

xdpcap drop (64B) xdpcap drop (128B)

Figure 3: captured packet rate

captured only decreased by approximately 5 %, indicating
that the capturing performance of tcpdump is mostly
dependent on the number of captured packets and not on
recorded bandwidth. Xdpcap showed similar results, but
was only able to capture all packets at rates less than 0.5
Mpps with 64 B packets. The achievable packet rates of
dropping or passing all packets in the XDP program were
nearly identical for 64 B packets. Increasing the packet
size to 128 B decreased the possible capturing speed by
about 30 % when using xdpcap.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

generated bandwidth [Gbit/s]

re
ce
iv
ed

p
ac
ke
ts

[%
]

w=1 buf=8192 w=1 buf=65536

w=25% buf=8192 w=25% buf=65536

w=50% buf=8192 w=50% buf=65536

w=75% buf=8192 w=75% buf=65536

Figure 4: xdpcap parameters: capturing percentage

5.2. Xdpcap Parameters

The userspace xdpcap program offers parameters to
tune the buffer size and the "perf watermark", which is
used to specify when packets are read from the perf ring
buffer. To test the impact of these settings, the percentage
of captured packets for different combinations of parame-
ters was tested. The generated bandwidth was scaled from
100 Mbit/s to 3 Gbit/s. The buffer size was set to (the
default of) 8192 B and 65 536 B. The watermark was set

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

43 doi: 10.2313/NET-2021-05-1_09

to 1 (default: transfer immediately), 25 %, 50 % and 75 %
of the buffer size.

Figure 4 shows the results of these tests. When the
generated bandwidth is low (less than 200 Mbit/s), in-
creasing the watermark value allowed xpdcap to capture
more packets than with the default configuration. For
bandwidths above 500 Mbit/s of test traffic, the best re-
sult was achieved when transferring packets immediately
(watermark 1). Increasing the buffer size to 65 536 B with
a watermark of 1 increased the number of captured packets
by approximately 10 %. All other values of the watermark
and other buffer sizes result in nearly identical or slower
capturing speeds.

5.3. Filtered Traffic

To evaluate a more realistic measurement and bench-
mark scenario, where only a small part of the received
traffic is of interest, we tested how filtering the incoming
traffic would impact the ability to capture all (matching)
packets at high data rates. For this, the modified Moongen
script described in Section 4 was used to generate Ethernet
traffic and set the ethertype of every 1000th packet to a
different value. Only this traffic was recorded by speci-
fying the filtering expression "ether proto 0x1111". The
packet size was set to 64 B and the generated bandwidth
was scaled from 500 Mbit/s to 6 Gbit/s.

0 1 2 3 4 5 6
0

20

40

60

80

100

generated bandwidth [Gbit/s]

re
ce
iv
ed

p
a
ck
et
s
[%

]

tcpdump xdpcap

Figure 5: filtered packet capture rate

Figure 5 shows the results of this benchmark. When
only capturing a small percentage of the traffic, xdpcap
was able to capture all matching packets at rates less
than 500 Mbit/s. This is a significant increase from the
200 Mbit/s which could be recorded when no filter was
applied. The maximum recording bandwidth of tcpdump
decreased compared to the test in Section 5.1. All packets
could only be recorded for generated traffic of 1 Gbit/s
or less. For every amount of generated traffic, tcpdump
captured about 15 % more traffic than xdpcap.

6. Conclusion

The results of the presented benchmarks show that in
the measured test scenario, xdpcap performs significantly
worse when capturing all packets. Small improvements
can be achieved by increasing the ring buffer size and
keeping the watermark at the default value. When apply-
ing filters, tcpdump was affected more than xdpcap, but
still yielded better performance.

Because of this, we conclude that xdpcap should not
be used as a tcpdump replacement. However, when used
for its intended purpose of debugging or monitoring ex-
isting XDP programs, it can be applied where packets are
processed before tools like tcpdump can capture them.

References

[1] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and
G. Carle, “Performance implications of packet filtering with linux
ebpf,” in 2018 30th International Teletraffic Congress (ITC 30),
vol. 01, 2018, pp. 209–217.

[2] “L4Drop: XDP DDoS Mitigations,” https://blog.cloudflare.com/
l4drop-xdp-ebpf-based-ddos-mitigations/, accessed: 2020-12-29.

[3] “xdpcap: XDP packet capture,” https://blog.cloudflare.com/
xdpcap/, accessed: 2020-12-01.

[4] S. McCanne and V. Jacobson, “The bsd packet filter: A new
architecture for user-level packet capture,” in Proceedings of the
USENIX Winter 1993 Conference Proceedings on USENIX Winter
1993 Conference Proceedings, ser. USENIX’93. USA: USENIX
Association, 1993, p. 2.

[5] M. A. M. Vieira, M. S. Castanho, R. D. G. Pacífico, E. R. S.
Santos, E. P. M. C. Júnior, and L. F. M. Vieira, “Fast packet
processing with ebpf and xdp: Concepts, code, challenges, and
applications,” ACM Comput. Surv., vol. 53, no. 1, Feb. 2020.
[Online]. Available: https://doi.org/10.1145/3371038

[6] “Netronome Agilio SmartNICs,” https://www.netronome.com/
products/agilio-software/agilio-ebpf-software/, accessed: 2021-01-
09.

[7] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path:
Fast programmable packet processing in the operating system
kernel,” in Proceedings of the 14th International Conference
on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 54–66. [Online]. Available: https://doi.org/10.
1145/3281411.3281443

[8] A. Deepak, R. Huang, and P. Mehra, “ebpf/xdp based firewall and
packet filtering,” in Linux Plumbers Conference, 2018.

[9] “katran,” https://github.com/facebookincubator/katran, accessed:
2021-01-03.

[10] P. Emmerich, M. Pudelko, S. Gallenmüller, and G. Carle, “Flows-
cope: Efficient packet capture and storage in 100 gbit/s networks,”
in 2017 IFIP Networking Conference (IFIP Networking) and Work-
shops, 2017, pp. 1–9.

[11] Y. E. Kwasi and R. Rojas-Cessa, “High-resolution hardware-based
packet capture with higher-layer pass-through on netfpga card,”
in 2014 23rd Wireless and Optical Communication Conference
(WOCC), 2014, pp. 1–6.

[12] “endace,” https://www.endace.com/, accessed: 2021-01-03.

[13] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich,
and G. Carle, “High-performance packet processing and measure-
ments,” in 2018 10th International Conference on Communication
Systems Networks (COMSNETS), 2018, pp. 1–8.

[14] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “Moongen: A scriptable high-speed packet generator,”
in Proceedings of the 2015 Internet Measurement Conference,
ser. IMC ’15. New York, NY, USA: Association for Computing
Machinery, 2015, p. 275–287. [Online]. Available: https://doi.org/
10.1145/2815675.2815692

[15] “DPDK,” https://www.dpdk.org/, accessed: 2020-12-27.

[16] “Moongen l2-load-latency example,” https://github.com/emmericp/
MoonGen/blob/525d9917c98a4760db72bb733cf6ad30550d6669/
examples/l2-load-latency.lua.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

44 doi: 10.2313/NET-2021-05-1_09

TLS Certificate Analysis

Jonas Lang, Markus Sosnowski∗, Johannes Zirngibl∗, Patrick Sattler∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: langj@cs.tum.de, sosnowski@net.in.tum.de, zirngibler@net.in.tum.de, sattler@net.in.tum.de

Abstract—TLS Certificates contain a variety of different
information. In this paper, we give an overview on what
information we could extract from a large dataset of TLS
certificates. We gather information about who issues these
certificates and what they do with select fields. Also, we use
zLint, a linter, to check certificates for issues. Finally, we
look at the trust chains of leading to certificates.

Index Terms—tls certificate analysis, internet-wide, zlint,
trustchain, PKI

1. Introduction

In recent years, using HTTP over TLS (HTTPS) has
become more and more widespread for securely commu-
nicating over the web. Major Web-Browsers are mark-
ing websites using the plain Hypertext Transfer Protocol
(HTTP) as "insecure" [1], [2], so websites are incentivized
to provide access by HTTPS [3]. While establishing a
Transport Layer Security (TLS) connection, the server has
to present a X.509 Certificate. This is also called a TLS
certificate. The client has to determine if the certificate is
valid, and if the certificate can be trusted. If the certificate
is considered invalid or not trusted, web-browsers may
block access and display a warning [4], [5]. In 2019, the
management of TLS certificates has been standardized
by the Automatic Certificate Management Environment
(ACME) protocol. This protocol simplifies automated is-
suance, renewal and revocation of a certificate [6]. In this
paper, we focus on the analysis of TLS certificates. We
first introduce the concept of TLS certificate in section 2”.
Then we present a short overview of the design of our
analysis in section 3”, followed up by the details of the
implementation in section 4”. The core part of our paper is
the evaluation of the results in section 5”. Finally, we draw
a conclusion and present opportunities for future work in
section 6”.

1.1. Related Work

There have been other papers that surveyed the cer-
tificates used for TLS. The authors of "Analysis of the
HTTPS Certificate Ecosystem" [7] presented in 2013 a
large-scale study that gave insight into the HTTPS cer-
tificate ecosystem. They analysed over 42M certificates
in total, and investigated the trust relationships between
users, intermediate authorities and root authorities. An-
other Study in 2017 looked at the misissuance of certifi-
cates. "Tracking Certificate Misissuance in the Wild" [8]
introduces zLint, a certificate linter. They have been able

to check 61M certificates for misissuance and uncovered
that mainly smaller organizations misissue certificates.

2. Background

TLS certificates are mainly used by servers to authenti-
cate themselves. Most certificates are leaf certificates, that
are signed by a 3rd Party, called a certificate authority
(CA). The CAs control root certificates, which are the
trust anchor in this system - most clients trust a set
of root certificates, transitively trusting each certificate
signed by one of the roots. However, most leaf certificates
are not directly signed by root certificates, instead they
are signed by intermediate certificates. Those intermediate
certificates are signed by root certificates. TLS certificates
can also be self-signed, therefore they are not signed using
the private key from a third party. This means that the
client needs to trust the certificate. Most browsers offer
the option to trust certain self signed certificates, but self-
signed certificates are generally not stored in the trust
anchor.

2.1. Chain of Trust

If a server presents a leaf certificate to a client, the
client has to determine if it trusts this certificate. As the
client implicitly trusts all root certificates, the client has to
build a chain of trust to a root certificate, as depicted in
Figure 1. In other words, the client has to find a root
certificate that has signed the presented leaf certificate
directly, or a chain of potentially multiple intermediate
certificates that lead to the leaf certificate.

root

intermediate

leaf

signature

Figure 1: chain of trust

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

45 doi: 10.2313/NET-2021-05-1_10

2.2. Certificates with more than one Parent

It is possible that there are two or more valid chains
of trust associated with the same leaf certificate. E.g. this
occurs when two intermediate certificates share the same
private key so both their signatures are identical, as in
Figure 2.

root 1

intermediate 1 intermediate 2

root 2

leaf

signature

Figure 2: example certificate with two valid chains of trust

2.3. Mississued Certificates

Misissued certificates do not adhere to specifications in
RFC5280 [9], or fail to adhere to the CA/Browser Forum
Baseline Requirements [10]. If certificate fails to meet
those requirements, a client typically does not trust the
server.

3. Design

We use a large-scale HTTPS scan on port 443 cre-
ated in December 2020 using goscanner [11] containing
over 126M TLS certificates. The certificates are parsed,
processed and then results are written back to disk to be
analyzed. We examine the presence of select fields and
analyse their content. Each certificate is checked by a
certificate linter. Furthermore, we use a library to build
trust chains for each certificate, that end with a root
certificate in our trust anchor.

4. Implementation

Each certificate is parsed using the zCrypto library,
which is based on the standard Go library [12]. If the
Basic Constraints extension is present and the cA boolean
[sic] is set, a a certificate is considered a CA certificate,
otherwise, it is considered a leaf certificate [9].

4.1. Linting with zLint

Every certificate was linted by running zLint on it,
which checks for "consistency with rfc standards and other
relevant pki requirements" [13]. zlint distinguishes three
categories of Lints: "Notice", "Warn" and "Error". Lints
in category "Notice" can be non-deterministic and indicate
there may be a problem. As over 126M certificates were
processed in this paper, it was not possible to examine for

every notice if there truly was a problem, so lints of this
category were ignored. Lints in category "Warn" check
e.g. if a SHOULD or SHOULD NOT Requirement from
an RFC has been violated, while lints in category "Error"
e.g. check if a MUST or MUST NOT Requirement has
been violated [13].

4.2. Building trust chains

We use the mozilla root store [14] as of December
2020 as the trust anchor. The set of intermediate cer-
tificates is built by collecting all certificates that are CA
certificates. Then we use the Verify function from zCrypto
[15] to find all trust chains that lead to a root in the trust
anchor.

4.3. Differences to typical clients in trust chain
validation

Some certificates that appear valid in our testing may
be rejected by certain browsers, and some certificates that
appear valid in certain browsers may appear valid in our
testing.

4.3.1. Available Intermediates. We try to build trust
chains using the set of all intermediate certificates that
have been seen in the scan. Typically however, a client
should rely on the server to present all intermediate cer-
tificates leading to the root. All clients we are aware of
use some form of caching for intermediate certificates.
If the necessary intermediates are already in this cache,
the client may succeed in building a trust chain even if
the server does not present every necessary intermediate.
Some clients try to use an Uniform Resource Identi-
fier (URI) specified in the Authority Information Access
Extension (AIA Extension) [15] to fetch missing inter-
mediate certificates. The platform verifiers on Windows,
ChromeOS and MacOS implement this. [16] However, a
major client that does not support fetching intermediate
certificates using the AIA Extension is Mozilla Firefox
[17].

4.3.2. Revoked certificates. In theory, CAs should be
able to revoke issued certificates via the Online Certifi-
cate Status Protocol (OCSP) and Certificate Revocation
Lists (CRL). As Liu et. al found in 2015 however, these
mechanisms are often not used by clients [18]. They also
revealed that Mobile Browsers on Android did not check
for revocation at all. Some Desktop-Browsers use pre-
selected CRLs to check for revoked certificates, which
only contain a fraction of all revoked certficates [19],
[20]. Because the revocation of certificates is handled so
differently across clients, we do not check any certificates
for revocation.

5. Evaluation

We ran our analysis on a Dataset that was collected
from 24/12/2020 to 27/12/2020. This Dataset contains
126.200.987 certificates that could be successfully parsed,
while only 175 certificates were too broken to be parsed.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

46 doi: 10.2313/NET-2021-05-1_10

TABLE 1: Classes of certificates in our dataset

class total % absolute
all certificates 100% 126.200.987

roots <0,01% 78
intermediates 0,18% 236.475

valid intermediates <0,01% 927
self-signed 1,75% 2.207.833

leaves 98,24% 123.983.769
valid leaves 95,61% 120.658.574

Let's Encrypt

55.8%

Cloudflare, Inc.

14.4%

cPanel, Inc.

9.1%

DigiCert Inc

6.4%
Sectigo Limited

6.3%
other

7.9%

Figure 3: Percentage of valid leaves signed by each orga-
nization

5.1. General Landscape

We define a valid leaf as a leaf certificate, to which we
could build a trust chain that has been valid anywhere in
between 21/12/2020 and 28/12/2020. This is to mitigate
that the certificates were collected over multiple days.
Table 1 reveals that over 95% of certificates are valid leaf
certificates.

5.2. Issuers of HTTPS Certificates

We grouped valid leaf certificate by issuer organisation
name in Figure 3 . Let’s Encrypt is the dominant issuer
of TLS certificates with a share of over 55%.

5.3. Signature Algorithms

Table 2 shows that certificate signatures among valid
leaves were almost exclusively made using SHA256-
RSA. An exception is Cloudflare, which is responsible
for 99,55% of all ECDSA-SHA256 signatures, which
amounts to 17.405.658 certificates. This is 99,84% of all
Cloudflare issued certificates.

TABLE 2: Signature Algorithms used for valid leaves

algorithm valid leaves % absolute
SHA256-RSA 85,23% 102.834.585

ECDSA-SHA256 14,49% 17.483.284
SHA384-RSA 0,27% 316.893

ECDSA-SHA384 0,01% 17.483.284
SHA512-RSA <0,01% 6.278

TABLE 3: Certificate lifespan by interval

lifetime in days valid leaves % absolute
51-100 70.80% 85.427.923

200-398 26.80% 32.341.146
399-800 2,00% 2.413.525

801-1200 0,23% 282.170
101-200 0,11% 132.037

0-50 0,05% 61.773

TABLE 4: Usage of the subject country field

country valid leaves % absolute
not used 82,76% 104.443.306

US 14,79% 18.336.360
PL 0,12% 156.190
DE 0,11% 134.287

...

