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Abstract—
Atomic Broadcast and Consensus constitute important

problems in distributed systems and have occupied computer
scientists over the last four decades. As of late, they receive
a new wave of attention. This paper provides an overview of
the theoretical foundations of both topics. Furthermore, it
presents recent approaches to the quest for the improvement
of such protocols.

Index Terms—consensus, atomic broadcast, fault tolerance

1. Introduction

Today, one can find an abundance of distributed sys-
tems that rely on cooperating processes. For these pro-
cesses, agreeing on data as the basis of their computa-
tions is fundamental. For example, the engine control and
the flight surface control of an airplane’s flight control
system need to agree on whether to continue or abort a
landing [1].

Malfunctions of a computer system may lead to dis-
astrous outcomes; sticking to the airplane example, to a
plane crash. This calls for fault-tolerant computers and
computer networks. Fault-tolerance can, for example, be
ensured by the use of process replication, in particular
a synchronously replicated storage. This approach relies
heavily on atomic broadcasts [2].

In this paper, we will provide a short comparison
of recent concepts in these fields. In Section 2, we will
investigate the topic’s key terms and their relationship. We
will present some related work in Section 3. Then, we
will examine recent approaches in protocol development
in Section 4. We will follow this with a discussion about
if and how we can compare these protocols in Section 5.

2. Background

There exists an ample amount of literature about
atomic broadcast and consensus [3]. However, there is a
large divergence in the underlying definitions. Thus, we
will provide the definitions of some essential terms in
Section 2.1. Subsequently, we will give a short overview
of theoretical results regarding the solvability of such
problems in Section 2.2. Eventually, we will examine how
the different concepts can be reduced to each other in
Section 2.3.

2.1. Terms

Atomic Broadcast. The terms Atomic Broadcast and Total
Order Broadcast are used interchangeably [3]. Informally,

it requires all correct processes to "deliver the same mes-
sages in the same order" [4]. Formally, there are two
major problem definitions. Following Cristian et al., an
atomic broadcast protocol must fulfill the three properties
Atomicity, Order and Termination [5]. However, all three
properties depend on physical times, namely the points in
time when each processor delivers an update.

Nowadays, definitions omitting such references are
preferred [2]. Défago et al. emphasize the total order and
identify the following four properties [3]:

• Validity: if a correct process broadcasts a message
m, then it eventually delivers m.

• Uniform Agreement: if a process delivers m, all
correct processes eventually deliver m.

• Uniform Integrity: for any message m, every
process delivers m at most once, and only if m
was previously broadcast by its sender.

• Uniform Total Order: if two processes p and
q deliver messages m and n, then p delivers m
before n if, and only if, q delivers m before n.

Nevertheless, they also point out that the agreement
and total order properties are not necessarily specified
uniformly and may also just apply to correct processes.

Consensus. The problem of Consensus is a problem of
agreement between multiple processes on some value
that one or more of those processes have proposed. The
requirements for a consensus algorithm are summarized
by Coulouris et al. [6]:

• Agreement: the decision value of all correct pro-
cesses is the same.

• Integrity: if all correct processes proposed the
same value, any correct process that has decided
has chosen that value.

• Termination: Eventually, each correct process de-
cides.

Integrity is also known as validity and sometimes
defined differently; for instance, that the decision value
initially must have been proposed by one of the pro-
cesses [6].

Lamport et al. propose two variants of the consen-
sus problem. In interactive consistency, each process
computes a vector of values with an element for each
process [7]. They require every correct process to compute
the same vector, and every vector element corresponding
to a correct process is that process’s private value. The
Byzantine generals problem involves one distinguished
process that supplies a value the others are to agree
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upon [6], as is informally, but vividly illustrated by a
commanding army general that sends messages to his
lieutenants [8].

Permission. In the classical approach to consensus pro-
tocols, the communicating participants are already known
beforehand. Such protocols are known as permissioned,
in contrast to permissionless protocols, where participants
can join or leave freely and neither their exact number nor
their identity is known [9].

Failures. In the previous definitions, we already intro-
duced the notion of a correct process. A correct process
is any process that does not sustain process failures. These
can be divided into four classes [3]:

• Crash failure: a process stops performing any
activity.

