Surveying P4 Compiler Development After 2016

Yue Wu, Henning Stubbe*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: yueO2.wu@tum.de, stubbe@net.in.tum.de

Abstract—Software-defined networking (SDN) initially ap-
peared as a new network management technology aimed at
improving network performance. Since 2013, SDN associ-
ated with OpenFlow protocol (a communication protocol)
has become an industry standard. However, SDN-related
protocols need to specify their headers on the hardware
device they operate, which limits the flexibility for targeting
different devices and increases the complexity for future
protocol expansion. To address this problem, the P4 language
was introduced as a protocol-independent programming
language for describing the process of network data packets
and now has been widely used in many different devices,
such as Application-specific integrated circuit (ASIC), Field-
programmable gate array (FPGA), Network interface card
(NIC), CPU etc. through the corresponding compiler. The
purpose of this survey is to present the latest varieties of
P4 compilers, including their respective characteristics and
target equipment.

Index Terms—P4 compiler, PAFPGA, PALLVM, T4P4S, p4c-
XDP

1. Introduction

Nowadays, as the requirements for network perfor-
mance increase, more network equipment is needed which
leads to more and more cumbersome configuration of
traditional equipment [1]. To prevent this trend, next
generation networks are supposed to have the following
characteristics: programmable customization on demand,
centralized and unified management, dynamic traffic su-
pervision and automated deployment [2]. That is why the
concept of SDN was born. SDN is physically separated
into a control plane and a forwarding plane [3]. The for-
mer provides the intelligent logic in network equipment,
which controls how to manage data traffic, while the lat-
ter manages forwarding/manipulating/discarding network
data traffic. This improvement will lead to a more efficient
configuration process when modifying different network
behavior, since the control plane is the only part to change.

However, the fact that only the control plane can be
used for programming could still raise some problems.
Under normal circumstances, data packets in the forward-
ing process are solidified by the forwarding chip of the
device that usually does not support protocol expansion.
In addition, the cost of developing new forwarding chips
that support new protocols or extended protocol features
is also very expensive. The need to design such hardware
will lead to a series of problems, such as high update costs

Seminar IITM SS 20,
Network Architectures and Services, November 2020

107

CPU
T Packet out
Packet in Match Traffic
Parser Action Deparser
Rk Manager
Pipeline
Drop

Figure 1: Example P4 Abstract Architecture [4]

and long development time. Therefore, the new generation
of SDN solutions should enable the forwarding plane to
be programmable as well, so that the software can truly
define the network and network equipment. P4 provides
users with this function, which breaks the limitations of
the hardware devices on the forwarding plane and allows
programming to control the analysis and forwarding pro-
cess of data packets. Therefore, the network and devices
are "open" to users from top to bottom. Section 2 will
provide a short introduction to the P4 language. After that,
four different P4 compilers will be presented in Section 3.
Section 4 will give an overview of the future research
direction.

2. P4 language

Before delving into the various P4 compilers, the P4
language will be introduced first.

The Programming Protocol-Independent Packet Pro-
cessors (P4) is a Domain-Specific Language which was
first proposed by Bosshart et al. in [3]. As a design
goal, P4 is expected to achieve the following three design
goals: 1) Protocol independence: Network equipment is
not bound to any specific network protocol, and users
can use P4 language to describe any network data plane
protocol and packet processing behavior; 2) Target inde-
pendence: Users do not need to care about the details
of the underlying hardware to implement the program-
ming description of the data packet processing method;
3) Reconfigurability: Users can change the program of
packet parsing and processing at any time and configure
the switch after compilation to truly implement on-site
reconfiguration. In order to realize the above-mentioned
goals, P4 language compilers are required to adopt a
modular design, while the input and output of each module
adopt standard configuration files. An abstract architecture
of P4 is shown in Figure 1.

doi: 10.2313/NET-2020-11-1 20

3. P4 Compilers

When P4 first appeared, it was still mainly oriented to
the software control plane. In order to improve the perfor-
mance of the programmable forwarding plane, a platform
is needed which can help researchers to efficiently design
on hardware. So far, hardware devices like ASIC, FPGA,
NIC and CPU have been widely used, but been specified
in their own programming language [5]. Therefore, P4
compilers show their importance in this case because they
connect the P4 program with the underlying hardware that
were initially unrelated. A typical P4 compiler has two
main tasks: to generate the configuration at compile time
to implement the data plane, and to generate the applica-
tion programming interface (API) to populate tables [4].