5.4. Validity Period

Each certificate has a not before and not after field.
These indicate the lifespan of a certificate. In Table 3, the
lifetime of valid leaf certificates is divided into classes.
Starting on September 1st 2020, every major root program
decided to reduce the maximum lifespan of each certificate
to 398 days [21]. The majority of valid leaves has a
considerably shorter validity period of <100 days. This is
desirable, as shorter lifespans of certificates are generally
better for security, as certificates have to be reissued more
often. Certificates that have a longer lifespan than 398
days, but have been issued before September 2020 can
still be valid certificates.

5.5. Subject Country Field

As X.509 certificates used for TLS are general pur-
pose, they also feature fields that are not useful for typical
browsers. One example is the subject country field, which
is left unused by the vast majority of certificates, as Table
4 shows. Surprisingly, some CAs like Cloudflare seem
to set the subject country field for all of their issued
certificates to "US".

5.6. Extended Key Usage Field

Over 98% of certificates are issued with ServerAuth
and ClientAuth as their extended key usage, as Table 5
shows. The purpose of the certificates during the scan
was to authenticate the server, so ClientAuth should not
be needed as specified by RFC5280, Section 4.2.1.3. [9].
We hypothesize that the vast number of certificates with
ClientAuth set is due to the added flexibility for the users.

TABLE 5: Extended key usage

Extended key usage valid leaves % absolute
ServerAuth, ClientAuth 98,15% 118.407.285

ServerAuth 1 ,84% 2.243.899
...

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

47 doi: 10.2313/NET-2021-05-1_10

TABLE 6: certificates with warnings per organization
sorted by absolute amount

Organisation Name warnings issued % warnings
GoDaddy.com, Inc. 179.679 2.481.067 7,24%

Amazon 40.853 1.392.205 2,93%
SECOM Trust Systems [...] 35.842 35.872 99,91%

Actalis S.p.A. 20.984 408.090 5,14%
DigiCert Inc 20.389 7.773.648 0,26%

Starfield Technologies, Inc. 17.305 322.869 5,35%
Microsoft Corporation 13.572 123.668 10,97%

Sectigo Limited 9.399 7.588.983 0,12%
...

TABLE 7: valid leaf certificates with errors per organiza-
tion sorted by absolute amount

Organisation Name errors issued % errors
nazwa.pl sp. z o.o. 1.138 271.919 0,41

AC Camerfirma S.A. 479 1.630 29,38
Unizeto Technologies S.A. 53 57.203 0,09

home.pl S.A. 19 54.282 0,03
Dreamcommerce S.A. 5 13.222 0,03

...

5.7. zLint Results

Of all valid leaf certficates, only 2.283 triggered an
error, and 353.292 triggered a warning. In Figure 6,
GoDaddy and Sectigo triggered warnings, even though
they are known to use zLint in some fashion for pre-
issuance linting. This may either be due to old certificates
that are still valid, or that they choose to ignore these
specific lints. In Table 7, most organisations triggered only
few errors relative to their total issued certificates. With
almost a rate of 30% of their issued valid leaves triggering
errors, AC Camerfirma S.A. is clearly an exception in our
dataset. The mozilla wiki details 26 potential issues with
certificates from this CA [22], and the Chromium open-
source project to plans to block this CA in a future release
entirely [23].

5.8. Certificate trust chains

We examined the trust chains leading from certificates
to a trusted root certificate. As mentioned earlier, we didn’t
do any revocation checking. Therefore, we also found trust
chains containing revoked intermediates. For example, the
Let’s Encrypt’s R3 intermediate certificate signed by DST
CA X3 has a twin with different content. This twin in-
termediate, however, according to crt.sh as of 08/01/2021
has been revoked via OCSP, and CRL by the CA. Those
circumstances make it hard to interpret the gathered data,
but would provide an interesting starting point for further
analysis. If we describe a set of trust chains that lead to
a certificate as a trust chain configuration, we can still
examine the most used trust chain configurations. The
top 20 distinct trust chain configurations combined lead
to 98,22% of valid leaf certificates. None of the top 20
trust chain configurations contained a root certificate that
directly signed a valid leaf certificate.

6. Conclusion and future work

6.1. Conclusion

We have examined several aspects of TLS certificates,
and summarized them. It was possible to build a trust
chain leading to a trusted root for a majority of certificates
in the dataset. Let’s Encrypt currently dominates the TLS
certificate ecosystem. Certain attributes of a certificate are
characteristic for a CA - e.g. 99.55% of all valid leaf
certificates with a ECDSA-SHA256 signature are issued
by Cloudflare. With zLint, almost no misissued certificates
could be found in our dataset. A CA that is known to issue
problematic certificates could be clearly identified.

6.2. Future Work

In this Paper we do not cover every field that may
be present in a TLS Certificate. The analysis could easily
be extended to cover additional fields. Also, zLint is an
established certificate linter that is known to be used
by some CAs [13]. More misissued certificates may be
unconvered by creating additional lints that have not been
published before.

References

[1] Google, “Google Blog,” https://blog.google/products/chrome/
milestone-chrome-security-marking-http-not-secure/, July 2018,
[Online; accessed 7-January-2021].

[2] Mozilla, “Mixed Content Blocking in Firefox,” https:
//support.mozilla.org/en-US/kb/mixed-content-blocking-firefox#
w_what-is-mixed-content-and-what-are-the-risks, [Online;
accessed 7-January-2021].

[3] P. R. Donahue, “Https or bust: Chrome’s plan to
label sites as "not secure",” https://blog.cloudflare.com/
https-or-bust-chromes-plan-to-label-sites-as-not-secure/, [Online;
accessed 7-January-2021].

[4] Mozilla, “How to troubleshoot security error codes on
secure websites,” https://support.mozilla.org/en-US/kb/
error-codes-secure-websites, [Online; accessed 7-January-2021].

[5] Google, “Fix connection errors,” https://support.google.com/
chrome/answer/6098869?hl=en.

[6] IETF, “RFC8555,” https://tools.ietf.org/html/rfc8555.

[7] M. B. Zakir Durumeric, James Kasten, “Analysis of the HTTPS
Certificate Ecosystem.” IMC ’13: Proceedings of the 2013 con-
ference on Internet measurement conference, October 2013.

[8] D. Kumar, Z. Wang, M. Hyder, J. Dickinson, G. Beck, D. Adrian,
J. Mason, Z. Durumeric, J. Halderman, and M. Bailey, “Tracking
certificate misissuance in the wild,” 05 2018, pp. 785–798.

[9] IETF, “RFC 5280,” https://tools.ietf.org/html/rfc5280.

[10] CAB Forum, “Baseline Requirements Documents
(SSL/TLS Server Certificates),” https://cabforum.org/
baseline-requirements-documents/.

[11] tumi8, “GoScanner,” https://github.com/tumi8/goscanner.

[12] zMap, “zMap Project,” https://zmap.io/.

[13] ——, “zLint,” https://github.com/zmap/zlint.

[14] Mozilla, https://wiki.mozilla.org/CA/Included_Certificates.

[15] zMap, “zCrypto,” https://github.com/zmap/zcrypto.

[16] Mustafa Emre Acer, Emily Stark, Adrienne Porter Felt, Sascha
Fahl, Radhika Bhargava, Bhanu Dev, Matt Braithwaite, Ryan
Sleevi, Parisa Tabriz, “Where the Wild Warnings Are: Root Causes
of Chrome HTTPS Certificate Errors,” CCS’17, 2017.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

48 doi: 10.2313/NET-2021-05-1_10

[17] Mozilla, “SecurityEngineering/Certificate Verification,” https:
//wiki.mozilla.org/SecurityEngineering/Certificate_Verification,
November 2019, [Online; accessed 30-December-2020].

[18] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs,
A. Mislove, A. Schulman, and C. Wilson, “An end-to-end mea-
surement of certificate revocation in the web’s pki,” 10 2015, pp.
183–196.

[19] M. Goodwin, “Revoking Intermediate Certificates: Introducing
OneCRL,” https://blog.mozilla.org/security/2015/03/03/
revoking-intermediate-certificates-introducing-onecrl/, 2015.

[20] The Chromium Projects, “Revoking Intermediate Certificates:
Introducing OneCRL,” https://dev.chromium.org/Home/
chromium-security/crlsets, [Online; accessed 7-January-2021].

[21] P. Nohe, “Maximum TLS certificate validity
now one year,” https://www.globalsign.com/en/blog/
maximum-ssltls-certificate-validity-now-one-year, [Online;
accessed 7-January-2021].

[22] Mozilla, “Common CA Database,” https://www.ccadb.org/.

[23] Ryan Sleevi, https://groups.google.com/g/mozilla.dev.security.
policy/c/dSeD3dgnpzk/m/iAUwcFioAQAJ.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

49 doi: 10.2313/NET-2021-05-1_10

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

50

Corona Warn-App – Design, Development and Privacy Considerations

Oliver Layer, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: oliver.layer@tum.de, jaeger@net.in.tum.de

Abstract—Contact tracing applications can help to reduce
the spread of the coronavirus disease 2019 by identifying in-
fection chains. The Corona-Warn-App is the official German
application. While contact tracing apps require a certain
amount of users in the population to be effective, there
are privacy, effectiveness and security concerns that may
diminish the app’s acceptance. In this paper functionality
and possible privacy and security attack vectors as well
as mitigations for the app are reviewed. Furthermore, the
app’s architecture is compared with other approaches. The
results show that privacy and security measures are in
place, limiting possible attacks to be infeasible on a large
scale. In contrary, there have been several bugs during the
introduction phase of the app which could have put off users.

Index Terms—contact tracing apps, privacy, exposure noti-
fication, corona warn app

1. Introduction

In the beginning of 2020 the world has been struck
by a pandemic regarding the coronavirus disease 2019
(COVID-19). The disease is believed to spread especially
in situations where people are in proximity to each other.
Using their smartphones and their Bluetooth signals, con-
tact tracing apps (CTAs) provide information to users
indicating if there was a situation in the past where they
were exposed to someone who has already been infected.
CTAs can help to identify the chain of infections and can
therefore slow down the pandemic by breaking them. In
contrast, only relying on manual contact tracing is not
suitable on a larger scale and for most situations, such as
in public transport.

Throughout the pandemic, several CTAs have been de-
veloped using different architectures. The Corona-Warn-
App (CWA) is the open-source contact tracing app of
the German government. It is based on the Exposure
Notification API (ENA) which has been developed jointly
by Google and Apple. The approach builds upon a decen-
tralized architecture with the goal of preserving privacy.

Initially, the German government pursued to follow a
centralized approach, which may be more prone to privacy
breaches than a decentralized one. After being criticized,
the German government instead chose to use the ENA.
[1]

Broad usage across the population is important for
CTAs to have an impact on the development of the pan-
demic. The CWA has approximately been downloaded 23
million times as of December 2020. [2] The amount of

users having the app currently installed may be less. A
study shows that approximately one third of the surveyed
did not want to install the CWA for several different
reasons. [3, Sec. Results] Therefore, the motivation of this
paper is to review the architecture of the CWA regarding
privacy, security and some other technical considerations
which could prevent users from installing the app, such
as bugs in the app or the general transparency of the app.
Furthermore, this paper compares the ENA approach with
different approaches.

In Section 2, it is explained how the CWA and other
related ENA-based CTAs work. Privacy, security and other
technical considerations are dealt with in Section 3. The
ENA is compared with other approaches in Section 4.
Afterwards, related work is summarized in Section 5. A
conclusion is given in Section 6.

2. Functionality

There are three parts of the CWA that are essential for
contract tracing. The proximity detection is responsible for
keeping track of nearby users, while sharing the infection
information uploads data of the infected user to the central
CWA server. The infection risk calculation consists of
getting a list of keys which represent infected users from
the CWA server and comparing them with the local data
captured by the proximity detection.

2.1. Proximity detection

The proximity detection is part of the ENA and
uses Bluetooth Low Energy (BLE). Smartphones running
ENA-based CTAs broadcast and scan for BLE messages
with the ENA service identifier around every 3.5 to
5 minutes. The exact interval is determined by a ran-
domized component to prevent tracking. [4, p. 4] [5,
scanIntervalRandomRangeSeconds() comment]

The payload of a BLE broadcast consists of the Rolling
Proximity Identifier (RPI) and the Associated Encrypted
Metadata (AEM). The RPI serves as a temporary identifier
for the sending device and is newly derived every 15
minutes. This happens at the same time the randomly gen-
erated Bluetooth MAC address changes. The RPI contains
a bucketized version of the Unix timestamp with a bucket
size of ten minutes and is AES-128 encrypted using the
RPI key. The RPI key itself is derived from the Temporary
Exposure Key (TEK) using the HKDF function described
in RFC5869. [7] The TEK in turn is an identifier that is
freshly generated every day using a cryptographic random
number generator. [4, p. 3, 4] [6, p. 6]

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

51 doi: 10.2313/NET-2021-05-1_11

Temporary Exposure Key (TEK)

HKDF HKDF
‘EN-

RPIK‘

info ‘EN-

AEMK‘

info

RPI Key AEM Key

AES
bucketized

time
AES-CTR metadata

RPI AEM

key key

key

data

key

data

in
iti
ali

za
tio

n

ve
ct
or

Bluetooth payload

Figure 1: Derivation process of the payload sent in BLE
broadcasts. [6, p. 5]

The AEM contains metadata, such as the versioning
information about the ENA and the transmit power which
was used to send the BLE broadcast. [4, p. 4] This infor-
mation is later used when determining the infection risk.
Similar to the mechanism regarding the RPI, the AEM is
encrypted by the AEM key that is derived from the TEK
using HKDF. Analogous to the RPI, it also changes every
15 minutes to prevent tracking. As initialization vector for
the AES-128-CTR encryption, the current RPI is used. [6,
p. 7] The derivation process is visualized in Figure 1.

When scanning and finally receiving a BLE broadcast
of another user in proximity, the RPI and the encrypted
AEM are stored locally on the smartphone. Decryption of
the AEM is only possible with the TEK of the user that
initially sent the broadcast. [6, p. 7]

2.2. Sharing infection information

Sharing a positive test result using the CWA allows for
other users to check their chance of being infected later
in the process of the infection risk calculation.

There are multiple ways on how to mark oneself as
infected. Some laboratories print QR codes on the letter
that the user receives after conducting the test. The CWA
supports scanning this code and will notify users as soon
as there is a test result. [8]

Not all laboratories may support this. In this case,
the German health authorities may share a code with the
infected user that can be used to share their infection
status. This code is distributed when the authorities call
the users to inform them about the measures they have to
take regarding their infection. [8] The user can also take
action and phone the CWA call center to receive a code.

As soon as an user is tested positive for COVID-19,
there is the possibility of sharing the test result with the
CWA server. What is being transmitted to the server in
this case are all the TEKs of the last 14 days. The list of
TEKs is referred to as diagnosis key. [6, p. 8]

2.3. Infection risk calculation

When installed, the CWA automatically pulls recent
diagnosis keys from the CWA server. In previous versions

this happened on a daily basis. Recent versions (since
v1.7) allow multiple downloads per day, which also means
that the infection risk can be invalidated multiple times per
day. [9]

Using the downloaded diagnosis keys and the con-
tained TEKs, the CWA can recalculate the RPI keys as
well as the AEM keys. Matching locally stored RPIs
and AEMs can then be decrypted. For each match, the
total encounter time on that particular day is calculated.
Additionally, the distance between the smartphones is
determined using the signal strength.

If an encounter belonging to the match lasted less than
10 minutes or the distance was larger than 8 meters on
average, it is automatically classified as low risk. [10]

For each of the remaining encounters, the total risk
score is calculated by multiplying four scaled metrics,
ranging from 0 to 8 [11, Sec. Risk Score Calculation],
namely:

• days since the exposure has happened
• exposure duration
• signal attenuation
• transmission risk level

The transmission risk level is calculated using an
epidemiological model and contained in the uploaded
diagnosis key. For example, it can possibly take symptoms
entered by the user into account. [12] This particular
model is not part of the ENA, but it uses the customizable
transmission risk level offered by the ENA.

With taking all exposures into account, a combined
risk score is calculated. First, the attenuation levels are
grouped into three buckets using predefined thresholds.
Each bucket’s weight is then multiplied with the sum of
the corresponding exposure durations for which the atten-
uation falls into one of the buckets. The result is called
the exposure score. It is multiplied with the normalization
of the largest total risk score to finally get the combined
risk score. [11, Sec. Risk Score Calculation]

If the combined risk score exceeds a certain threshold,
the user is shown a high risk exposure warning.

3. Considerations

CTAs are reliant on a broad acceptance of the pop-
ulation to be effective. The acceptance increases if the
app does not interfere with the privacy of the users. For
example, this could mean that data that could reveal the
users identity is not shared with others.

Moreover security issues, for example attacks that
generate fake risks which are shown to the users, can cause
uncertainty.