• Omission failure: a process omits performing
some actions, e.g. sending a message.

• Timing failure: a process violates timing assump-
tions of the system model1.

• Byzantine failure: a process displays arbitrary or
even malicious behavior.

These failure classes are nested in the above order,
i.e. CF ⊂ OF ⊂ TF ⊂ BF [5]. Indeed, most of the
literature focuses only on crash and Byzantine failures.

2.2. Solvability

Consensus and atomic broadcast are easily solvable if
the participating processes cannot fail [6]. Otherwise, the
possibility of reaching consensus between processes is in
question. We will shortly summarize the most influential
results on this issue.

Fischer et al. showed that in an asynchronous sys-
tem, every consensus algorithm has the possibility of
nontermination, given the crash failure of only a single
process [10]2. Dolev et al. identified synchrony conditions
and examined how they affect the number of faults that
can be tolerated [11]. Dwork et al. introduced the con-
cept of partial synchrony and determine the solvability of
consensus for multiple partially synchronous models [12].
To bypass the problem altogether, Chandra and Toueg
introduced unreliable failure detectors that can identify
faulty processes and can be used to solve consensus, as
long as the faulty processes are in the minority [4].

For any algorithm exist lower bounds on some prop-
erties. For example, if at most f processes sustain a crash
failure, every algorithm reaching an agreement requires
at least f + 1 rounds of information exchange [11]. In a
system with n processes, of which f are faulty, consensus
is solvable if and only if n ≥ 3f + 1 (with Byzantine
faults) and if and only if n ≥ 2f +1 (with non-Byzantine
faults) [1], [13].

For a vivid description of the Byzantine case, we refer
the avid reader to [8]. The basic intuition is that as long

1. Naturally, timing failures can only occur in synchronous systems,
as a system is considered to be asynchronous if we make no timing
assumptions at all [4].

2. Due to the authors’ initials, this result is informally known as FLP
impossibility. Note, that it does not mean reaching consensus in such a
system is not possible at all, there is just no deterministic solution.

as n ≤ 3f holds, a node may be able to detect faulty
behavior, but is not able to distinguish which node caused
the faulty behavior and which node is a "victim" as well.

2.3. Problem Reduction

It has been shown that the previous concepts can be
reduced to each other in many cases. We can see in [6]
that a solution for any of the three variants of the consen-
sus problem from Section 2.1, i.e. Consensus, Interactive
Consistency and Byzantine Generals, can easily be used
to construct a solution to one of the two other variants.

Chandra and Toueg proved consensus and atomic
broadcast to be equivalent problems in asynchronous sys-
tems with crash failures. They also claim equivalence
under arbitrary, i.e. Byzantine failures, but omit any
proof [4]. Indeed, the relation between the two problems
seems to be more complicated.

The first comprehensive study on this topic seems to
be by Milosevic et al. They show that the equivalence of
consensus and atomic broadcast does not hold in general,
but the definition of validity determines whether they are
equivalent, or one is harder than the other [14].

3. Related Work

Many theoretical results on consensus and related
issues have been summarized by Fischer, for example
in [1], [15]. The emergence of cryptocurrencies in the
last decade, most notably Bitcoin, has attracted inter-
est and progress in the development of the underlying
consensus protocols. A survey of blockchain consensus
protocols can, for example, be found by Xiao et al., who
identify their core concepts and conduct a performance
analysis [9].

Due to the scope of the topic, surveys on atomic
broadcast protocols mostly concentrate on particular as-
pects. For example, Cason et al. characterize the latency
variability of different atomic broadcast protocols [16].
The most extensive study so far seems to be one by
Défago et al. that surveys - and classifies - around 60
algorithms [3]. Their classification is accompanied by a
performance analysis concerning the message ordering
strategies [17]. However, we did not find more recent
studies that are nearly as extensive.

4. Available Protocols

We observe that many recently proposed protocols aim
to improve particular aspects of already existing protocols.
Consequently, we will investigate the issues that standard
protocols suffer from, and present solutions that have been
proposed recently.