3.1. General information and reference compiler

When the first version of P4 language P44 appeared,
p4c-behavioral [6] was the standard P4 compiler, which
used p4-hilr [7] to convert the source code to the P4
intermediate representation (IR). Typically IR is the data
structure internally used by a compiler to represent source
code. Later, P4,4 was found to have syntax and semantics
problems [8]. In order to address these issues, a new ver-
sion of P4 language P44 was released in 2016. Compared
with the old version, in P44, a large number of language
features have been transferred from the language to the
libraries including counters, checksum units, meters, etc.
As a result, the P4 language has been transformed into
a more compact core language with libraries. p4c [9] is
now the reference modular compiler for P4 that supports
both P414 and P44¢. It can provide the target independent
front-end compiler itself, and support different target spe-
cific backend compilers which will be introduced in the
following subsections.

3.2. Target specific compiler - PAFPGA

FPGA is an ideal target platform for P4 due to its high
degree of programmability [10]. However, the design of
a compiler that converts P4 language into FPGA HDL
code faces the following difficulties: 1) FPGA is mainly
programmed through a low-level, non-portable code base;
2) Due to the differences between programs and different
loading strategies adopted by different architectures, it is
difficult to generate efficient hardware code implementa-
tion based on P4 source code; 3) Although the P4 language
is not aware of the underlying hardware architecture, it re-
lies on a series of “extern” syntax to import external valid
functions, which makes code generation more compli-
cated. To solve these problems, H. Wang et al. introduced
the PAFPGA compiler in [4] which guarantees flexibility,
efficiency and portability between the P4 program and
FPGA device.

The proposed PAFPGA compiler reuses the reference
P4 compiler p4c as its front-end to reduce engineering
workload. As far as language version support is con-
cerned, it can be used under P4,4 and P45 syntax,
and can also be applied to different architecture con-
figurations, which will be mentioned in 3.2.2. Figure 2
outlines the workflow of PAFPGA. Among them, code
generation, PAFPGA runtime and optimization principles
implemented as IR to IR transformers are the core parts.

Seminar IITM SS 20,
Network Architectures and Services, November 2020

108

P4 Source

1
1
1
1
! 1
: Code :
! Generation
1 PAFPGA i
- v
| ! Downstr
' .
. Processing 1 QUi ;
! + B Lo Veril
: P4FPGA Runtime Pipeline Compiler erilog

Figure 2: PAFPGA structure [4]

3.2.1. Code generation. In PAFPGA, the physical pro-
cessing structure is generated as a block. These basic
blocks are implemented in PAFPGA by using parameter-
ized templates. During initialization, these templates are
hardware modules used to implement the parser, match-
action and deparser logic.

3.2.2. P4FPGA runtime. This is another important part
of PAFPGA because it provides an efficient, flexible and
scalable execution environment for the processing algo-
rithms in P4. It defines a method that allows the generated
code to access general-purpose functions through the un-
targeted abstraction, and provides an abstract architecture
that can be implemented uniformly on different hardware
platforms.

P4 programmers may write various network appli-
cations and put forward different requirements on the
runtime. Therefore PAFPGA provides two architectures to
support potential user scenarios: 1) Multi-port switching
which is suitable for networking forward components like
switches and routers and testing new network protocols; 2)
Bump-in-the-wire which is suitable for network functions
and network acceleration, but with only one input port and
one output port.

3.2.3. Optimization principles. Finally, in order to en-
sure the high efficiency of generating code through
P4FPGA, optimizations such as leveraging hardware par-
allelism in space and time to increase throughput, trans-
forming sequential semantics to parallel semantics to re-
duce latency, using a resource-efficient component to im-
plement match tables etc. are implemented in the context
of the NetFPGA SUME platform in [4].

In summary, the P4AFPGA includes a C++ based com-
piler along with a Bluespec-based [11] runtime system, as
well as a p4c frontend and a custom backend. All source
code is available at http://www.p4fpga.org.

3.3. Process optimizing compiler - PALLVM

In addition to the perspective of a hardware-target
backend compiler, there also exists compilers whose goals
are optimization algorithms. P4 language with a better
configuration framework can greatly shorten the packet
processing time, thereby maximizing the use of network
resources. PALLVM was introduced by Dangeti et al.

doi: 10.2313/NET-2020-11-1 20

P4C Phase

‘ Front-end Mid-end P4-IR
‘ JSON Back- Optimization LLVM-IR
end

LLVM Phase

Figure 3: Flow of PALLVM [12]

in [12] as a compiler based on the LLVM framework, and
is proved to have a better performance than the standard
p4c compiler.

LLVM is an abbreviation for Low Level Virtual Ma-
chine. It is a compiler framework designed to support
transparent, life-long program analysis and transformation
for arbitrary programs by providing high-level information
to compiler transformations at compile-time, link-time,
run-time and in the idle time between runs [13]. Just like
p4c, the LLVM framework provides great convenience
when plugging front-ends, back-ends and optimizations
to different targets and accessing various machines. This
advantage indicates that LLVM can be used in conjunction
with P4, which is how P4LLVM invented.