Furthermore different technical considerations could
affect the acceptance, such as bugs in the app preventing
it from working correctly.

3.1. Privacy

In general, the CWA has been designed with the goal
of ensuring as much privacy as possible. Consequently,
there have been multiple measures to guarantee privacy,
such as frequently changing identifiers, the usage of cryp-
tographic methods for identifier generation / derivation and

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

52 doi: 10.2313/NET-2021-05-1_11

using a decentralized concept. In contrast to a centralized
approach, no information leaves the smartphone, except
when sharing a positive test result. Still, the most frequent
concerns to not use the CWA are privacy concerns. [3]

Nevertheless, there have been successful attempts
demonstrated in literature to circumvent these privacy
measures. The resulting privacy threats are mainly
deanonymization and movement tracking of users. If ex-
ploited, these threats could lead to loss of acceptance in
the population.

Movement tracking of users sharing their positive test
result is practically possible for all apps using the ENA,
such as the CWA. As described in Section 2.2, sharing
the result requires the users to upload their TEKs of the
last 14 days. The TEKs can then be queried from the
CWA backend by anyone. Using BLE sniffers deployed
at central locations, such as train stations or supermarkets,
one can trace the movement of infected users for at least
one day by deriving RPIs from a particular TEK and
comparing them with the RPIs picked up by the sniffers.
Tracing the movement for longer than one day is also pos-
sible, if one manages to match multiple uploaded TEKs
using the users movement behavior. Using the movement
information, one can possibly also deanonymize users.
[13, Sec. III]

Limitations of this approach are certainly not being
able to trace users who did not share their test result.
In addition it requires the deployment of BLE sniffers.
For tracing people in a city with a population of around
160 000 people, approximately 430 strategically placed
sensing stations would be necessary. [13, Sec. III] This
amount of sniffers needed makes this approach infeasible
on a Germany-wide scale. Especially the government, as
publisher of this CTA, has access to more suitable methods
for tracking users, such as using the data from the mobile
networks.

On a smaller scale, deanonymization is also possible
using another attack with a BLE device capturing signals
at multiple locations. One can then store the RPIs and
the signal strength at each location. Observing the loca-
tions when capturing the signals establishes a connection
between the captured signals and the observed person.
Another similar attack is to approach a person and track
the RPIs sent by the persons smartphone. When there are
not many other signals around, one can likely identify the
RPIs belonging to the approached person. If the person is
now tested positive for COVID-19 and shares the infection
status, one has gained the information that the person is
infected. This can be done by deriving the RPIs from the
uploaded TEKs and comparing them with the previously
picked up RPIs. [14, Sec. 4.2]

These attacks require personal proximity to the victims
or camera surveillance and are therefore only possible
on a small scale. There are mitigation proposals for both
attacks, such as varying signal strength when sending BLE
broadcasts. [14, Sec. 4.2]

As seen in the limitations, all presented attacks require
a significantly large effort to be able to track users on a
large scale. Nevertheless, they are feasible when tracking
users on a smaller scale.

3.2. Security

Besides privacy issues, security issues can lead to
attacks that stop the app to work in the desired way. For
example this could be generating fake risks that lead to
warnings for users.

Literature has shown that wormhole attacks (also relay
and replay attacks) are possible for ENA-based apps.
Such an attack picks up a BLE signal at some location,
preferably a crowded one. Then the attacker uses a second
device at a different location. The second device receives
BLE messages that the first device picked up. This is done
with the help of a tunnel built by the attacker between
the two devices. Now the second device broadcasts these
messages and all devices will receive BLE broadcasts
originated from the first location, while actually being at
the second location. [13, Sec. IV]

later infected user

attacker attacker

user

user
user

user

Location 1 Location 2

BLE BLE
Tunnel

BLE

Figure 2: Example setup of a wormhole attack. [13, Figure
7]

Figure 2 shows an example setup of this attack. All
users present at location 2 will receive broadcasts from
the later infected user at location 1, although this user is
not necessarily in proximity in reality.

This attack can be used to generate fake risk con-
tacts, which may tempt users to conduct a test or go
into quarantine without a real risk being present. Pos-
sible mitigations require either a handshake mechanism
or additional verification using the GPS location or the
cellular network. [14, Sec. 3.2] A limitation of this attack
is that physical presence of some kind (e.g. a smartphone
or a microcontroller) is required at the locations where the
attack should be performed.

Another possible attack is called power and storage
drain attack. It is a denial of service attack, in which
the attacker broadcasts a large amount of BLE messages.
Devices in the proximity will pick up and process these
messages. A large amount of messages to process will
result in a higher power consumption. If the attacker
manages to generate valid messages, they will also use
space on the smartphones storage, as the RPIs and the
AEMs are persisted. [14, Sec. 3.1] While this attack may
be less severe than the relay and replay attacks, the users’
acceptance will decrease if such an attack occurs at her
smartphone. A mitigation for this attack is also proposed
in literature. [14]

Both presented attacks are hard to apply at a large
scale, because they require physical devices at the attacked
locations. Nevertheless, anyone exploiting these attacks
will certainly lead to the app not working as intended.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

53 doi: 10.2313/NET-2021-05-1_11

3.3. Technical

Since the CWA launched in June 2020, several bugs
were discovered. Some of these bugs were preventing
users from utilizing the app.

One problem that occurred in early versions was that
the CWA was not refreshing the infection risk value on
some Android devices without the user manually opening
the app. Broadcasting and receiving RPIs would work,
but in case an user had an encounter with a later positive
diagnosed person, the user would not get a notification
without opening the app. A fix deployed later added a
setting which, when enabled, lets the CWA run in the
background even on Android systems which stop apps
running in the background for battery saving reasons. [15]

Another bug appeared for iOS users with the update to
version 1.2.0 released in early August 2020. Some users
were not able to start the app any more after the update.
This was quickly fixed in a follow-up update released five
days later. [16]

In September 2020, an additional bug was found which
affected smartphones running iOS 13.7. The bug caused
the computation of the risk value to be faulty, and would
ultimately result in displaying a too high risk for some
users. [17]

An additional reason for not using the CWA may be
the power consumption of the app. Using the app could
lead to a decreased runtime of the smartphone. There is
no relevant literature that investigates battery consumption
of the ENA or CWA. Nevertheless, BLE was chosen as
it is explicitly designed for usage in environments with
battery constraints, such as smart home applications for
example.

Another technical aspect is transparency. Transparency
certainly leads to higher confidence of users that the app
contains what is being promised. The CWA is completely
open-source and reproducible builds are currently worked
on, which then gives certainty that the code in the GitHub
repository belongs to the deployed binaries in the app
stores. [18]

4. Comparison

Knowing the functionality and issues of the CWA
makes it interesting to compare it to other approaches.
An overview of selected other approaches is shown in
Table 1.

Architecture Concept Country

Decentralized ENA

Germany, Denmark [19], Brazil
[20], Italy [21], Spain [22],
United Kingdom [23], United
States (partly) [24], Canada
(partly) [25]

Partially-
centralized

BlueTrace Singapore [26], Australia [27]
ROBERT France [28]
other Iceland, India

TABLE 1: Architectures, theoretical concepts and corre-
sponding deployment location of selected CTAs

The underlying concepts of most CTAs can be grouped
into two categories regarding their architecture. There
are decentralized and partially-centralized architectures.

Partially-centralized architectures generally require more
interaction of the users with a central server. Examples of
an interaction may be an initial registration with personal
contact information or an upload of encounters to the
server, depending on the implementation. In contrast, for
decentralized architectures the only transmission of user
data to the server may possibly happen when sharing a
positive test result, which is not mandatory for using the
app.

The most prominent concept using a decentralized
architecture is the already discussed ENA, which is used
by many western countries as seen in Table 1. On the
other hand. there are different concepts using a partially-
centralized architecture, such as BlueTrace or ROBERT.

In the following subsections selected concepts using
a partially-centralized architecture are compared with the
ENA.

4.1. BlueTrace

BlueTrace has been developed by the government of
Singapore. [29, Sec. Abstract] As seen in Table 1, it is
currently used in Australia and Singapore.

To use the app, users have to register using their phone
number. An account is then created on the backend side,
containing the phone number and a randomly generated
user identifier. [29, Sec. 4]

Similar to the ENA, the proximity detection uses BLE
broadcasts with frequently changing temporary identifiers.
In contrast to the ENA, the temporary identifiers are not
generated by the user but by the central server. After
receiving them from the server, they are broadcasted by
the user’s smartphone. A temporary identifier includes the
user identifier and time information and is encrypted on
the server using symmetrical encryption, which enables
only the health authority to decrypt it. Analogously to
the ENA, received broadcasts are stored on the local
smartphone storage. [29, Sec. 4]

If users are tested positive, they upload their locally
saved encounters to the central server. The health authority
can then decrypt the temporary identifiers and contact the
encounters using their phone number saved in the server’s
database. [29, Sec. 4]

In contrary to the ENA, BlueTrace is only affected
by wormhole attacks (see Section 3) to a limited extent.
Firstly, this is the case because the broadcasts contain an
expiry timestamp, which the server verifies upon upload-
ing the encounter history. Therefore, the broadcast of a
user can only be rebroadcasted for a maximum of 15 min-
utes. Secondly, human operators also verify the locations
of both, the infected user and potentially infected users,
via phone. [29, Sec. 8] This does not completely rule out
wormhole attacks, but may limit their effectiveness.

Bluetooth sniffer attacks by third parties as in Sec-
tion 3 are not applicable to BlueTrace, assuming a third
party cannot decrypt the broadcasts of users and is there-
fore not able to track them beyond the 15 minutes refresh
interval of identifiers. However, such an attack concerning
all users could be performed by the health authority, as
they are able to decrypt all temporary identifiers.

BlueTrace may also be more effective when it comes
to risk classification, as employees of the health authority

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

54 doi: 10.2313/NET-2021-05-1_11

can decide to contact encounters based on some additional
context given by the infected person during the phone call.

Nevertheless, the main weakness of BlueTrace is that
if somebody manages to obtain the secret key of the health
authority, every temporary identifier could be decrypted.
With additional access to the database of the server, every
temporary identifier could be connected with the users’
phone numbers. This is not possible using the ENA,
because the data that is sent in the broadcasts is encrypted
with keys generated by the users themselves. Additionally,
no personal data of users is stored in context of the ENA.

4.2. ROBERT

The French CTA uses a concept called ROBust and
privacy-presERving proximity Tracing (ROBERT), which
is in turn built upon the Pan-European Privacy-Preserving
Proximity Tracing (PEPP-PT). The German government
initially pursued to implement a CTA based on PEPP-PT.
[1]

Figure 3: Tracing flow of ROBERT. [30, p. 3]

Similar to BlueTrace, ROBERT relies on temporary
identifiers that are broadcasted via BLE and generated
by a central server. [31, Sec. 4, 5.1] The user regularly
gets these identifiers from the server and uses them for
broadcasts. Received broadcasts are saved to the local
smartphone storage, analogously to the ENA and Blue-
Trace. [31, Sec. 5.2]

If a user is tested positive and wants to share the
infection status, the encounter history is uploaded to the
central server. The server then calculates the encounter
times and adds them to the database entry belonging to
the encountered user. [31, Sec. 6]

Every user regularly sends a request to the server with
recently used identifiers. The server checks if there has
been an encounter and returns the result to the client. [31,
Sec. 7]

The tracing flow of ROBERT is depicted in Figure 3.
The main difference to BlueTrace is that the user does

not have to send personal information, e.g. the phone
number, to the server.

Compared to the ENA, firstly ROBERT uses identifiers
generated at the server and not at the local smartphone
and secondly relocates the logic of risk calculation to the
server. While wormhole attacks may still be viable, sniffer
attacks as described in Section 3 become impossible for
third parties, as there is no publicly accessible list of
infected identifiers. On the other hand, ROBERT makes
it possible to perform sniffing attacks for all users when
having access to the key used by the server.

4.3. Other approaches

There are other approaches which do not use BLE for
proximity detection. The Icelandic CTA uses the locations
services (e.g. GPS) of the smartphone’s operating system.
Only when sharing the infection status or upon request
of the authority, the location history can be uploaded to
a server. [32] The authority can then take measures, for
example by warning people regularly being present at one
of the locations.

The CTA of India uses yet another approach. It com-
bines both, Bluetooth and GPS data for proximity detec-
tion. Additionally, it requires users to register themselves
by providing personal information, such as their name,
their age or their phone number. If an infection happens,
the Bluetooth encounter history is uploaded to the server
together with the location information. [33]

5. Related Work

Most of the literature focuses on one particular aspect
of the CWA. The analysis in [14] gives a theoretical,
detailed overview of security and privacy issues in the
ENA, while [13] contains two case studies demonstrat-
ing security and privacy issues of the CWA. Similar to
this paper, both papers give a short overview about the
functionality.

While being technical, the influence of issues on the
apps acceptance is not discussed. Most literature dis-
cussing reasons why not to use the CWA are not tech-
nical, but rather only conduct representative surveys of
the population, like it is the case for [3].

There is no literature that explicitly looks at the pop-
ulation’s concerns about the app and compares them with
the technical background. This paper tries to fill this gap.

6. Conclusion

There are privacy issues in the CWA that could lead to
deanonymization and tracking of users in the worst-case.
In addition, wormhole attacks can decrease the usefulness
of the app by generating fake risk warnings. Also the user
experience was cumbersome especially in the beginning,
as some users were not able to correctly use the app due
to bugs. Nevertheless, the most critical bugs were fixed in
the meantime.

While there exist these privacy and security issues and
real world attacks may be possible for single cases, they
are not feasible for a large scale. Even on a small scale,
a large amount of effort is required. In fact, the CWA
provides a decentralized architecture which ensures that
no sensitive data leaves the smartphone. Information like

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

55 doi: 10.2313/NET-2021-05-1_11

the location or identity are in no means transmitted to
the server, instead, a design of locally generated and fre-
quently changing identifiers is used. For other approaches,
such as the partially-centralized ones, this mostly is not
the case. In their case, this could possibly lead to more
drastic worst-case privacy breaches than it is the case for
the decentralized approach.

Especially in regards to previous software projects
developed by the government, the CWA seems to be an
good example in terms of privacy and transparency.

To conclude, the privacy and security measures of the
CWA are good enough for attacks only to have a limited
impact on a large scale. Users with privacy concerns may
not know about the effort of the measures taken to ensure
this level of privacy and security.

References

[1] K. Becker and C. Feld, “Corona-Tracing: Bundesregierung denkt
bei App um,” Tagesschau, April 2020, https://www.tagesschau.de/
inland/coronavirus-app-107.html, [Online; accessed 10-December-
2020].

[2] Robert Koch-Institut, “Kennzahlen zur Corona Warn App,” De-
cember 2020, https://www.rki.de/DE/Content/InfAZ/N/Neuartiges
_Coronavirus/WarnApp/Archiv_Kennzahlen/Kennzahlen_0412202
0.pdf, [Online; accessed 10-December-2020].

[3] K. T. Horstmann, S. Buecker, J. Krasko, S. Kritzler, and S. Terwiel,
“Short report: Who does or does not use the “Corona-Warn-App”
and why?” European Journal of Public Health, 12 2020, ckaa239.
[Online]. Available: https://doi.org/10.1093/eurpub/ckaa239

[4] Apple/Google, “Exposure Notification Bluetooth® Specification,”
April 2020, https://covid19-static.cdn-apple.com/applications/covi
d19/current/static/contact-tracing/pdf/ExposureNotification-Blueto
othSpecificationv1.2.pdf, [Online; accessed 12-December-2020].

[5] Google, “Exposure Notifications Internals - ContactTracingFea-
ture.java,” August 2020, https://github.com/google/exposure-n
otifications-internals/blob/main/exposurenotification/src/main/jav
a/com/google/samples/exposurenotification/features/ContactTracin
gFeature.java#L367, [Online; accessed 07-January-2021].

[6] Apple/Google, “Exposure Notification Cryptography Specifica-
tion,” April 2020, https://covid19-static.cdn-apple.com/applica
tions/covid19/current/static/contact- tracing/pdf/ExposureNot
ification-CryptographySpecificationv1.2.pdf, [Online; accessed
12-December-2020].

[7] H. Krawczyk and P. Eronen, “Hmac-based extract-and-expand key
derivation function (hkdf),” Internet Requests for Comments, RFC
Editor, RFC 5869, May 2010, http://www.rfc-editor.org/rfc/rfc5869
.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc5869.txt

[8] Corona-Warn-App Team, “Software Design Verification Server,”
July 2020, https://github.com/corona-warn-app/cwa-verificatio
n-server/blob/master/docs/architecture-overview.md, [Online;
accessed 14-December-2020].

[9] ——, “Android App Releases,” December 2020, https://github.c
om/corona-warn-app/cwa-app-android/releases, [Online; accessed
24-December-2020].