In this survey, we will only cover permissioned proto-
cols. Furthermore, all of these protocols assume a partially
synchronous system [12]. We will examine crash-fault
tolerant protocols (CFT) in Section 4.1 and those that
tolerate Byzantine faults (BFT) in Section 4.2. We will
present a new concept of fault tolerance in Section 4.3.
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4.1. Crash-Fault Tolerant Protocols

Paxos. The basis for most implementations of state ma-
chine replication until today is Paxos, first published in
1998 by Lamport [18]. Despite its prevalence, there are
some substantial drawbacks to Paxos. To reach an agree-
ment, more than half of the processes need to be running
and communicating synchronously [18]. It is prone to fail-
ures that are common in some systems [19]. Furthermore,
it depends on one process that acts as a leader. While
Paxos is able to recover from a crash of this primary, this
process is quite slow [19].

Raft. Another frequent critique of Paxos is that it is
notoriously difficult to understand and not a good basis
for practical systems. Therefore, Ongaro and Ousterhout
developed Raft as an alternative, making use of problem
decomposition and state space reduction [20]. Its new
features include the concept of a strong leader that is
authoritative for the distributed log entries. The leader
election is performed through a heartbeat mechanism.
That means, the current leader periodically sends heartbeat
messages to its followers; if a follower does not receive
such messages over a period of time, it begins an election
for a new leader. To resolve or even prevent split votes
in leader elections, Raft uses randomized timeouts. In
contrast to Paxos, the leader election mechanism is a part
of the consensus protocol itself [20].

However, while Raft’s safety does not depend on
timing assumptions, its availability does3. In particular,
broadcast time < leader-election timeout < mean time
between failures must hold. Indeed, Howard verifies Raft’s
efficiency in a well-understood network environment,
where the parameters can be set accordingly [21]. She also
states this is not the case in an internet-scale environment
yet, but proposes modifications to that effect.

4.2. Byzantine-Fault Tolerant Protocols

Protocols that can tolerate Byzantine failures as well
are widely considered to be badly scalable. Not only do
they require more nodes than their CFT counterparts4,
node failures are also often assumed to be indepen-
dent [22]. Yet, in order to achieve this, each node has
to run with different operating systems and so forth. BFT
protocols usually have higher time and message complex-
ities as well. Nevertheless, research and development in
such protocols have surged with the interest in permis-
sioned blockchains [23].

Practical Byzantine Fault Tolerance (PBFT) by Cas-
tro and Liskov is the first practical implementation of
a BFT consensus protocol [22]. The literature disagrees
on whether PBFT is just inspired by Paxos or is its
Byzantine version [9], [23]. Anyway, it is still "regarded
as the ’baseline’ for practical BFT implementations" [24].
However, Amir et al. showed the vulnerability of PBFT -
and other leader-based protocols - to performance attacks
by a small number of Byzantine nodes that can seriously
impair the system’s performance [25].

3. Otherwise, it would contradict the FLP impossibility result [10].
4. Namely at least 3f + 1, as we have seen in Section 2.2

Scalability. Thai et al. proposed HiBFT, an extension of
PBFT, that is supposed to be scalable up to hundreds
of nodes [26]. Under the assumption that the system is
organized in a hierarchical structure, multiple nodes are
composed into logical groups. Then, not all nodes commu-
nicate with each other, but only the group leaders. Hence,
HiBFT reduces the number of computationally expensive
signature verifications and message complexity. Indeed,
first results showed better performance in throughput and
latency of HiBFT compared to PBFT, despite a sextupled
number of nodes [26].

Performance. Zyzzyva, proposed by Kotla et al. [27],
aims at reducing the replication overhead by omitting
one communication phase by optimistic speculation. It
executes client requests immediately, without running an
agreement protocol first. This boosts the protocol’s per-
formance and reduces its message complexity - compared
to PBFT - in gracious executions. Indeed, it is considered
the "state of the art" concerning performance. However,
Zyzzyva relies on the clients to resolve the cases where
something went wrong; a client needs to detect whether
it has received the same reply from all replicas [27]. Fur-
thermore, safety violations of the protocol have recently
been discovered [28].