PALLVM only supports the P4,4 programs and reuses
the p4c frontend module to check the lexical, syntactic
and semantic correctness of the P4 code and mid-end
module for preprocessing. After that, the intermediate rep-
resentation of P4 (P4-IR) is converted to the intermediate
representation of LLVM (LLVM-IR), then the IR is passed
through various optimization sequences of LLVM and
finally translated into JSON format (an open standard file
format) to target a BMV2 switch (a software P4 switch).

In [12], the authors used the P4 code generated by
Whippersnapper, which is a P4 benchmark suit designed
to study the impact of the compiler on performance to
demonstrate that PALLLVM has exceeded p4c with respect
to percentage increase in average latency versus number
of operations in the action block and number of tables.

At present, p4c only has implementations of dead
state elimination, constant propagation, constant folding
and expression simplification [12]. In contrast, the LLVM
framework has been carefully designed and many other
optimizations have been added, including all p4c char-
acteristics. Therefore, the PALLVM compiler will help
target many common backends with minimal effort. Fig-
ure 3 describes the workflow on how to combine p4c and
PALLVM.

3.4. Multi-target compiler - T4P4S

Another aspect of designing a compiler is targeting
different hardware with a single compiler because it is
much more efficient than creating a separate compiler just
for a specific device. Voros et al. proposed a multi-target
compiler T4P4S (Translator for P4 Switches) in [14],
which achieves a good balance between complexity, porta-
bility and performance. In the design process of T4P4S,
the following principals are regarded as the main features
of T4P4S: 1) This compiler should be retargetable, which

Seminar IITM SS 20,
Network Architectures and Services, November 2020

109

Control Plane

P4 Independent API

Core complled from

l

NetHAL

l

HW?2 H HW3 J

| |
| |
| "]
[

HW1

Figure 4: Architecture of T4P4S workflow [14]

means it can be easily deployed on another hardware; 2)
The compiler should present a universal performance on
all supported hardware and software and behave compara-
bly to the native methods; 3) When processing forwarding
logic to suit the target, the compiler should generate high
level programs that do not require additional modifica-
tions. In order to meet these three objectives, the compiler
T4P4S is separated into two parts: a hardware-independent
core and a NetHAL (Networking hardware abstraction
layer) responsible for the hardware-related parts. T4P4S
currently only supports the original P4;, language; new
version extensions that support the new P44 language are
still under development. Figure 4 shows the workflow of
T4P4S.

3.5. Linux kernel targeted compiler - pdc-XDP

p4c-XDP is a Linux kernel target compiler, which can
convert P4 programs into C code, then compile it to eBPF
and then load it into the Linux kernel for packet filtering.

eBPF is an extended version of BPF and was reformed
based on BPF by Alexei Starovoitov in 2013 [15]. BPF,
known as Berkeley packet filter, was originally proposed
by Steven McCanne et al. in [16]. Its purpose is to provide
a method of filtering data packets and avoid useless copy-
ing of data packets from kernel space to user space. It
initially consisted of a simple byte-code that is injected
into the kernel from user space, where it is checked
with a checker to avoid kernel crashes or security issues
and attached to a socket and then runs on each received
packet. In contrast, eBPF added new features to improve
its performance, such as mapping and tail calls, and also
rewrote the just-in-time compiler (a compiler can convert
BPF instructions into native code). The new language is
closer to the native machine language than before. Also,
new attachment points will be created in the kernel.

An XDP program is a special case of the eBPF
program and is used to process network packets. It is
attached to the lowest level of the networking stack [17]
and it is also a new fast path. XDP is used in conjunction
with the Linux stack and the BPF is used to make packet
processing faster.

doi: 10.2313/NET-2020-11-1 20

EBPF

P4

Arbitrary
software

Complex actions Parser cycles

Learning

Packet filtering

Simple packet
forwarding

| Ternary tables

scope of provided back-end

Figure 5: overlap between eBPF and P4 [18]

Unbounded execution time
Access kernel

data structures

Complex packet

editing Complex data structures

Read/write tables
from dataplane

Multicast
uiticas Complex deep-packet

inspection

Tracing

Although eBPF and P4 are two programming lan-
guages with different expression capabilities, there is over-
lap between the domain of network packet processing.
Therefore, it is worth to develop a connection between
P4 and eBPF [18].

Figure 5 presents the overlap between eBPF and P4.

3.6. Other compilers

Apart from the P4 compilers mentioned above, there
are other P4 compilers with different functions, such as
p4c-graphs, which can be used to generate visual represen-
tations of a P4 program [9]; p4test is a source-to-source P4
translator which can be used for testing, learning compiler
internals and debugging [19]; p4c-ubfp can be used to
generate eBPF code running in user-space [9]. However,
due to insufficient research regarding these compilers, they
cannot be introduced in detail in this survey, but they may
become the motivation for future research.