[10] ——, “Risk Assessment,” December 2020, https://github.com/cor
ona-warn-app/cwa-documentation/blob/master/cwa-risk-assessme
nt.md, [Online; accessed 24-December-2020].

[11] ——, “Solution Architecture,” December 2020, https://github.com
/corona-warn-app/cwa-documentation/blob/master/solution_archi
tecture.md, [Online; accessed 24-December-2020].

[12] ——, “Epidemiological Motivation of the Transmission Risk
Level,” October 2020, https://raw.githubusercontent.com/coro
na-warn-app/cwa-documentation/master/transmission_risk.pdf,
[Online; accessed 24-December-2020].

[13] L. Baumgärtner, A. Dmitrienko, B. Freisleben, A. Gruler, J. Höchst,
J. Kühlberg, M. Mezini, R. Mitev, M. Miettinen, A. Muhamedagic,
T. D. Nguyen, A. Penning, D. F. Pustelnik, F. Roos, A.-R. Sadeghi,
M. Schwarz, and C. Uhl, “Mind the gap: Security & privacy risks
of contact tracing apps,” 2020, https://arxiv.org/abs/2006.05914.

[14] Y. Gvili, “Security analysis of the covid-19 contact tracing specifi-
cations by apple inc. and google inc.” Cryptology ePrint Archive,
Report 2020/428, 2020, https://eprint.iacr.org/2020/428.

[15] A. Wilkens, “Corona-Warn-App: SAP erläutert Problem mit der
Hintergrundaktualisierung,” heise online, July 2020, https://www.
heise.de/news/Corona-Warn-App-SAP-erlaeutert-Problem-mit
-der-Hintergrundaktualisierung-4851648.html, [Online; accessed
29-December-2020].

[16] L. Becker, “Corona-Warn-App öffnet sich nicht mehr auf iPhones:
Update soll helfen,” heise online, August 2020, https://www.he
ise.de/news/Corona-Warn-App-oeffnet- sich-nicht-mehr-auf
- iPhones-Update-soll-helfen-4869676.html, [Online; accessed
29-December-2020].

[17] J. Hoerdt, “Problems with iOS 13.7,” September 2020, https://
www.coronawarn.app/en/blog/2020-09-10-ios-13-bug, [Online;
accessed 29-December-2020].

[18] Corona-Warn-App Team, “F-Droid release and reproducible
builds,” December 2020, https://github.com/corona-warn-app/cwa
-app-android/issues/1483, [Online; accessed 29-December-2020].

[19] Smittestop, “About the app,” https://smittestop.dk/about-the-app/,
[Online; accessed 11-February-2021].

[20] Governo do Brasil, “Coronavírus-SUS: aplicativo alerta contatos
próximos de pacientes com Covid-19,” August 2020, https://www.
gov.br/casacivil/pt-br/assuntos/noticias/2020/agosto/coronavirus-s
us-aplicativo-alerta-contatos-proximos-de-pacientes-com-covid-
19, [Online; accessed 11-February-2021].

[21] Presidenza del Consiglio dei Ministri, “Immuni - Domande Fre-
quenti,” https://www.immuni.italia.it/faq.html, [Online; accessed
15-February-2021].

[22] RadarCOVID Team, “RadarCOVID iOS App Repository,” https:
//github.com/RadarCOVID/radar-covid- ios, [Online; accessed
15-February-2021].

[23] NHS, “I got an "Exposure Check Complete" notification from the
app. What does this mean?” https://faq.covid19.nhs.uk/article/K
A-01319, [Online; accessed 15-February-2021].

[24] The Stanford Daily, “CA Notify app offers COVID-19 exposure
alerts for Stanford community,” December 2020, https://www.stan
forddaily.com/2020/12/28/ca-notify-app-offers-covid-19-exposure
-alerts-for-stanford-community/, [Online; accessed 15-February-
2021].

[25] Canadian Digital Service, “COVID Alert Mobile App Repository,”
https://github.com/cds-snc/covid-alert-app, [Online; accessed 15-
February-2021].

[26] Bluetrace, “BlueTrace Protocol,” https://bluetrace.io/, [Online;
accessed 15-February-2021].

[27] Australian Government, “Technology behind COVIDSafe,” https:
//www.covidsafe.gov.au/technology.html, [Online; accessed 15-
February-2021].

[28] INRIA, “TousAntiCovid Repository,” https://gitlab.inria.fr/stopco
vid19/accueil, [Online; accessed 15-February-2021].

[29] J. Bay, J. Kek, A. Tan, C. Sheng Hau, L. Yongquan, J. Tan,
and T. Anh Quy, “BlueTrace: A privacy-preserving protocol for
community-driven contact tracing across borders,” 2020, https:
//bluetrace.io/static/bluetrace_whitepaper-938063656596c104
632def383eb33b3c.pdf, [Online; accessed 27-February-2021].

[30] Inria and Fraunhofer AISEC, “ROBERT: ROBust and privacy-
presERvingproximity Tracing Summary,” April 2020, https://raw.
githubusercontent.com/ROBERT-proximity-tracing/documents/m
aster/ROBERT-summary-EN.pdf, [Online; accessed 28-February-
2021].

[31] ——, “ROBERT: ROBust and privacy-presERvingproximity Trac-
ing,” May 2020, https://raw.githubusercontent.com/ROBERT-pro
ximity-tracing/documents/master/ROBERT-specification-EN-v1_1
.pdf, [accessed 28-February-2021].

[32] The Directorate of Health of Iceland and The Department of Civil
Protection and Emergency Management of Iceland, “Rakning C-
19,” 2020, https://www.covid.is/app/en, [Online; accessed 28-
February-2021].

[33] FTI Consulting Asia Pacific, “A Review of India’s Contact-tracing
App, Aarogya Setu ,” September 2020, https://www.lexology.com
/library/detail.aspx?g=f54419a1-4823-404c-92f3-c5e4f193b733,
[Online; accessed 28-February-2021].

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

56 doi: 10.2313/NET-2021-05-1_11

Precision Time Protocol - Security Requirements

Tizian Leonhardt, Filip Rezabek∗, Kilian Holzinger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: tizian.leonhardt@tum.de, rezabek@net.in.tum.de, holzinger@net.in.tum.de

Abstract—The ever-growing amount of timing-sensitive ap-
plications necessitates clock synchronization that can offer
guarantees of high precision. The Precision Time Protocol
offers sub-microsecond accuracies for clock-based networks.
However, there is sufficient evidence that attacks are a
substantial threat that can have devastating consequences. In
this paper, we examine security requirements in the context
of the Precision Time Protocol and evaluate how they may
be met by different security solutions, as well as one of its
open-source implementations, linuxptp.

Index Terms—time protocols, network security, ptp

1. Introduction

The increasing need for clock synchronization with
high precision requirements demands protocols that can
achieve accuracies in the micro and nanosecond ranges.
The Precision Time Protocol (PTP), standardized in the
IEEE1588 standard, can cater to these requirements. It
largely surpasses the Network Time Protocol (NTP); com-
pared to NTP delivering accuracies in the millisecond
range, PTP allows for sub-microsecond accuracies [1].
This is achieved with timestamps at the hardware level,
effectively bypassing any noise that would be introduced
by the network stack [2].

We now want to motivate why the topic of security
is worth discussing in the context of timing protocols.
An obvious result of an attack is the falsification of one
or more clocks in the network. The implications of this
seemingly harmless effect are not to be underestimated.
Smart grids, as an example, rely on accurate timestamps
and often have the obligation to deliver accuracies in the
microsecond range [3]. This enables them to effectively
deliver electricity, a crucial resource. Attacks on power
delivery can have devastating consequences [4]. Systems
that rely on high accuracies are also more sensitive to
attacks, as deviations have a higher influence, making PTP
an attractive goal for attackers. This paper aims to analyze
the requirements of a secure PTP environment, as well as
to evaluate different security solutions concerning these
demands.

In Section 2, we first lay the technical foundation
needed for understanding PTP, as well as its different ver-
sions. This also entails a discussion of the aforementioned
security requirements. Section 3 contains the analysis of
a handful of security solutions in the context of different
attack scenarios, the results of which are summarized in
a table. In Section 4, we compare the previous results
with linuxptp, an open-source implementation of PTP.

Section 5 concludes the paper and gives an outlook on
future work.

2. Background

In this section, we discuss the technical intricacies
surrounding PTP, as well as its different versions. We also
review the security requirements defined in RFC7384 [5].

2.1. Precision Time Protocol

The following findings are, unless otherwise noted,
based on [1]. As already stated, PTP allows the syn-
chronization of multiple clocks in a network with high
precision. The protocol is made up of a multitude of
clocks serving different purposes, laid out in a master-
slave hierarchy. Figure 1 seeks to give an overview of
this. Ordinary clocks (OC) have one external port and act

M

S

Ordinary Clock

Boundary Clock

M

S

Ordinary Clock

S

Ordinary Clock

M

Grandmaster

Figure 1: A master-slave clock diagram [1, 6.6.2.4]. ’M’
marks a port as master, ’S’ as slave. The grandmaster
clock is highlighted.

as either master or slave. A boundary clock (BC) on the
other hand features n ports, where n > 1. It is responsible
for synchronizing the network segment it governs and on
one port listens as a slave for the synchronization of its
own clock. The BC propagates this clock to the remaining
n− 1 ports associated with clocks in the segment. While
more variants of clocks exist, we only presented the ones
we deem necessary for a general understanding of a PTP
network.

In the case of Figure 1, the OC marked grandmaster
presents a special case. This clock is responsible for
propagating the time reference and therefore establishes
the idea of time in the system. This reference can be
fetched from a reliable external source, such as a GPS
signal. The grandmaster clock is dynamically chosen by
the Best Master Clock (BMC) algorithm, which picks
the best candidate according to various criteria, such as
the quality of the time source; the candidates have to

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

57 doi: 10.2313/NET-2021-05-1_12

announce their parameters in order to register for this
election.

The IEEE1588 standard also defines a way to deal with
cyclic paths in mesh topologies. To avoid synchronizing a
BC from multiple sources, superfluous paths are removed
by setting the corresponding slave port to passive; this
prevents any timing information from being exchanged.
Figure 2 illustrates this with an example where one path
is pruned, resulting in a tree structure. Note that only
the ports necessary for this example have a connection.
Besides electing the most suitable master clock to be the
grandmaster, the BMC algorithm is also responsible for
selecting the path to be excluded.

Boundary Clock

S

Boundary Clock

S

Boundary Clock

S

Boundary Clock

S

M M M

M P

M

M

M

Figure 2: An example of mesh topology pruning [1,
6.6.2.5]. The pruned path is dashed. ’P’ marks a port as
passive.

The second PTP component we consider is the mech-
anism responsible for synchronizing the clocks. Propa-
gating the grandmaster clock value itself is trivial, but
the delay between the master and its slaves also has to
be accounted for. This is determined with a sequence of
protocol messages that compute the delay. When a master
initiates the synchronization, the slave denotes the time
when the message arrived, which is followed up by the
master transmitting the time of his initial request. This
is subsequently done in the direction of the slave to his
master as well. With this information, the correct offset
is computed. It should be noted that this process relies
on the central assumption that the delay between master
and slave is equal in both directions, i.e., the paths are
symmetric [1, 6.2].

2.2. PTP Versions

Currently, three versions of the IEEE1588 standard
exist. The 2002 version is not of interest for this paper as it
is outdated and incompatible with the newest revision [6].
In contrast, the 2008 revision remains largely compatible
with the newest standard [6]. During the last twelve years,
many issues with this version have been identified [2], [7].
This raises the need for an improved standard, which is
now released as revision 2019 and aims to fix many of the
aforementioned issues. Besides that, there is also the IEEE
standard 802.1AS, an adoption of the IEEE1588 standard
to better accommodate to time-sensitive audio and video
traffic [8]. The remaining sections of the paper revolve
around the two latest IEEE1588 versions.

2.3. Security Requirements

Based on the previous insights, it is discernible that
we need to protect against attacks to warrant the security

of time-critical systems. This is a relevant topic to PTP,
not just as a result of its high accuracy demands, but also
because security was not a main concern during the design
of the first two revisions [9]. For the 2008 version, an
experimental annex (’Annex K’) to the standard exists,
providing “group source authentication, message integrity,
and replay attack protection for PTP messages.” [1, K1]
On top of its experimental nature, multiple sources state
the obsoleteness of this annex [2], [10], which is why we
pay little attention to it going forward.

In order to better understand the demands of a se-
cure PTP environment, RFC7384 [5] offers a guideline
by listing security requirements in various contexts. Our
evaluations going forward are largely based on this RFC.
We focus on the so-called MUST-types (see also [11]),
i.e., requirements that have to be implemented to create
a secure PTP environment. Unless otherwise stated, all
requirements in the following sections are of this type.
The relevant requirements for later parts of the paper
include [5]:

• Authentication and Authorization
• Integrity protection
• Spoofing prevention
• Replay protection
• Protection against delay and interception
• Availability

’Authentication and Authorization’ is concerned with
uniquely identifying clocks in the network and ensuring
that their respective behavior does not violate permission
boundaries. The ’Integrity protection’ requirement neces-
sitates techniques to verify that messages have not been
corrupted or tampered with. ’Availability’ describes the
protection against Denial of Service (DoS) attacks.

3. Threat Mitigation

We now highlight a selection of attacks and their
respective security solutions. We also evaluate them in
regard to the aforementioned requirements. In the context
of the 2008 revision of PTP, we focus on security solutions
that are novel to the standard. For the 2019 version, we
focus on the new security features that are integrated into
the standard; this features some general security consider-
ations instead of solely focusing on a attack scenario. This
section concludes with a table that presents the results in
a compact form.

3.1. IEEE1588-2008

We begin the analysis with the 2008 revision. Each at-
tack addressed is placed in a new subsection. Even though
this revision is already superseded, it is still of interest
for this paper due to the newness of the IEEE1588-2019
standard at the time of writing.

3.1.1. Delay Attacks. Reference [3] revolves around ex-
ploiting the assumption of symmetric paths discussed in
Section 2.1. The threat model is based on an attacker with
access to the internal network infrastructure. The attack is
executed by delaying the messages used for computing the
delay between two PTP nodes in one direction, effectively
creating an asymmetry that “introduces an error in the

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

58 doi: 10.2313/NET-2021-05-1_12

computed value of the clock offset.” [1, 6.6.3] This ulti-
mately leads to a skewed clock, violating the requirement
of ’Protection against delay and interception’ [5]. Figure 3
seeks to explain this asymmetry caused by a rogue node.

master slaverogue

}𝚫

t1

t1

Figure 3: A rogue node intercepts and delays a syn-
chronization message by ∆. Note that this only happens
unidirectional. In [3], ∆ is chosen randomly.

In order to combat this vulnerability, [3] proposes a so-
lution based on detection and mitigation. Detecting a delay
attack is made possible by installing a second, redundant
clock that is retrieving its timing information from the
same source as the grandmaster (e.g. a GPS signal). This
node also responds to delay computation requests and
calculates the new clock value; if the difference of this
value is not equal to the external time reference, an attack
is likely in progress. To reduce the impact of the attack,
a cumulative average based on previous offsets for each
node is used for calculating the clock value. The fact that
this does not completely annul the effects of the delayed
messages is discussed by [3], with the conclusion that this
method leaves enough time for authorities to respond to
the attack, as the rogue node has to be inside the network.
Whether or not this is a realistic assumption is not further
evaluated. With enough time, an attacker can still skew the
clocks, leaving the system open to attacks if the response
is not timely enough.

3.1.2. Denial of Service. Even though RFC7384 de-
fines the protection against DoS attacks as a SHOULD-
requirement (’Availability’) [5], the low amount of effort
needed for the DoS-attack demonstrated by [9] is suffi-
cient evidence for treating it as an important requirement
that should not be overlooked. The technique demon-
strated relies on forging spurious synchronization packets
that are sent to slaves at a rate of around 292 packets per
second. The forged packets contain correct identification
details (e.g. the clock ID) for the corresponding master
node, which can be obtained by sniffing the traffic; the
semantics of the synchronization itself are non-existent, as
they are not needed for the attack to succeed. After gath-
ering this, the packets can be sent without any knowledge
about the slaves through the fixated multicast address. The
setup for the attack is therefore comparatively simple,
and indeed, [9] reports delays of multiple hours in the
test environment by overburdening the nodes with the
forged traffic. Even though further tests in real-world PTP
networks would be necessary to assess the actual impact
of the attack, it still is a significant result.

Just as discussed in Section 3.1.1, [9] proposes so-
lutions based on mitigation, as well as detection. For
the former, multiple approaches are suggested. We only
discuss the introduction of a digital entity, as the other
methods are not further evaluated. This digital entity is

introduced for master nodes, opening up the possibility
of identifying themselves through cryptographic means.
Utilizing this, nodes are able to filter packets based on
whether or not they “originate from masters with a valid
identity.” [9] The desired effect is furthermore confirmed,
substantiating complete protection from the demonstrated
attack. We note that the specific implementation of the
digital entity is out of the scope of this paper, but it is not
guaranteed that other approaches would yield the same
efficacy.

