An overview on Measurement Lab

Ben Julian Riegel, Simon Bauer, Johannes Zirngibl*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: ben.riegel@tum.de, bauersi@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—

In times when more and more technologies become
connected over the Internet, proper monitoring and mainte-
nance of this network is more important than ever. Measure-
ment Lab collects such data on Internet-scale and provides
a public database for this data set.

This paper will show what Measurement Lab is, how
it works and especially how to work with it. Our analysis
shows that Transport Layer Security (TLS) can influence
speed test results of weak clients with low computational
power. The paper will also report that during the COVID-19
pandemic, the data set was spammed by single contributors,
which highly impacted the results.

Index Terms—measurement technology, internet speed tests,
public data set, ndt, measurement-lab

1. Introduction

Understanding and learning about the products you
built, by monitoring the product and collection data about
its behavior, is common practice. Just like this, network
architects, researchers and consumers need accurate infor-
mation on their Internet connection to properly maintain
and monitor it.

The idea of Measurement Lab, short M-Lab, is to
create a platform that satisfies consumers as well as
researchers needs. Consumers receive information about
how their specific connection performs, as well as re-
searchers are provided with a publicly accessible database
filled with information about worldwide broadband Inter-
net performances collected by various open source ser-
vices. Open source server software makes it possible for
everyone to write own client sided software and offer it
to the public to fulfill its own goals and simultaneously
participate in the overall network of M-Lab. Also, this
makes every service of M-Lab transparent and compre-
hensible [1].

M-Lab provides an infrastructure for the mentioned
open source services to run. Therefore, they have servers
spread all over the world. These servers collect all accru-
ing data, which is generated by the services and put them
together at one database. M-Lab also prepares data sets in
different and useful views.

Since the platform was founded in 2009, it evolved
and technologies became obsolete, the team behind M-Lab
decided to completely rebuild the platform to so called M-
Lab 2.0. With this update at the beginning of 2020, M-Lab
retired services or completely rewrote them. All M-Lab
2.0 services now run on stock Linux kernel services, are

Seminar IITM SS 20,
Network Architectures and Services, November 2020

dockerized (Docker: Software to isolate applications into
containers) and are deployed on Googles container ap-
plication management system Google Kubernetes Engine
[2].

The remainder of this paper is to bring researchers
closer to M-Lab. Therefore, Chapter 2 will present the
technological background. Chapter 3 is based on this
knowledge and presents an example of how to work with
M-Lab’s software, as it examines if TLS can influence the
outcome of a speed test result. Chapter 4 will be dedicated
to a wider view on the platform and the data. The paper
will therefore show how to work with the raw data, as well
as show how to use Big Query (a service by Google to
manage and analyze large amounts of data) tables, M-Lab
gives access to.

2. Background on M-Lab’s Technology

Starting with a client who wants to know more details
about his connection, M-Lab currently provides three ser-
vices to choose from:

e Ndt (Network Diagnostic Tool):
A test to find the maximum download and upload
rates achievable.

e Neubot DASH:
A test that emulates a video stream, to see how a
connection performs under this circumstance.

« WeHe:
A test how ones Internet connection handles traf-
fic, collected from real world applications.

Since M-Lab is still changing a lot, this selection might
differ over time. Moreover, the platform supports three
core services. Core services are passively carried out all
the time, when someone uses any service.

o Packet Header Service:
Collects incoming packet headers for every incom-
ing TCP connection.

e TCP Info:
A service that collects data and creates statistics
on all incoming TCP connections.

o Traceroute:
A commonly known service that collects informa-
tion about the network topology between server
and client.