Simplified View Change. Yin et al. presented Hot-
Stuff [28], which aims to achieve optimistic responsive-
ness, i.e. the designated leader needs to wait only for n−f
responses after global stabilization time (GST) [12] is
reached. Hence, the protocol is designed to reach consen-
sus fast, i.e. at the pace of the actual network delay. More
importantly, it reduces the message complexity during
view changes to linearity in the number of nodes even in
the presence of leader failures. To achieve this, HotStuff
adds a phase to the view change process and merges it
into the regular protocol. This leads to a slightly higher
latency, but also a higher throughput compared to other
BFT protocols [28]. The modified version Chained Hot-
Stuff is essentially a pipelined version, where a quorum
certificate can serve in different phases simultaneously.
This version serves also as the basis of the LibraBFT
consensus protocol, whose authors cite HotStuff’s reduced
communication costs as a main reason for using it [29].

Robustness. Clement et al. discovered that while "re-
cently developed BFT state machine replication protocols
are quite fast, they don’t tolerate Byzantine faults very
well" [30]. They state, that even single server or client
failures can render such systems practically useless. Thus,
they proposed Aardvark, a protocol specifically designed
to be robust, i.e. that provides acceptable and predictable
performance under all circumstances, including the oc-
currence of failures. To contain the effect of a Byzantine
primary process, the system monitors its performance and
changes the view if it is performing slowly. They found
that Aardvark’s performance is within 40% of the best per-
formance of other state-of-the-art protocols on the same
hardware during gracious executions, while it outperforms
the same protocols by far under various attacks [30].

Leaderless BFT. Instead of improving BFT protocols by
improving the leader-change mechanisms, another recent
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approach is the development of completely leaderless pro-
tocols. AllConcur, proposed by Poke et al., is a leaderless
atomic broadcast protocol where the nodes "exchange
messages concurrently through an overlay network, de-
scribed by a digraph G" [31]. The algorithm makes use
of a failure detector and an early termination mechanism.
However, the algorithm’s liveliness property only holds
if the number of failures is bounded by the vertex con-
nectivity of G and if the failure detector is complete and
accurate. The authors claim that AllConcur’s throughput
beats that of a Paxos implementation by orders of magni-
tude; unfortunately, their comparison is not comprehensive
and seems to cover only one specific case [31].

Crain et al. proposed DBFT that replaces a leader by a
weak coordinator that does not impose its value on its fel-
low processes [32]. Thus, non-faulty processes can decide
on a value without its help and a faulty coordinator can-
not prevent the other processes from reaching consensus.
Unfortunately, the authors do not provide a performance
evaluation of the protocol, apart from reporting a quadratic
message complexity. They claim, however, that DBFT is
used by one of the fastest blockchains to date [33].

4.3. Cross-Fault Tolerant Protocols

Liu et al. argue that the overhead for multiple proper-
ties inherent to BFT is mostly due to the "assumption of
a powerful adversary that can fully control not only the
Byzantine faulty machines, but at the same time also the
message delivery schedule across the entire network" [34].
However, they claim that this scenario is rather unrealistic
in most cases. Hence, they propose the concept of Cross-
Fault tolerance, XFT for short. XFT requires the same
number of replicas as CFT, i.e. 2f + 1, and provides
all its reliability guarantees. Thus, it is strictly stronger
than CFT. In addition, it provides safety and liveliness
when Byzantine faults occur, as long as a majority of the
replicas are correct and can communicate with each other
synchronously.

In the same paper, they provide a XFT-SMR pro-
tocol, XPaxos. Its performance outperforms PBFT and
Zyzzyva, while coming close to the performance of an
optimized Paxos [34]. However, it doesn’t scale with the
number of faults and suffers from the same performance
shortcomings in the case of failures as other leader-
based protocols. Thus, Garg et al. recently proposed the
multi-leader XFT consensus protocol Elpis. It introduces
a concept of per-object ownership, where ownership of
accessible objects is assigned to the nodes. Then, not a
single leader is responsible for ordering all commands, but
each node is responsible for ordering the commands that
concern the objects it has been assigned to as owner. This
ownership can also be changed dynamically. The authors
claim that Elpis achieves a performance twice as high as
XPaxos [35].

5. Comparing Protocols

As we have seen in Section 4, many protocols aim
to improve or remedy particular shortcomings of already
existing protocols. Even though all of these protocols
solve the same problem - i.e. the problem of consensus or
atomic broadcast - the underlying application determines

which protocols can be used. For example, HiBFT can be
used for a permissioned blockchain only if its replicas are
- or can be - ordered in a hierarchical structure.