3.1.3. Best Master Clock Spoofing. The Best Master
Clock algorithm [6], as stated in Section 2, chooses the
best clock out of a set of potential masters to act as
the grandmaster. This procedure, at its core, compares
software-defined quality parameters that clocks announce
and acts accordingly. The parameters include, but are not
limited to [6, 6.6.2.3]:

• priority1
• clockClass
• clockAccuracy

The value priority1 is an integer chosen by the ad-
ministrator to allow for own priority suggestions, whereas
clockClass categorizes clocks into further subcategories.
Especially interesting is clockAccuracy, which provides
an upper bound for the accuracy offered by the individ-
ual clocks. Accuracy bounds range from more than ten
seconds down to one picosecond [6], several orders of
magnitude smaller than the performance advertised by the
standards surrounding PTP. It is apparent that there is a
significant potential for abuse by spoofing values that no
clock in a real-world scenario would offer. The need for
protection against this kind of attack is described by the
’Spoofing Prevention’ requirement [5].

This attack is successfully demonstrated in [2]. Two
types of attackers are considered: an external attacker
that can only see the public multicast traffic, as well as
an internal attacker, which is also a node of the PTP
network. Both approaches make use of setting a selection
of the previously discussed quality parameters to the best
possible values. Announcing these parameters guarantees
a win in the election and therefore control over the time
propagation. Reference [2] suggests the use of symmetric
cryptography in order to mitigate the attack from an exter-
nal standpoint; this is also the elected method in Annex K,
which is applicable here [2], despite its flaws. In contrast,
the internal attacker, as part of the PTP network itself,
would know the secrets of a symmetric encryption. To
counter this, the employment of asymmetric cryptography
is suggested, which is confirmed as an effective measure.
Reference [9] also discusses this technique, but extends it
by closely mimicking the behavior of other master clocks
in the network; the details are gathered through sniffing.

3.2. IEEE1588-2019 - Annex P

As a replacement for the obsolete Annex K, the 2019
revision of PTP includes a new security model on which
this section is based, defined in Annex P [6]. This is
based on four prongs [6], each serving a different purpose
in terms of security. The standard even acknowledges
RCF7384, stating that the approach presented is tied to

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

59 doi: 10.2313/NET-2021-05-1_12

the requirements mentioned there. The prongs are made
up of the following concepts:

A Integrated Security Mechanism
B External Transport Security Mechanisms
C Architecture Mechanisms
D Monitoring and Management Mechanisms

While all of these prongs play an important role, we only
focus on prongs A and D in this paper, as they are the
closest to the protocol itself. Prong B is concerned with
more general networking techniques that could increase
PTP security (for example MACsec), whereas prong C
discusses topology enhancements, such as redundancies
for master clocks.

The integrated security mechanism of prong A em-
ploys symmetric cryptography by adding ’type-length-
value’ (TLV) attributes to the protocol messages. They
allow the direct extension of messages with attributes of
arbitrary length. For IEEE1588-2019, the so-called ’Au-
thentication TLV’ provides “source authentication, mes-
sage integrity, and replay attack protection [...].” [6, 16.14]
To do so, the TLV carries all the necessary data to enable
the secure processing of messages, such as the ’Integrity
Check Value’ (ICV) that is used to verify the integrity of a
message. The concept of authentication by adding a TLV
is also present in Annex K of the 2008 revision with the
same goals in mind. Prong A therefore already addresses
7 out of the 12 MUST-requirements found in RFC7384
in a cryptographically sound way. The feasibility of this
approach is asserted by [7], confirming that the accuracy
of PTP is not negatively impacted. Although prong A
addresses many of the requirements, PTP is still possibly
open to delay attacks [7] (besides potential others). This is
one part of the issues that prong D should address, though
the general responsibilities are much broader and can be
tailored to fit the needs of the underlying system. One
possible way to combat delay attacks has already been
presented in Section 3.1.1, which could be implemented
for the newest revision as well. A similar approach that
is based on prong D is discussed in [12].

3.3. Results

We conclude this section with Table 1, allowing for a
convenient point of reference. It contains an overview of
the requirements addressed by the references that were
cited in Section 3. Note that this table might include
additional details about contributions that were not dis-
cussed earlier. An x means addressed, a dash means not
addressed. References [1] and [6] refer to Annex K and
P, respectively.

4. Case Study: linuxptp

Having reviewed a multitude of security solutions, we
now shift our perspective towards the available security
features of linuxptp [13]. This is based on a compari-
son of the insights already garnered, as well as security
features not previously mentioned. We first discuss the
supported security TLV types, defined in tlv.h. Although
the AUTHENTICATION TLV introduced in Annex P [6] is
present, it is simply ignored during the processing of
protocol messages [13, tlv.c]. The same applies to the

TABLE 1: Comprehensive overview of requirements [5]
addressed by various contributions

Addressed Requirements

[3] [9] [2] [12] [1] [6]
Authentication and
Authorization - x x - x x

Integrity protection - - x - x x
Spoofing prevention - x x - x x
Replay protection - - x x x x
Protection against de-
lay and interception x - x x - x

Availability - x - x - x

authentication TLVs that are used in Annex K [1], leaving
authentication through those means impossible without
additions to the code. Further research reveals that no
other options for authentication currently exist.

A comparatively simple way of checking for attempts
at skewing clocks is to compare the value used for offset-
ting the clock to a maximum and minimum value; either
being exceeded could hint at a possible attack. linuxptp
reacts to unexpected jumps by issuing a warning and
returning from the corresponding function with an error
value [13, clockcheck.c]. While this does catch obvious
attacks and is mentioned as a mitigation mechanism for
prong D in Annex P [6], continuously introducing delays,
as demonstrated earlier in Section 3.1.1, would still go
unnoticed if ∆ is chosen within an appropriate range.

Another attractive attack vector are master clocks.
They play the central role of synchronizing their slaves.
It is therefore unwanted that rogue masters can influence
clocks. This is captured by the ’Spoofing Prevention’
requirement in RFC7384, which mentions authentication
as a possible solution [5]. Even though no authentication
mechanism currently exists in linuxptp, there still is
a check in place to mitigate this attack. Whenever a
slave processes synchronization messages (for example
in process_delay_resp [13, port.c]), the identity of the
source port is checked; should the sender of the synchro-
nization messages not align with the currently associated
master clock, the message is discarded [13, port.c]. How-
ever, as this is based on values that could be obtained
by sniffing the traffic (see also [13, ddt.h]), an attacker
could simply determine the correct identification for each
slave node. The feasibility of sniffing traffic for this type
of information is illustrated in [9].

In summary, there is a lot of work that could be done
regarding security features in linuxptp, especially in light
of the integration of the new security features found in
Annex P [6]; only the integration of the authentication
TLV and the surrounding techniques would address a great
number of critical requirements.

5. Conclusion

We have shown that PTP is an interesting target for
potential attackers that could have far-reaching conse-
quences. Only slight deviations could influence the accu-
racy needed for systems that are reliant on it. We then an-
alyzed security solutions with respect to the requirements
defined in RFC7384. The results, which are also show-
cased in Table 1, are promising; the solutions presented

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

60 doi: 10.2313/NET-2021-05-1_12

are theoretically able to mitigate many critical attacks.
The case study on linuxptp illustrated the need for better
security options, such as mechanisms for authentication.
This paper could serve as a solid foundation for security
considerations regarding the latest two PTP versions. It
also paves the way for further evaluations regarding the
state of security solutions. Future work could analyze
new experiences with annex P (IEEE1588-2019), as the
standard was comparatively novel at the time of writing.
There are also many opportunities concerning the design
of improved security features for linuxptp.

References

[1] IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems, IEEE Std., Jul.
2008.

[2] E. Itkin and A. Wool, “A security analysis and revised security
extension for the precision time protocol,” IEEE Transactions on
Dependable and Secure Computing, vol. 17, no. 1, pp. 22–34, Jan.
2020.

[3] B. Moussa, M. Debbabi, and C. Assi, “A detection and mitigation
model for PTP delay attack in a smart grid substation,” in 2015
IEEE International Conference on Smart Grid Communications
(SmartGridComm). IEEE, Nov. 2015.

[4] N. Kshetri and J. Voas, “Hacking power grids: A current problem,”
Computer, vol. 50, no. 12, pp. 91–95, Dec. 2017.

[5] T. Mizrahi, “Security requirements of time protocols in packet
switched networks,” Internet Requests for Comments, RFC Editor,
RFC 7384, Oct. 2014, last accessed on 2021/01/08. [Online].
Available: https://tools.ietf.org/html/rfc7384

[6] IEEE Standard for a Precision Clock Synchronization Protocol
for Networked Measurement and Control Systems, IEEE Std., Jun.
2020.

[7] E. Shereen, F. Bitard, G. Dan, T. Sel, and S. Fries, “Next steps in
security for time synchronization: Experiences from implementing
IEEE 1588 v2.1,” in 2019 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS). IEEE, Sep. 2019.

[8] M. D. J. Teener and G. M. Garner, “Overview and timing perfor-
mance of IEEE 802.1as,” in 2008 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication. IEEE, sep 2008.

[9] C. DeCusatis, R. M. Lynch, W. Kluge, J. Houston, P. A. Wojciak,
and S. Guendert, “Impact of cyberattacks on precision time pro-
tocol,” IEEE Transactions on Instrumentation and Measurement,
vol. 69, no. 5, pp. 2172–2181, May 2020.

[10] D. Maftei, R. Bartos, B. Noseworthy, and T. Carlin, “Implementing
proposed IEEE 1588 integrated security mechanism,” in 2018 IEEE
International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS). IEEE, Sep.
2018.

[11] S. Bradner, “Key words for use in rfcs to indicate requirement
levels,” Internet Requests for Comments, RFC Editor, BCP 14,
Mar. 1997, last accessed on 2021/01/08. [Online]. Available:
https://tools.ietf.org/html/rfc2119

[12] W. Alghamd and M. Schukat, “A detection model against precision
time protocol attacks,” in 2020 3rd International Conference on
Computer Applications & Information Security (ICCAIS). IEEE,
Mar. 2020.

[13] R. Cochran, “linuxptp,” version 3.1; last accessed on 2021/01/07.
[Online]. Available: https://sourceforge.net/projects/linuxptp/

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

61 doi: 10.2313/NET-2021-05-1_12

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

62

Network Coding — State of the Art

Florian Stamer, Jonas Andre∗, Stephan Guenther∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: florian.stamer@tum.de, andre@in.tum.de, guenther@tum.de

Abstract—Network Coding (NC) [1] confers to intermediate
nodes of a network the ability to combine packets via code.
Instead of the traditional store-and-forward mechanisms of
routing this new paradigm of store-code-forward mechanism
has the potential to increase throughput, robustness against
network loss, and security.

In this paper we give an overview of recent advancements
in network coding. We present an implementation of a
Random Linear Network Coding (RLNC) data plane in
P4 as introduced in [2]. Furthermore we focus on two
optimization approaches for RLNC, with one being a novel
Online Directed Acyclic Graph (DAG) algorithm [3] that
tries to improve the decoding process and the other being
an optimization to the encoding process of RLNC through
the use of processor specific SIMD vector extensions [4]. By
comparing the benefits of using the online DAG algorithm or
SIMD vector extensions, we conclude the latter to be more
practical since the online DAG algorithm is quite complex
and only provides slightly better performance compared to
already existing offline DAG algorithms.

Index Terms—Network Coding, Random Linear Network
Coding, Directed Acyclic Graph, AVX, SIMD

1. Introduction

In traditional networks packets are forwarded through
store-and-forward mechanisms, but some networks can
profit from combining packets to improve throughput.
Ahlswede et al. [1] proposed the idea of combining pack-
ets via code and creating a store-code-forward mechanism
called Network Coding (NC). This way inner nodes of
a network can freely combine packets and provide the
benefit of improved throughput [5], robustness against
network loss [6], and security [7].

In Figure 1 we give an example of a butterfly network
to illustrate how network coding can outperform tradi-
tional routing. The two source nodes (server A/B) transmit
information A and B, respectively. Both must be received
by the destination nodes (PC 1/2). With traditional routing
only information A or B can be sent between the two
switches at a time, thus both destination nodes do not
receive all information at the same time. With network
coding the information can be combined by a simple op-
eration (XOR) and reconstructed at the destination nodes,
in this case with antoher XOR operation.

The purpose of this paper is to give an overview of
the current state of network coding and advances that have
been made. We structure the paper as follows:

server A

server B

PC 1

PC 2

A
A

B
B

A+B
A+B
A+B

Figure 1: Butterfly Network

We first give a short summary of the network coding
basics. We proceed to take a look at a P4 implementation
of a Random Linear Network Coding (RLNC) data plane
in Section 2. In Section 3 the focus lies on optimizing
the RLNC decoding process through the usage of an
Online Directed Acyclic Graph (DAG) algorithm. Another
potential optimization to the performance of RLNC are
Single Instruction Multiple Data (SIMD) vector extensions
of certain processors. We take a deeper look at this idea
in Section 4. We provide a comparison of the online DAG
and SIMD vector extension approaches in Section 5 and
give our conclusion as well as thoughts on future work in
Section 6.

Basics of Network Coding. Network Coding introduces
the ability to combine packets via code. In the case
of Linear Network Coding (LNC) an encoded packet is
created by linear combinations of N packets. In general
the group of packets is referred to as a generation and the
number of packets N is called the generation size. These
linear combinations can be expressed as a matrix-vector
multiplication over a given finite extension field. A finite
field is a Galois field of the form GF (2n). For (random)
linear network coding the finite extension fields GF (21),
GF (22), GF (24) and GF (28) are of particular interest as
mentioned in [4]. For convenience of notation we use Fq

with q = 2n instead of GF (2n).
The following mathematical description of the encod-

ing process is based on [4]. A packet with M sym-
bols, each of size n, can be written as vector a =
[a1, a2, . . . , aM]T with the symbols ai ∈ Fq. This gives
for a generation of N packets the matrix

A = [a1 . . .aN] =

a11 . . . a1N

...
. . .

...
aM1 . . . aMN

 ∈ FM×N

q . (1)

An encoded packet b is generated by multiplication with

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

63 doi: 10.2313/NET-2021-05-1_13

an encoding vector c ∈ FN
q .

b = Ac =

N∑

i=1

ciai. (2)

The components of c are chosen from the finite extension
field Fq, either independently and identically distributed
for RLNC or otherwise by some deterministic algorithm.
In the given extension fields the addition operation is
always a bit-wise XOR operation while the multiplication
is a more complex modulo operation given a reduction
polynomial specific to the field.

The decoding process is more complex and uses algo-
rithms such as Gauss-Jordan elemination or LU decom-
position on the recieved encoded packets.

2. An RLNC Implementation in P4

A recent implementation of a random linear network
coding data plane in P4 has been proposed by Gonçalves
et al. in [2]. By using RLNC, the network needs to be able
to transmit additional information such as the encoding
vectors. Thus a new packet format is designed to cope
with this new way of packet processing. Since they use
RLNC for their approach, the coefficients are chosen
independently and uniformly at random from the finite
field Fq. This provides the bonus of decentralizing code
generation computation, but has the drawback that enough
linearly independent coded packets are needed to decode
the original message. We elaborate more on the packet
format, the P4 program, and different methods of finite
field multiplication in the following subsections.

2.1. Packet Format

The packet format of the generation-based RLNC
protocol uses an inner and an outer header. Both are
carried over Ethernet frames. The inner header contains
the symbols and the coding vectors, if present, and carries
information about the packet length as well as the type of
packet. The types of packets are either coded or uncoded.
The outer header holds information about meta parame-
ters, such as the generation id, generation, finite field and
symbol size.

2.2. RLNC P4 Program

The P4 PISA-like switch architecture buffers packets
of different generations, which are limited in number per
buffer. A generation stays buffered until enough packets
of this generation are collected and the coding process
starts. New linear combinations of the packets are trans-
mitted until receiving an acknowledgment. Afterwards the
buffer is flushed and starts accumulating packets of a new
generation. The outer header of the newly coded packets
stays the same while the inner header, i.e., the symbols
and coding vectors, are readjusted.

2.3. Finite Field Multiplication

For the finite field arithmetic module the authors have
featured two multiplication techniques. One is a compute-
intensive method, based on simple shift and add opera-
tions, that results in an iterative algorithm which operates

bit by bit. The other algorithm is based on pre-computed
lookup tables, containing values for the log and antilog
of the elements in the finite extension field Fq.