4. Conclusion and future work

This survey outlines the latest research on P4 com-
pilers from four different directions: The first kind is a
hardware-specific compiler, which focuses on improving
the efficiency of converting P4 programs into certain
target hardware language like PAFPGA. The second type
attempts to use existing mature compiler frameworks to
optimize the performance of total packet processing and
leads to an upgraded version of the standard P4 compiler.
The third is to implement a multi-target compiler to reduce
the effort spent on configuring with different hardware
terminals like T4P4S. The last kind targets to the Linux
kernel based on the standard p4c compiler.

In addition to the research effort on the P4 compiler,
many researchers are also developing other extension fea-
tures of P4. As mentioned at the beginning, SDN and P4
and other similar technologies will dominate the future
network developing due to their flexibility and portability,
which is a determining point compared to the traditional
networking technology.

The P4 language and its compilers are still in the
development stage. It is foreseeable that there will be
more powerful P4 compilers in the future. These compilers
can make the connection between the P4 program and the
target hardware/software more robust and simple.

Seminar IITM SS 20,
Network Architectures and Services, November 2020

110

References

(1]

(2]

(3]

[4]

(5]

(6]

(71

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

H. Kim and N. Feamster, “Improving Network Management with
Software Defined Networking,” IEEE Communications Magazine,
vol. 51, no. 2, pp. 114-119, 2013.

A. Gelberger, N. Yemini, and R. Giladi, “Performance Analysis
of Software-Defined Networking (SDN),” in 2013 IEEE 21st In-
ternational Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems. 1EEE, 2013, pp. 389—
393.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al.,
“P4: Programming Protocol-Independent Packet Processors,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
87-95, 2014.

H. Wang, R. Soulé, H. T. Dang, K. S. Lee, V. Shrivastav, N. Foster,
and H. Weatherspoon, “P4FPGA: A Rapid Prototyping Framework
for P4,” in Proceedings of the Symposium on SDN Research, 2017,
pp. 122-135.

J. S. da Silva, T. Stimpfling, T. Luinaud, B. Fradj, and
B. Boughzala, “One for All, All for One: A Heterogeneous Data
Plane for Flexible P4 Processing,” in 2018 IEEE 26th International
Conference on Network Protocols (ICNP). 1EEE, 2018, pp. 440-
441.

p4language, “P4 compiler for the behavioral model,” https://github.
com/p4lang/p4c-behavioral.html, 2017, accessed June 11, 2020.

——, “p4-hlir,” https://github.com/p4lang/p4-hlir.html, 2017, ac-
cessed June 11, 2020.

T. P. L. Consortium, “P41¢ Language Specification,” https://p4.
org/p4-spec/docs/P4-16-v1.0.0-spec.html, 2017, accessed June 11,
2020.

p4language, “P416 reference compiler,” https://github.com/p4lang/
p4c.html, 2020, accessed June 11, 2020.

P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding Metamor-
phosis: Fast Programmable Match-Action Processing in Hardware
for SDN,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4, pp. 99-110, 2013.

R. S. Nikhil and K. R. Czeck, “BSV by Example,” CreateSpace,
Dec, 2010.

T. K. Dangeti, R. Upadrasta et al., “PALLVM: An LLVM Based
P4 Compiler,” in 2018 IEEE 26th International Conference on
Network Protocols (ICNP). 1EEE, 2018, pp. 424-429.

C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in International
Symposium on Code Generation and Optimization, 2004. CGO
2004. 1EEE, 2004, pp. 75-86.

P. Voros, D. Horpécsi, R. Kitlei, D. Leskd, M. Tejfel, and S. Laki,
“T4P4S: A Target-independent Compiler for Protocol-independent
Packet Processors,” in 2018 IEEE 19th International Conference on
High Performance Switching and Routing (HPSR). 1EEE, 2018,
pp. 1-8.

A. Starovoitov, “tracing filters with bpf,” https://lkml.org/lkml/
2013/12/2/1066/, 2013, accessed June 3, 2020.

S. McCanne and V. Jacobson, “The BSD Packet Filter: A New
Architecture for User-level Packet Capture.” in USENIX winter,
vol. 46, 1993.

W. Tu, F. Rufty, and M. Budiu, “Linux Network Programming with
P4, in Linux Plumbers’ Conference 2018, 2018.

p4language, “ebpf backend,” https://github.com/p4lang/p4c/tree/
master/backends/ebpf/, 2020, accessed June 3, 2020.

O. N. Foundation, “PTF-based data plane tests for ONOS fab-
ric.p4,” https://github.com/opennetworkinglab/fabric-p4test/, 2020,
accessed June 3, 2020.

doi: 10.2313/NET-2020-11-1 20