Singh et al. argue that comparing different BFT pro-
tocols and choosing an appropriate one is difficult be-
cause they are evaluated under different and benign con-
ditions [24]. Therefore, they propose a simulation envi-
ronment that provides identical and realistic conditions.
Their comparison yields insight into which characteristics
of a system environment favor or disadvantage a specific
protocol. Nevertheless, they also conclude that there is
no one-size-fits-all protocol and that such a protocol may
be impossible to build at all [24]. A similar conclusion
was drawn earlier by Défago et al. in their performance
analysis of atomic broadcast protocols [17].

The discussion whether there is a protocol superior
to the others is not restricted to BFT consensus alone.
While Paxos and Raft are the two dominating algorithms
for distributed consensus, it is an open discussion which
is the better one, as Howard and Mortier point out [36].

Unfortunately, there are still very few comparisons of
consensus or atomic broadcast protocols available. Those
that are available focus on blockchain consensus and
do not make use of a simulation environment [9], [37].
The finding from [24] that there is no single superior
protocol available seems to have gained significantly more
popularity. Among others, it inspired the development
of Hyperledger Fabric, a blockchain platform with a
modular consensus component, so that the implementation
of consensus can be adjusted to the present use case [38].

We should also note that some problems are inherent
to consensus protocols in general, regardless of their spe-
cific application. For example, a high message complexity
is a burden on every protocol that solves BFT consensus.
Thus, developments that reduce the cost of communication
in distributed systems may benefit all consensus protocols
similarly. To that end, Goren and Moses recently examined
silent information transfer in the presence of failures [39].

6. Conclusion

As we have seen, there exists a vast and still growing
number of consensus and atomic broadcast protocols.
These protocols vary not only in design and performance
but also in the underlying assumptions. Which protocol
to use depends on the specific setting and is still an open
discussion. Thus, modular and extensible projects may
become even more relevant in the future.
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[23] C. Cachin and M. Vukolić, “Blockchain Consensus Protocols in the
Wild,” in 31st International Symposium on Distributed Computing
(DISC 2017), A. W. Richa, Ed., vol. 91. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[24] A. Singh, T. Das, P. Maniatis, P. Druschel, and T. Roscoe, “BFT
Protocols under Fire,” in Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation. USENIX
Association, 2008.

[25] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine
Replication under Attack,” IEEE Transactions on Dependable and
Secure Computing, vol. 8, no. 4, 2011.

[26] Q. Thai, J.-C. Yim, T.-W. Yoo, H.-K. Yoo, J.-Y. Kwak, and S.-
M. Kim, “Hierarchical Byzantine fault-tolerance protocol for per-
missioned blockchain systems,” The Journal of Supercomputing,
vol. 75, Jun. 2019.

[27] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: Speculative Byzantine Fault Tolerance,” ACM Trans-
actions on Computer Systems, vol. 27, no. 4, Jan. 2010.

[28] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham,
“HotStuff: BFT Consensus in the Lens of Blockchain.” arXiv:
Distributed, Parallel, and Cluster Computing, 2018.

[29] LibraBFT Team, “State Machine Replication in the Libra
Blockchain,” May 2020.

[30] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti,
“Making Byzantine Fault Tolerant Systems Tolerate Byzantine
Faults,” in Proceedings of the 6th USENIX Symposium on Net-
worked Systems Design and Implementation. USENIX Associa-
tion, 2009.

[31] M. Poke, T. Hoefler, and C. W. Glass, “AllConcur: Leaderless
Concurrent Atomic Broadcast,” in Proceedings of the 26th Interna-
tional Symposium on High-Performance Parallel and Distributed
Computing. ACM, 2017.

[32] T. Crain, V. Gramoli, M. Larrea, and M. Raynal, “DBFT: Ef-
ficient Leaderless Byzantine Consensus and its Application to
Blockchains,” 2018 IEEE 17th International Symposium on Net-
work Computing and Applications (NCA), 2018.

[33] T. Crain, C. Natoli, and V. Gramoli, “Evaluating the Red Belly
Blockchain,” ArXiv, vol. abs/1812.11747, 2018.

[34] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolić,
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