3. Parallelization of the Decoding Process

While random linear network coding improves
throughput, robustness against network loss, and security,
it suffers from decoding delay since enough linearly in-
dependent packets have to arrive at the node before the
decoding process can commence. This can be improved by
using a progressive RLNC decoder that can partially de-
code a generation before all packets arrive. Based on pro-
gressive RLNC decoding Wunderlich et al. [3] proposes
a novel strategy using directed acyclic graph scheduling.
By arranging matrix block operations in a DAG manner,
multiple operations are worked on in parallel by different
threads. The novelty of this approach lies in it being an
Online DAG algorithm, thus constructing the graph on the
fly, instead of pre-computing, and making optimal use of
progressive RLNC decoding. In the following subsections
we give an explanation about the difference between non-
progressive and progressive RLNC decoders, how the ma-
trix block operations are defined and how the online DAG
scheduling works, based on the information provided in
[3].

3.1. Non-Progressive vs Progressive RLNC De-
coder

There exist two categories of RLNC decoders, the non-
progressive and progressive decoders. The classic non-
progressive decoder expects all information to be present
before starting the decoding process. An example is the
generation-based RLNC approach as presented in [2],
which we elaborate on in Section 2. Such a decoder can
make use of matrix inversion algorithms other than Gauss-
Jordan elimination, such as LU inversion.

A progressive RLNC decoder on the other hand can
partially decode the data that has already been gathered
and does not need to wait for the arrival of all data.
While new encoded packets and coding vectors can be fed
into the decoder as they are received. When considering
conventional full-vector RLNC code, the decoded packets
can only be released after the last packet of the genera-
tion is decoded. An optimization for such a progressive
RLNC decoder is the use of low-delay codes, like sliding
window codes [8, 9] or systematic generation based codes
[10]. This way the decoder can already release any fully
decoded information to upper levels without receiving all
coded packets of a generation.

A hybrid scheme aims to combine the strengths of
both non-progressive and progressive RLNC decoders.
By performing sub-generation, more than one encoded
packet, but less than the normal generation size, based
progressive RLNC decoding [11].

3.2. Matrix Block Operations

A given matrix, of coding coefficients or encoded
packets, gets split into blocks of size b × b, where
b ≤ N ∧N/b ∈ N and 16 ≤ N ≤ 1024 is the generation

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

64 doi: 10.2313/NET-2021-05-1_13

size, e.g. a matrix of dimension 16× 16 is split into four
blocks of size 4×4. Each block gets separately processed
by the three phases of the Gauss Jordan elimination with
the use of helper matrices, hence the name Matrix Block
Operations.

Given the number of symbols per packet M , the
generation size N and the finite extension field Fq, let
C ∈ FN×N

q be the coding coefficient matrix and D ∈
FN×M
q be the data matrix. Both are initially padded with

zeros. C ′ ∈ F b×N
q and D′ ∈ F b×M

q describe the encoded
coding coefficient matrix and data matrix respectively, for
the sub-generation of size b. In the following the ‘row of a
block X’ is used to reference every block left and right of
X spanning over the same rows and respectively ‘column’
for the blocks above and below of X. For a more in depth
explanation and helpful figures we refer the reader to [3].

Forward Elimination. When a new sub-generation of
encoded packets arrives, i.e. C ′ and D′, the blocks in
C containing the pivots on the diagonal are used to
fill the corresponding blocks in C ′ with zeros. The row
operations for a block are recorded in a helper matrix and
applied to the other blocks in C ′ and to the blocks of
D′. Gaussian elimination is used on the first block in C ′

containing non zero values. The row operations are once
more recorded in a helper matrix and applied to the rest
of C ′ and D′.

Backward Substitution. Continuing in this phase C ′

contains blocks of zeros followed by a block with the
pivots on the diagonal. This block is used to fill the cor-
responding block X in C with zeros. The row operations
are once again recorded in a helper matrix and applied to
the row of X in C and D. This process is repeated for
every non zero block in the column of X.

Row Swapping. After the backward substitution con-
cludes, both C ′ and D′ are moved to the corresponding
row in C and D. If C is still missing pivots on the
diagonal the algorithm starts once more after collecting
enough new packets for a sub-generation. This is repeated
until C is an identity matrix.

3.3. Online DAG Algorithm

New block operations are added on the fly to the Di-
rected Acyclic Graph, instead of collecting all operations
and constructing the entire DAG a priori (offline). This
way the algorithm can take advantage of the properties
of a progressive RLNC decoder. The iterative RLNC pro-
gram is executed by a main thread. Block operations are
added to the online DAG as new task descriptions, each
summarizing the read and write dependencies regarding
the other task descriptions. The main thread can then
delegate tasks to a later time or another worker thread. The
worker threads check independently for task descriptions
in the DAG which have all of their dependencies resolved,
pick and execute them.

Task Descriptions. These are objects in the DAG that
hold information about the type of operation they rep-
resent, pointers to memory where matrices are stored,
parameters describing said matrices (e.g. size) and more.

Every object also has an access queue that keeps track of
the sub tasks, that need to be concluded beforehand.

4. Encoding Process Optimization Using
SIMD Vector Extensions

Contrary to optimizing the decoding process of (ran-
dom) linear network coding, Günther et al. [4] try to
improve the encoding process. In particular they imple-
ment and evaluate algorithms for finite field multiplication
using processor specific vector instructions. For this study
they implement two algorithms using the new family
of instruction sets AVX512 in their finite field library
libmoepgf [12]. AVX512 is a family of extensions and
the two subsets AVX512-F (foundation) and AVX512-BW
(byte and word) are the focus for the presented algorithms.
While the byte-wise operations of AVX512-BW set of
instructions are only supported by Intels Skylake-X and
Ice Lake processors as of the time [4] was written, the
AVX512-F extension will be supported by any processor
that supports AVX512.

As we present in Section 1, the encoding process (2)
expects the vectors ai to be multiplied by the constant
values ci and finally accumulated into b, this is commonly
know as multiply and add (madd). One such algorithm
using vector instructions has been proposed by Plank et
al. [13] and is called shuffle algorithm. This algorithm
requires a shuffle instruction to swap words in vector
registers. Hence the byte-wise operations of the AVX512-
BW instruction set are necessary. Another algorithm in-
troduced by Günther et al. in [12] is called imul. Contrary
to the shuffle algorithm, it does not need any special
instructions, but its complexity linearly depends on the
word size. For the implementation this algorithm relies
on the AVX512-F instructions set. Both algorithms are
implemented for the finite expansion fields F2, F4, F16

and F256.

Shuffle Algorithm . This algorithm expects the accu-
mulator array b, the source packet vector ai and the
coefficient ci to calculate b := b + ai · ci. The shuffle
algorithm needs certain constants, such as lookup tables
and bit masks, different for each finite field Fq. Those are
preloaded into the register variables. After handling the
trivial cases for ci ∈ {0, 1}, either no operation or a simple
XOR, additional temporary registers are preloaded and the
necessary madd operations using the shuffle instruction
are performed.

Imul Algorithm. Similar to the previous algorithm, the
imul algorithm expects the accumulator array b, the source
packet vector ai and coefficient ci. This algorithm also
preloads lookup tables and after caching the trivial cases,
sets up the temporary registers. One holds bit masks to
isolate the coefficients of ai and the other the powers of
the constant ci. These again are different depending on
the finite field Fq. Afterward polynomial multiplication is
performed inside a loop.

5. Evaluation and Comparison

In this Section we give a compact overview of the
results and evaluations of both optimization approaches

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

65 doi: 10.2313/NET-2021-05-1_13

and put the results into perspective. It is important to
mention, that the presented algorithms (online DAG vs
shuffle/imul) try to optimize different processes (decoding
vs encoding) and have been tested on different hardware.

Online DAG. The algorithm has been tested on both
the ODROID-XU-3 and ODROID-XU+E, each equipped
with four Cortex-A15 (big) cores and four Cortex-A7
(LITTLE) cores. The Cortex-A15 are clocked at 2.0GHz
in XU-3 and 1.6GHz in XU+E, while the Cortex-A7 are
clocked at 1.4GHz and 1.2GHz respectively [3].

While keeping the finite field (F256) the same through-
out the tests, a multitude of combinations for different
values of the other parameters such as generation size,
symbol size, number of threads and more are examined.
This way optimal parameterization for high throughput
and low delay are collected. For the benchmark the online
DAG algorithm is compared to its offline DAG counter
part and a state-of-the-art progressive coefficient matrix
duplication (CD) approach [14]. The online DAG ap-
proach performs in general similar to the conventional
offline method, while resulting in slightly better perfor-
mance for smaller generations sizes. This is expected to be
the result of the computational complexity, that increases
with growing generation size. This approach performs also
better then the CD approach for small symbol size, while
falling short when the symbol size is especially large.

AVX512 Instruction Set Extensions. The shuffle and
imul algorithms are tested on a multitude of processors,
but in this overview we only mention the ones that support
AVX512. These are the Intel Xeon Gold 6130 (clocked at
3.7GHz), Silver 4116 (clocked at 3.0GHz) and D-2166NT
(clocked at 3.0GHz) [4].

For the tests only a single core is used and the
generation size is kept at 16, while different finite fields
(F2, F4, F16, F256) get analyzed. The AVX512 implemen-
tations perform in general better then the AVX2 imple-
mentations, but when the packet size reaches the size of
the L2 cache the throughput drops regardless of exten-
sion used. Even for the commonly used finite field F256

an average of roughly 30Gbit/s of throughput can be
achieved.

Encoding vs Decoding Optimization. We compare and
evaluate both optimizations based on their performance
gain compared to existing methods, as well as their im-
plementation complexity. The online DAG algorithm is a
complex approach, needing support for matrix block oper-
ations and the DAG scheduling with custom task descrip-
tions. It provides only slight performance improvements
compared to the common offline DAG algorithms, with
throughput measured in MiB/s. Contrary the AVX512
based shuffle and imul algorithm already have library
implementations and perform better compared to the older
AVX2 extension, with throughput measured in Gbit/s.
The difference in the units of measurement are most
likely linked to the higher computational complexity of
the decoding process or the different hardware used. To
improve the performance of an RLNC implementation,
the optimization of the encoding process through the use
of vector extensions should be prioritized.

6. Conclusion and future work

We provide an overview of current advances in net-
work coding, with the focus on two approaches to improve
and optimize random linear network coding. One uses
a progressive RLNC online directed acyclic graph based
algorithm to parallelize the decoding process. The other
provides the shuffle and imul algorithm, which make use
of AVX512 vector extensions to speed up the finite field
multiplication of the encoding process. In Section 5 we
provide a summary of the evaluations of both approaches
and came to the conclusion, that the use of processor
specific vector extensions yield better results with less
complex algorithms. Thus the optimization of the encod-
ing process is more appealing.

Different implementations of network coding proto-
cols or other areas of network coding, such as network
security, can be of interest and be the focus of future
works.

References

[1] R. Ahlswede, N. Cai, S. . R. Li, and R. W. Yeung, “Network infor-
mation flow,” IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204–1216, 2000.

[2] D. Goncalves, S. Signorello, F. M. V. Ramos, and M. Medard,
“Random linear network coding on programmable switches,” in
2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS 2019, 2019.

[3] S. Wunderlich, F. H. P. Fitzek, and M. Reisslein, “Progressive
Multicore RLNC Decoding with Online DAG Scheduling,” IEEE
Access, vol. 7, pp. 161 184–161 200, 2019.

[4] S. M. Günther, N. Appel, and G. Carle, “Galois Field Arithmetics
for Linear Network Coding using AVX512 instruction set exten-
sions,” 2019.

[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 497–510, 2008.

[6] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for
reliable communication over packet networks,” Physical Commu-
nication, vol. 1, no. 1, pp. 3–20, 2008.

[7] L. Lima, M. Médard, and J. Barros, “Random linear network
coding: A free cipher?” in IEEE International Symposium on
Information Theory - Proceedings, 2007, pp. 546–550.

[8] S. Wunderlich, F. Gabriel, S. Pandi, F. H. P. Fitzek, and
M. Reisslein, “Caterpillar RLNC (CRLNC): A Practical Finite
Sliding Window RLNC Approach,” IEEE Access, vol. 5, pp.
20 183–20 197, 2017.

[9] F. Gabriel, S. Wunderlich, S. Pandi, F. H. P. Fitzek, and
M. Reisslein, “Caterpillar RLNC With Feedback (CRLNC-FB):
Reducing Delay in Selective Repeat ARQ Through Coding,” IEEE
Access, vol. 6, pp. 44 787–44 802, 2018.

[10] D. E. Lucani, M. Médard, and M. Stojanovic, “Systematic network
coding for time-division duplexing,” pp. 2403–2407, 2010.

[11] M. Kim, K. Park, and W. W. Ro, “Benefits of using parallelized
non-progressive network coding,” Journal of Network and Com-
puter Applications, vol. 36, no. 1, pp. 293–305, 2013.

[12] S. M. Günther, M. Riemensberger, and W. Utschick, “Efficient
GF arithmetic for linear network coding using hardware SIMD
extensions,” in 2014 International Symposium on Network Coding
(NetCod), 2014.

[13] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast galois
field arithmetic using intel simd extensions,” USENIX Conference
on File and Storage Technologies, vol. 11, 2013.

[14] H. Shin and J.-S. Park, “Optimizing random network coding for
multimedia content distribution over smartphones,” Multimedia
Tools and Applications, vol. 76, 10 2017.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

66 doi: 10.2313/NET-2021-05-1_13

White Rabbit: High Precision PTP

Edward Waterman, Max Helm∗, Johannes Zirngibl∗, Henning Stubbe∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: edward.waterman@tum.de, helm@net.in.tum.de, zirngibl@net.in.tum.de, stubbe@net.in.tum.de

Abstract—White Rabbit is a time synchronization technology
based on the Precision Time Protocol. It is used to syn-
chronize clocks between different entities on an Ethernet
network. Promising sub-nanosecond accuracy it is well suited
for time and latency sensitive distributed applications. This
paper gives an overview of the functionality, performance
and application domains of White Rabbit.
Index Terms—White Rabbit, Precise Time Protocol, Syn-
chronous Ethernet, Time Synchronization

1. Introduction
In 2008 development begun at CERN to replace its

old timing infrastructure. The result of this work was
White Rabbit (WR) – inspired by the habitually late rabbit
of Alice in Wonderland. A requirement for the new im-
plementation was compatibility with existing infrastruc-
ture. As a result an Ethernet-based application was cho-
sen, adding enhancements to the Precision Time Protocol
(PTP). PTP is a sub-microsecond accuracy time synchro-
nization protocol for network devices, using a master-slave
architecture [1]. As an improvement White Rabbit syn-
chronizes the master and slave’s clock frequencies using
Synchronous Ethernet (Sync-E). This reduces the problem
of determining latencies in the synchronization procedure
to one of detecting phase offsets, enabling sub-nanosecond
accuracy [2]. In 2020, after 12 years of development White
Rabbit was included into the latest PTP release as High-
Accuracy profile [3].

White Rabbit is used at CERN and other scientific
institutions, helping to synchronize telescope arrays and
distributed measurement units. It has also gained traction
in the financial sector where time synchronization is im-
portant to manage stock transactions.

In this paper we will introduce the building blocks of
White Rabbit: PTP (Section 2.1) and Sync-E (Section 2.2).
We will continue with an overview of the components and
topology of WR (Section 3.1), its time synchronization
procedure (Section 3.2), applications (Section 3.4) and
performance (Section 3.5). We provide further reading
material in Section 4 and end with a short summary in
Section 5.

2. Background
White Rabbit is mainly based on on two technologies:

The (1) Precision Time Protocol which, as the name
suggests, attends to precise time synchronization. And (2)
Synchronous Ethernet which enables synchronization on
the physical layer.

δ

δ

Figure 1: PTP synchronization sequence diagram [4]

2.1. Precision Time Protocol

The Precision Time Protocol is defined in its latest
version v2.1 by IEEE Standard 1588-2019 [4]. It is used
to synchronize clocks in networks with sub-microsecond
accuracy. PTP makes use of a master-slave architecture.
Its benefits are that the protocol supports heterogeneous
clocks, has low latency and minimal resource usage. The
protocol can be enhanced with profiles to meet use case
specific requirements. One of these profiles is White Rab-
bit [4, Annex M] which enables PTP to synchronize clocks
with sub-nanosecond precision.

The PTP procedure is shown in Figure 1. A PTP
master node sends a Sync message to one of its slave node,
signaling it to listen for a Follow_Up message. In the
Follow_Up the master includes its egress timestamp t1 of
the Sync message. To account for communication latency
δms the slave sends a Delay_Req request to the master
which returns a Delay_Resp, containing the timestamp
t4 of the message reception. With timestamps t1, t2, t3, t4
known by the slave, it can estimate the roundtrip time
δmm := δms + δsm, the sum of message delays from
master to slave and vice versa, see Equation (1). Under
the assumption that communication delay is symmetrical,
then one-way delay δ = δms = δsm is half of the roundtrip
time, which we can estimate using Equation (2).

δ̂mm = (t2 − t1) + (t4 − t3) (1)

δ̂ =
δ̂mm

2
(2)

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

67 doi: 10.2313/NET-2021-05-1_14

The slave updates its local time t with the estimated clock
offset ôms, see Equations (3) and (4).

ôms :=
(
t2 − t1 + δ̂

)
(3)

t := t− ôms (4)

PTP provides accuracy in the sub-microsecond range
[1]. Problems in accuracy stem from the assumption of
symmetrical delay, which when violated invalidates the
one-way delay computation seen Equation (2). Another
source for low synchronization accuracy are imprecise
timestamps, where errors propagate into the roundtrip
delay, given in Equation (1).

2.2. Synchronous Ethernet

Synchronous Ethernet is a standard defined by
the ITU-T (International Telecommunication Union -
Telecommunication Standardization Sector) [5]. Sync-E
enables clock frequency synchronization – also called
syntonization – between a master and a slave node. In
standard Ethernet, clock oscillators are free running, in-
troducing clock drift and diminishing the ability to syn-
chronize clocks accurately. Synchronous Ethernet operates
on the physical layer with little overhead.

Sync-E syntonization functions as following [5]: the
grandmaster node is connected to a precise reference
clock, similar to Figure 3. The reference clock input is
passed to a central timing card on the network interface
which calibrates and handles the input accordingly. With
the reference clock signal the master synchronizes its
physical layer line code frequencies. A slave can recover
the reference clock by extracting the frequency via a clock
data recovery unit from the line codes. This is possible
because the medium in Ethernet is never idle [2], thus
line codes are sent with a constant frequency.

3. White Rabbit

Building upon PTP and Synchronous Ethernet, a
White Rabbit network enables sub-nanosecond accuracy
time synchronization.

WR uses special hardware to provide its high accuracy.
Fortunately, it is an open hardware initiative, firmware and
hardware designs are open sourced and freely available
[6]. Several commercial implementations for WR switches
and nodes are available.

In the following sections we will focus on WR as
presented in its specification [7]. The specification focuses
on Gigabit Ethernet over fiber, thus we will too.

3.1. Topology

Like PTP and Sync-E, White Rabbit networks use a
master-slave architecture. The main component of White
Rabbit is the WR switch which functions as time synchro-
nization source and sink. A White Rabbit node is only a
synchronization sink [8].

One or more WR switches can be connected to a
reference clock or GPS, with one grandmaster and pos-
sibly several backup grandmasters [9]. WR nodes and
switches connected to a downlink port are slaves to the

Figure 2: Exemplary White Rabbit network topology [8]

switch. White Rabbit networks must have a tree topology
in order for time synchronization to function properly.
However, additional connections can be established to
ensure redundancy. This layout is exemplarily displayed
in Figure 2.

In general, White Rabbit functions transparently,
working alongside non-compatible hardware. During link
detection, a White Rabbit master determines if a node is
compatible by sending a ANNOUNCE message. If a node
responds with a SLAVE_PRESENT message, White Rabbit
synchronization is enabled.

3.2. Time Synchronization

The main source of errors in PTP are the inaccuracies
in time-stamping and delay measurement. Using syn-
tonization both time-stamping and delay measurement can
be reduced to a problem of phase detection. In Figure 3 a
connection between a master and a slave node is shown.
The master and slave clocks are running with the same
frequency. Additionally, the slave node adds an estimate
phases offset to its network clock to compensate for the
phase introduced between master and slave. This corrected
frequency is used to transmit data to the master and for
clock correction. From the loopback from master to slave
and back, the master can measure a roundtrip phase offset
phasemm [7, Sec. B.1].

White Rabbit’s initial time synchronization procedure
is as follows [7, Sec. B.1]:

1) Syntonization.
2) Calibration.
3) Roundtrip delay.
4) Phase measurement.
5) Fine delay.
6) Determine link asymmetry.
7) One-way delay computation.

Syntonization. Using Sync-E, clock frequencies of the
master and the slave are synchronized and locked [7,
Sec. 5.1].

Calibration. Constant delays, shown in Figure 3 as
∆{txm,txs,rxm,rxs}, are measured. Depending on require-
ments, different calibration techniques can be employed:

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

68 doi: 10.2313/NET-2021-05-1_14

Figure 3: WR link connection [7, Fig. 11]

First, factory calibration and measurements can be used
to compensate constant delays by physical latencies. Sec-
ondly, compensate active interference sources, e.g. tem-
perature with a model of the interference’s influence on
the delay. Lastly, ensure similar operation conditions and
setup between master and slave to minimize the delay
asymmetry between nodes [7, Sec. B.6.1].

Roundtrip delay. The slave obtains t1, t2, t3, t4, δ̂mm, δ̂
using standard PTP. To minimize timestamp errors due
to clock jitter, timestamps are obtained via specialized
hardware. This enables timestamp accuracy of one clock
cycle [7, Sec. B.5]. Additionally, rising and falling edges
of the timestamp trigger event are captured, for further
precision.

Phase measurement. The roundtrip phase offset from
master to slave and back is extracted on the master node
[7, Sec. B.1]. Shown as phasemm in Figure 3.

Fine delay. PTP roundtrip time δ̂mm is refined using the
established phase difference phasemm.

The timestamps t2 and t4 are further calibrated, due
to the fact that these incoming timestamps come from a
different frequency domain. Either the rising or falling
edge timestamp of the timestamp trigger event is used as
new timestamp basis. This rising or falling edge timestamp
is then adjusted using a simple algorithm to take phase
offset into account [7, Sec. B.5]. For t2 and respectively
t4, phases / phasemm is incorporated to obtain t2p /
t4p. Using these new precise timestamps t2p and t4p the
new roundtrip delay is computed with the standard PTP
roundtrip delay formula [7, Eq. (20)]:

δ̂mm := (t2p − t1) − (t4p − t3) (5)

Determine link asymmetry. White Rabbit loosens the
assumptions of standard PTP that δms = δsm. To trans-
mit and receive data different wavelengths, with different
refractive indexes, are used. This results in different prop-
agation delays between the master-slave connection and
the slave-master connection in the link medium. White
Rabbit uses a delay asymmetry coefficient α defined as
[7, Eq. (23)]:

α :=
δms

δsm
− 1 =

n1550
n1310

− 1 (6)

Here, n1550 and n1310 would be the refractive indexes
of the transmitting wavelength of 1550 nm and receiving
wavelength of 1310 nm over fiber. The delay asymmetry

coefficient can be expressed in relation to δmm and the
master and slave clock offset oms [7, Eqs. (8, 24, 25)]:

∆ := ∆txm + ∆txs + ∆rxm + ∆rxs (7)
δmm := ∆ + δms + δsm (8)

oms :=
δms − δsm

2
(9)

α =
δmm − ∆ + 2 ∗ oms

δmm − ∆ − 2 ∗ oms
(10)

One-way delay computation. With the dependency of
α on δmm, as seen in Equation (10), one-way delay and
offset can be computed [7, Eqs. (30,31)]:

δ̂ms :=
1 + α

2 + α
(δ̂mm − ∆) + ∆txm + ∆rxs (11)

ôms := t1 − t2p − δ̂ms (12)

Multiple offset correction terms are computed [7,
Eqs. (32–34)]:

corrUTC =

⌊
ôms

1 s

⌋
(13)

corrCNT =

⌊
ôms − corrUTC

Tref

⌋
(14)

corrPHASE = ôms − [ôms] (15)

corrUTC for the UTC time, corrCNT for the clock
counter, corrPHASE for the estimated offset phases, Tref
is the duration of one reference clock cycle (8 ns for
Gigabit Ethernet over fiber).

The corrective terms are used for the following:

1) The slave updates its UTC time counter to:
tUTC := tUTC + corrUTC .

2) Updates its reference clock counter:
tCLOCK := tCLOCK + corrCNT .

3) And its phase offset:
phases := phases + corrPHASE .

In subsequent synchronizations not all synchronization
steps have to be performed. It is sufficient to recalculate
phase differences.

3.3. PTP Extension

After twelve years of development [10] White Rabbit
was added as High-Accuracy profile to the latest PTP
version, IEEE Standard 1588-2019, in 2020 [4, Annex
M]. For the integration the WR protocol was split into
multiple features which are described separately in the
standard [11]:

• How layer 1 syntonization shall be used within
PTP [4, Annex L].

• Asymmetric delay estimation and correction for
PTP [4, Clause 16.7f].

• Hardware calibration and delay asymmetry coeffi-
cient estimation [4, Annex N].

• Master-Slave assignment [4, Clause 8.2.15.5.2,
9.2.2.2 & 17.6].

• High-Accuracy delay request-response default
PTP profile [4, Annex I.5].

• High-Accuracy profile for sub-nanosecond accu-
racy [4, Annex M].

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

69 doi: 10.2313/NET-2021-05-1_14

Overall the PTP High-Accuracy profile is a generalization
of White Rabbit offering more configuration options [4,
Annex L].

3.4. Applications

Initially developed to replace CERN’s old timing in-
frastructure, White Rabbit has gained traction in other
scientific projects. While CERN is still one of the main
users of White Rabbit [12], many other research organi-
zations adapted the technology. Some examples are [12]:
KM3NET, a deep-sea neutrino telescope, where undersea
detection units use White Rabbit. LHAASO, an air shower
detection unit, consisting of 10000 detectors which are
synchronized by 583 WR switches.

Another domain where White Rabbit has been gaining
traction is the financial sector. The Deutsche Börse Group
has been using White Rabbit to synchronize their trading
network [13], [14]. Stock trading is highly dependent on
accurate timing, as the trade execution order is based on
bid price and time [15]. Stock exchanges also started
offering timing as a service [14], [16], offering market
participants to gain access to high precision timestamps
for order executions. This enables insight into the strate-
gies of other market participants trading strategies.

3.5. Performance

The first real-world application of White Rabbit was
at the CERN Neutrino to Gran Sasso CNGS project [17],
where a first WR performance survey was conducted.
The experimental setup consisted of two timing devices,
one of which was connected via Gigabit Ethernet over
fiber to a WR grandmaster switch and the reference
clock. The other was connected to a second WR switch
and the reference clock. Total distance from the second
timing device and the grandmaster switch was 16 km.
Timestamps were taken for 31 d and the influence of
temperature fluctuations of approximately 3.5 °C where
taken into account. The average time difference between
the two nodes was 0.517 ns with a standard deviation of
0.119 ns. Temperature fluctuations introduced only a small
long-term timing drift.

Lipinski et al. [3] gives an overview of the perfor-
mance of multiple WR installations, accuracy ranges from
150 ps to 8 ns. White Rabbit performance depends on
the communication medium, achieving its highest perfor-
mance when used with Ethernet over fiber. Using Ethernet
over copper cable enables an accuracy of around 30 ns [9].
Experiments [18] to use WR over wireless bands showed
that sub-nanosecond accuracy could be preserved, with
slightly worse precision. Comparing this with standard
PTP, where studies [1], [19] show an accuracy ranging
from 1 ns to 800 ns, we see a performance improvement
of 1 to 2 orders of magnitude. However, these comparisons
should be taken with a grain of salt as experimental setup
differs between these studies.

4. Related work

White Rabbit is an open hardware collaboration from
CERN aiming to make hardware design, software and

specification freely available. More information on WR
can be found at the open hardware repository [6] where
presentations, papers, information about hardware vendors
and users, etc. are freely available.

A recent paper by Lipinski et al. [3] gives an overview
of possible performance enhancements, benchmarks and
users of the technology. Furthermore, he lists possible
advanced use cases, for example using White Rabbit for
low-latency event trigger distribution, fixed-latency data
transfer or radio-frequency transfer.

5. Conclusion

In an evermore distributed world where time distri-
bution becomes increasingly critical even at the network
edges, White Rabbit is a technology particularly suited
for this task. Based on existing technologies it enables
fast and low-latency time synchronization. Additionally,
the inclusion into the official PTP standard, promises an
increasingly large adoption. Its transparent functionality
enables easy integration into already existing networks.

References

[1] D. M. E. Ingram, P. Schaub, D. A. Campbell, and R. R. Taylor,
“Performance Analysis of PTP Components for IEC 61850 Process
Bus Applications,” IEEE Transactions on Instrumentation and
Measurement, vol. 62, no. 4, pp. 710–719, Apr. 2013.

[2] M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White
rabbit: A PTP application for robust sub-nanosecond synchroniza-
tion,” in Control and Communication 2011 IEEE International
Symposium on Precision Clock Synchronization for Measurement,
Sep. 2011, pp. 25–30.

[3] M. Lipiński, E. van der Bij, J. Serrano, T. Włostowski, G. Daniluk,
A. Wujek, M. Rizzi, and D. Lampridis, “White Rabbit Applications
and Enhancements,” in 2018 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS), Sep. 2018, pp. 1–7.

[4] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-
2019 (Revision ofIEEE Std 1588-2008), pp. 1–499, Jun. 2020.

[5] J. Ferrant, M. Gilson, S. Jobert, M. Mayer, M. Ouellette, L. Mon-
tini, S. Rodrigues, and S. Ruffini, “Synchronous ethernet: A method
to transport synchronization,” IEEE Communications Magazine,
vol. 46, no. 9, pp. 126–134, Sep. 2008.

[6] “White Rabbit: Homepage,” https://ohwr.org/project/white-
rabbit/wikis/home, accessed: 2020-12-27.

[7] E. G. Cota, M. Lipiński, T. Włostowski, E. van der Bij, and
J. Serrano, “White Rabbit Specification: Draft for Comments,” Jul.
2011.

[8] J. Serrano, M. Cattin, G. Daniluk, E. Gousiou, M. M. Lipinski,
and M. Lipiński, “The White Rabbit Project,” p. 7, 2013.

[9] T. Włostowski, “Precise time and frequency transfer in a White
Rabbit network,” Master Thesis, Warsaw University of Technology,
Warsaw, May 2011.

[10] “White Rabbit: Status,” https://ohwr.org/project/white-
rabbit/wikis/Status, accessed: 2020-12-27.

[11] “White Rabbit: PTP Integration,” https://ohwr.org/project/wr-
std/wikis/wrin1588, accessed: 2021-01-05.

[12] “White Rabbit: User Information,” https://ohwr.org/project/white-
rabbit/wikis/WRUsers, accessed: 2020-12-27.

[13] “Deutsche Börse Group - Ultra-accurate time distribution
for Deutsche Börse’s trading network,” https://deutsche-
boerse.com/dbg-en/products-services/insights-innovation-new-
technologies-en/Ultra-accurate-time-distribution-for-Deutsche-B-
rse-s-trading-network-246490, accessed: 2021-01-03.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

70 doi: 10.2313/NET-2021-05-1_14

[14] J. Lopez-Jimenez, J. L. Gutierrez-Rivas, E. Marin-Lopez,
M. Rodriguez-Alvarez, and J. Diaz, “Time as a Service Based on
White Rabbit for Finance Applications,” IEEE Communications
Magazine, vol. 58, no. 4, pp. 60–66, Apr. 2020.

[15] A. Lohr, “White Rabbit in Financial Markets,” CERN, Geneva,
Switzerland, Oct. 2018.

[16] “Data Shop Deutsche Börse AG - Your road to historical
data - Data Shop Historical Data,” https://datashop.deutsche-
boerse.com/high-precision-timestamps, accessed: 2020-12-27.

[17] M. Lipinski, T. Wlostowski, J. Serrano, P. Alvarez, J. D. G.
Cobas, A. Rubini, and P. Moreira, “Performance results of the
first White Rabbit installation for CNGS time transfer,” in 2012
IEEE International Symposium on Precision Clock Synchronization

for Measurement, Control and Communication Proceedings, Sep.
2012, pp. 1–6.

[18] J. E. Gilligan, E. M. Konitzer, E. Siman-Tov, J. W. Zobel, and E. J.
Adles, “White Rabbit Time and Frequency Transfer Over Wireless
Millimeter-Wave Carriers,” IEEE Transactions on Ultrasonics, Fer-
roelectrics, and Frequency Control, vol. 67, no. 9, pp. 1946–1952,
Sep. 2020.

[19] H. Liu, J. Liu, T. Bi, J. Li, W. Yang, and D. Zhang, “Performance
analysis of time synchronization precision of PTP in smart substa-
tions,” in 2015 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control, and Communication
(ISPCS), Oct. 2015, pp. 37–42.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

71 doi: 10.2313/NET-2021-05-1_14

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

72

Intra-vehicular Data Sources

Paul Wiessner, Filip Rezabek, Kilian Holzinger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: wiessner@in.tum.de, frezabek@net.in.tum.de, holzinger@net.in.tum.de

Abstract—This article gives an overview of currently used
sensors in autonomous driving. A focus is set to LiDAR type
of RADAR, a Livox Mid-40 sensor discussed as an example.
The conclusion considers an overview about parameters
which are essential to differ several LiDAR devices.

Index Terms—automotive, automotive data sources, au-
tonomous driving, camera, lidar, radar, ultra sonic, Livox,
Livox Mid-40

1. Introduction

Autonomous driving is an emerging topic which
gained more and more importance in the last years. It will
take time to achieve a level of full driving automation at
which a driver is not obligated to intervene or furthermore
not able to intervene. However, the goal is clear, and a
software is an important factor to reach it. But the software
can be as good as delivered data produced by sensors.
In the following article we will investigate main sensors
deployed in autonomous driving cars. Our focus will be
set especially on LiDAR and Livox Mid-40, as a detailed
example. There we will present its SDK, how the device
could be set up and types of data exchanged. Moreover,
several parameters listed in the article should be consid-
ered as essentials for proper application of a LiDAR in
autonomous driving cars.

2. Sensors in Autonomous Driving

In new cars sold nowadays there is a number of
sensors that are shored ex factory. Starting with simple
assistance systems as a ’parking assistant’ or ’blind spot
monitor’ and advancing to more complex systems as a
’lane keeping assistant’ until full autonomous driving -
every single assistant requires certain sensors. The most
commonly used sensors are cameras, RADAR, LiDAR
and ultra sonic, which will described one by one in the
following.

2.1. Camera

Cameras are one crucial sensor in the system of au-
tonomous driving. They are reliable and relatively cheap
to produce and to build in. With a help of Artificial
Intelligence surrounding objects can be identified and
classified, road signs can be recognised. However, cameras
face limitations such as dependency on weather, light
conditions and primarily of clean lenses.

Often described as ’eyes of the car’ cameras are the
most accurate way to create a visual representation of
the surrounding world [1]. For this representation multiple
cameras are needed in the front, rear, left and right sides
of a car. A sample calculation showing the amount of
data created by a camera system for autonomous driving
is presented in the following. The sample is based on
a system of an Israeli company which provides a fully
autonomous driving system based exclusively on 12 cam-
eras [2]. Assuming we take a fictional camera with similar
specifications as the ’MPC3’ from Bosch [3]. Therefor we
get the following specifications being important for data
generation:

• Resolution: 2.6 MP HDR (2048 x 1280 pixels)
• Frame rate: 45 frames per second

Assuming a video stream with these specifications, a
supposed dynamic range of 24 bit and approximately 20%
protocol overhead, we get the following calculation:

• Pixel of each image:
2048× 1280 = 2621440px

• Size per image:
2621440× 24bit ≈ 62.9Mbit

• Amount of data per second:
62.9Mbit× 30 ≈ 1.89Gbps

• Including 20% protocol overhead: 1.89Gbp ×
1.2 ≈ 2.26bps

Given the specifications above one camera consequently
requires approximately 2.26Gbps of bandwidth without
any compression. Transmission of this amount of data
is not convenient and thus compression should be used.
Applying a modern compression algorithm can reduce the
size by a ratio of up to 1:200 (using e.g. the lossy MPEG-
4).
Referring to our example of a autonomous driving system
with 12 cameras on board, without compression it would
result in 28Gb the system has to progress every second.

2.2. RADAR

RADAR is a technology of which security in au-
tonomous driving greatly benefits. RADAR is an acronym
for "RAdio Detection And Ranging". It is used in au-
tonomous cars among other systems for obstacle detec-
tion and Adaptive Cruise Control. It works by emitting
an electromagnetic wave. This wave is reflected when
meeting an obstacle and bounces back to the origin where
it is measured. Thereby, it is able to measure the distance
to an object, the approximate size and its roughly speed.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

73 doi: 10.2313/NET-2021-05-1_15

Compared to the other sensors it is inexpensive, but it is
less angularly accurate than LiDAR as it may lose the
sight of the target in curves and it may get confused
if multiple objects are placed very close to each other.
However, unlike LiDAR, RADAR is weather-independent,
it is able to detects objects behind other objects and to
determine relative traffic speed or the velocity of moving
objects [4].

2.3. LiDAR

LiDAR is another sensor being seen as an indispens-
able technology for autonomous driving in order to reach
Level 5 autonomy (see Figure 1). The typically used
term LiDAR is an abbreviation for "Light Detection And
Ranging". LiDAR is a technology similar to RADAR and
it is able to optically measure distances or speed. Instead
of radio waves, that are used for RADAR (see section
2.2), LiDAR uses laser for scanning the environment.
This works by sending out rapid laser signals sometimes
reaching up to 150.000 pulses per second. When the laser
beam meets an obstacle it is reflected and bounces back.
Nearby the laser source reside sensors measuring the time
that the laser need to go to the obstacle and bounce back.
With this information a quite precise three-dimensional
model of the surrounding environment is created.
With LiDAR it is possible to detect objects within a range
from just a few centimetres to up to several hundreds of
metres.
Assuming the Livox Mid-40 LiDAR sensor, which we get
to know better in Section 3, we can roughly calculate
the amount of data which is produced. The necessary
specifications are as follows:

• point rate: 100000pints
s

• point size: 72bit to 104bit

Further assuming a protocol overhead of about 20% we
get the following:

• Minimum and maximum amount of data per sec-
ond:
100000 1

s × 72bit = 7.2Mbits
100000 1

s × 104bit = 10.4Mbits
• Including 20% protocol overhead: 7.2Mbits ×

1.2 = 8.64Mbits 10.4Mbits×1.2 = 12.48Mbits

Overall the LiDAR generates an output of 8.64Mbits
to 12.48Mbits that is sent to the processing unit for
further processing. Compared to the output of a camera,
this amount is relatively small and compression is not
necessarily needed for transmission.

2.4. Ultra Sonic

Ultra sonic sensors are mostly used in autonomous
cars for systems like parking assistants and nearby obsta-
cle detection [5]. Ultra sonic sensor sends out ultrasonic
impulses that are reflected by nearby obstacles, the time
between sending and receiving the reflection is measured.
It is applicable within a range from a couple of centimetres
to a couple of metres. Although the scope of ultra sonic
sensor in autonomous driving is different from LiDAR
they are comparable by ability to see objects through other

Level 0: No Automation

Level 1: Driver Assistance
One single automation system
e.g. Adaptive Cruise Control

Level 2: Partial Driving Automation
Automation for steering and acceleration,

e.g. Tesla's Autopilot

Level 3: Conditional Driving Automation
environment detection allows to make

informed decisions

Level 4: High Driving Automation
no human action required in most situations,

the option to intervene still exists

Level 5: Full Driving Automation
No human interaction necessary and not

even possible

Figure 1: Levels of Autonomous Driving

objects, being weather and day time independent, being
relatively cheap and being equal in resolution. However,
disadvantages should be considered as small objects as
well as multiple fast moving objects cannot be detected
and the field of view is more limited.

2.5. Other Sensors

There is a number of other sensors available and
actively used in cars. Most of them are used for mo-
tor control to guarantee smooth operation. These sensors
include e.g. mass air flow sensor, engine speed sensor,
oxygen sensor etc.. Others are assigned to lower levels of
autonomous driving such as wheel speed sensors, steering
sensors, break sensors etc..

3. The Livox Mid-40

LiDAR is often said to be an indispensable technology
to reach higher levels of autonomous driving. Never-
theless, there are hot tempered discussions whether to
use LiDAR or rely other technologies such as RADAR
or cameras, others see enormous potential in LiDAR.
A broad range and high accuracy of depth perception,
suitability for 3D mapping and a number of fields with
huge and unrevealed potential.
However, in this section we go a bit more into details
and examine the ’Livox Mid-40’ - a LiDAR sensor from
Livox.

3.1. Requirements

To begin with the LiDAR, a couple of requirements
has to be complied with. Before all technical requirements,
it has to be mounted properly, meaning there has to be
enough space between the device and surrounding object
to guarantee proper functioning of the fan. For technical
requirements a few aspects have to be fulfilled. Firstly, the
system (e.g. in an autonomous car) has to provide electri-
cal tension between 10-16V direct current. Secondly, the

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

74 doi: 10.2313/NET-2021-05-1_15

LiDAR requires an average power of 10W and at peaks
in situations under extreme conditions (-20°C and during
startup) up to 40W. Regarding the processing unit, the
LiDAR provides a 100BASE-TX cable capable to transfer
100Mbit/s which has to be handled by the system.

3.2. Livox SDK

The Livox SDK is the Software Development Kit
for the Livox Mid-40 and all Livox products applied to
quickly connect to Livox sensors and receive data. It
consists of Livox SDK communication protocol, Livox
SDK core and Livox SDK API [6]. In the following, each
of these points will be detailed.

3.2.1. Livox SDK Core. The structure of the Livox SDK
Core can be described as in Figure 2 (based on [6]).

UDP

Livox Protocoll

Point Cloud Data Handler Command Handler

C/C++ APO

Figure 2: Livox SDK Core

As communication protocol between LiDAR sensor
and Livox SDK the User Datagram Protocol (UDP) is
applied. These serves being a basis for the Livox SDK
Communication Protocol (see Section 3.2.1 which enables
communication between a sensor and a user. The ’Point
Cloud Data Handler’ and ’Command Handler’ support
transmission of the correspondent data types defined in
the Livox SDK Communication Protocol. And on top of
that a C/C++ API provides convenient integration of C
style functions into custom C/C++ programs.

3.2.2. Livox SDK Communication Protocol. The Livox
SDK Communication Protocol enables communication
between user programs and the LiDAR sensor. With its
help, the user is able to set the LiDAR sensor in mainly
three states. These cover ’normal’, ’standby’ and ’power-
saving’. When mode switching is completed and the de-
vice is in LiDAR mode, there are additionally two states
’initializing’ and ’error’ (see Figure 3) [6].

Power-
saving

Normal Standby

Initializing

Error

Figure 3: Operating States

It basically consists of two different packet types
describing the different kinds of communication taking
place between a user and a sensor. The two types are ’Con-
trol Command Data’ and ’Sample Data’. The ’Control
Command Data’ type is used for the organizational part
covering configuration and query of LiDAR parameters
and status information [7]. The other part is covered
by the ’Sample Data’ type which transfers all kind of
data generated by the LiDAR, e.g. point cloud data, time
stamps or IMU data (not for Livox MID-40/70/100).
The model of communication is based on the master-slave
principle with the LiDAR as slave and the user who acts
as master receiving point cloud data.

3.2.3. Point Cloud Data. The main data for autonomous
driving produced by the LiDAR sensor is the measure-
ments of the surrounding environment. These dimensions,
defining measured points and their reflectivity in a three-
dimensional coordinate system, are then packed in the
point cloud data format and sent to the processing master.
The format can be seen in Figure 4 which is based on the
documentation [6].

data

version

timestamp

timestamp
_type

status_code
data
_type

slot_id LiDAR_id reserved
0 8 16 24 32

≈ ≈

Figure 4: Point Cloud Data Format

Next to information about configuration and organi-
sation, there is a timestamp type which should be high-
lighted at this point. The Livox SDK provides three
types of timestamps: PTP (defined in IEEE 1588v2.0),
GPS (requires PPS and UTC timestamp) and PPS (pulse
per second). In case there are multiple synchronization
sources available, the synchronization mode is selected in
the order PTP > GPS > PPS. Talking about bandwidth, it
is important to consider the data field or more precisely
the amount of data fitting into that field. It mainly depends
on the datatype transmitted in the packet. For the Livox
Mid-40, there are two types that are transmitted, the
Cartesian coordinate format with 104bit and the spherical
coordinate format with 72bit. As per header only 100 units
of either type is transmitted, the amount of data is at most
10.4Kbit. Including the header, the amount of data for the
whole packet would rise by 96bit. For the other fields and
more information about the point cloud data format refer
to the Livox SDK.

3.2.4. Livox SDK API. The Livox SDK API simply
provides a set of C functions that can be accessed in
C/C++ programs to get access to a Livox device.

3.3. Setup

All the physical hardware is located and provided
by the ’Chair of Network Architecture and Services’ in
Garching. In the setup, there are mainly two components
which can be seen in Figure 5.

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

75 doi: 10.2313/NET-2021-05-1_15

Figure 5: Setup

On the one side there is a host running an Ubuntu
20.04 image. Additionally, it has Livox Viewer 0.10.0 (64
bit) installed to process the data from the LiDAR.
The LiDAR from Livox of type ’Mid-40’ is on the
other side, connected to the host with a cable of type
’100base10-tx’.

3.4. Livox Viewer

The Livox Viewer is a visualization software for the
Livox LiDAR sensor. Its core function is to receive point
cloud data recorded by the LiDAR, processes them and
creates a three-dimensional visualization. Moreover, it is
able to show and manipulate configurations such as the
frame time and to store or display point cloud data. An
example how it looks like can be seen in Figure 6.
The current version of the Livox viewer requires either

Figure 6: Livox Viewer

Windows 7/8/10 (64 bit) or Ubuntu 16.04 (64 bit) and
a dedicated graphics card is recommended, especially if
multiple LiDAR sensors are in use.

4. LiDAR Comparison Parameters

As for all electronic devices, there are some parame-
ters identifying and differing them from each other. It is
also applied to LiDAR and to its broad field of application.
In the following we will have a look on LiDAR in context
of autonomous driving built-in in cars.

4.1. General LiDAR types

One can generally differ between two techniques that
LiDARs use to detect their environment. On one hand,

there is the spinning LiDAR able to spin 360° and thus
detects its whole surrounding environment. Often used
for developing prototypes, it is not common for series
production, unlike, on the other hand, solid-state LiDARS.
This name functions more like an umbrella term covering
multiple types of solid-state LiDARS.

4.2. Mounting

In order to set a device properly into a car, several
parameters have to be considered. Firstly, specific dimen-
sions to integrate it into a car’s body as well as temperature
requirements if autonomous driving functions should also
work in extreme situations. Secondly, there should be
followed several power requirements. Especially it has to
meet parameters from a on-board system like the required
voltage and the amount of power consumed by the LiDAR.
Moving to processing of the provided data, the required
bandwidth should be considered to function with the on-
board system.

4.3. Specification

Diving more deeply into the specifications there are a
couple of important points to examine.
In order to get most extensive and accurate data, there
are crucial parameters to note such as visual field (FOV),
detection range and maximum point rate. According ac-
curacy, range precision, angular accuracy or beam diver-
gence should also be considered. Using more parameters
is not necessarily better, however, all depends on use cases
and costs.

References

[1] Katie Burke, “How Does a Self-Driving Car See?”
2019. [Online]. Available: https://blogs.nvidia.com/blog/2019/04/
15/how-does-a-self-driving-car-see/

[2] A. J. Hawins, “Watch Mobileye’s self-driving car drive
through Jerusalem using only cameras,” 2020. [On-
line]. Available: https://www.theverge.com/2020/1/7/21055450/
mobileye-self-driving-car-watch-camera-only-intel-jerusalem

[3] “Multi Purpose Camera.” [Online]. Available: https://www.
bosch-mobility-solutions.com/media/global/products-and-services/
passenger-cars-and-light-commercial-vehicles/
driver-assistance-systems/multi-camera-system/
multi-purpose-camera/summary_multi-purpose-camera_en.pdf

[4] Ann Neal, “LiDAR vs. RADAR,” April 2018. [Online]. Available:
https://www.fierceelectronics.com/components/lidar-vs-radar

[5] B. S. Jahromi, “Ultrasonic Sensors in Self-Driving Cars,”
2019. [Online]. Available: https://medium.com/@BabakShah/
ultrasonic-sensors-in-self-driving-cars-d28b63be676f

[6] Livox, “Livox SDK.” [Online]. Available: https://github.com/
Livox-SDK/Livox-SDK

[7] Livox, “Livox SDK Communication Protokol.” [On-
line]. Available: https://github.com/Livox-SDK/Livox-SDK/wiki/
Livox-SDK-Communication-Protocol#2-control-command

Seminar IITM WS 20/21,
Network Architectures and Services, May 2021

76 doi: 10.2313/NET-2021-05-1_15

ISBN 978-3-937201-72-6

9 783937 201726

ISBN 978-3-937201-72-6
DOI 10.2313/NET-2021-05-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	Survey of Mesh Networking Messengers
	Collaborative SLAM over Mobile Networks
	Time Sensitive Networking - 802.1Qci
	Current Developments of IEEE 1588 (Precision Time Protocol)
	SmartNICs: Current Trends in Research and Industry
	Debugging QUIC and HTTP/3 with qlog and qvis
	Recent Developments in Service Function Chaining
	EDNS NSID Option
	xdpcap: XDP Packet Capture
	TLS Certificate Analysis
	Corona Warn-App – Design, Development and Privacy Considerations
	Precision Time Protocol - Security Requirements
	Network Coding — State of the Art
	White Rabbit: High Precision PTP
	Intra-vehicular Data Sources