During the execution of one of the tests above, the M-Lab
server saves all data which will be created throughout the
execution to Google Cloud Storage.

doi: 10.2313/NET-2020-11-1 17



The raw data then will be passed through a pipeline,
where the data is summarized and additional informa-
tion is added. In specific, every opened TCP connection
throughout a test receives an Universally Unique Identifier
(UUID), generated by concatenating the server host name,
server boot time and the TCP socket cookie. This UUID
can be used later to match query results with the actual
raw data or join main service results with a core service.
Geolocation information for the client’s IP address is
added as well. by the M-Lab annotation service'. The
data then is accessible through Big Query. Important to
mention is, that not yet every data set is supported by
Big Query. To receive access to the Big Query project,
you need to join the M-Lab discussion group on Google
Groups.

Comparing the amount of entries in M-Labs data base
for the Ndt service with other services, Ndt, by far, is
the most used service on the platform. This is why I will
focus on Ndt and its analysis in the following.

2.1. Ndt

Since Ndt7 is the latest version of the Network Diag-
nostic Tool protocol, provided by M-Lab, this paper will
focus on this technology as older versions might not be
supported anymore in the near future.

The main goal of this protocol is to flood a single
TCP connection between a well-provisioned server and a
client, to measure the maximum possible application layer
throughput rates for up- and download. Ndt7 is based on
HTTP WebSockets (chapter 2.2). If the congestion control
algorithm TCP BBR (chapter 2.3) is available, it takes
advantage of it. Otherwise, it will just use the systems
default. [3]

2.2. WebSockets

A problem with the HTTP protocol is the large amount
of overhead a real time connection generates because
HTTP is not originally made for continuous communica-
tion. In general, the client must always generate a new
request and receives the response afterwards. Multiple
requests will be independent from each other. Because the
execution of a Ndt7 test will generate a real time traffic
between server and client, a lot of overhead in packet
headers throughout the execution will be generated as
well. Because Ndt7 is made to approximate the application
level performance and HTTP operates on the application
layer, using pure HTTP may highly impact the results.
This is why websockets are used here. [4]

WebSockets work as an upgrade of a HTTP connec-
tion. To upgrade a connection, the client must specify the
Connection and the Upgrade fields in the HTTP header
during a request. An example request could look like this:

GET /index.html HTTP/1.1 \r\n
Host: www.hostname.com \r'\n
Connection: upgrade \r\n
Upgrade: websocket \r\n

o \r\n

1. https://github.com/m-lab/annotation-service

Seminar IITM SS 20,
Network Architectures and Services, November 2020

92

The server will ignore the upgrade request with a stan-
dard 200 OK response if it is not capable of upgrading.
101 Switching Protocols will be the Status code for a
confirmation. [4]

From now on the communication will adhere to the
WebSocket specifications. Client and Server can now use
a bidirectional communication channel, which maintains
on one TCP session. In contrary to a HTTP header, a
WebSocket header now only requires 8 Bytes. Therefore,
less overhead will be generated throughout a real time
connection. [4]

WebSockets differentiate between three main types of
frames. Binary, textual and control frames. The payload
of binary frames will be interpreted as pure bytes. Tex-
tual frames contain payload in UTF-8 encoding. Control
frames are e.g. used to close a WebSocket channel. [4]

The WebSocket protocol supports two Uniform Re-
source Identifier Schemes. WS:// indicates a standard
communication channel, whereas WSS:// indicates a TLS
encrypted communication. [4]

2.3. TCP BBR

The TCP congestion control algorithm Bottleneck
Bandwidth and Round-Trip Time (BBR) promises to max-
imize the TCP-level throughput and median RTT. It was
developed by Google in 2016 and implemented in Linux
v4.9. Taking advantage of TCP BBR as a service provider
is easy, as there is no need for any action on the client
side. It must only be deployed on the server side. [5]

A path from server to client consists of multiple hops
which all store the incoming packages in a buffered queue.
They process them (e.g. routing) and forward them. Thus,
the RTT on this path starts increasing when the buffer of
the slowest hop fills up faster than it drains. If the buffer
is filled up completely, packet loss will appear. [6]

In difference to loss-based algorithms, BBR periodi-
cally monitors the RTT and the delivery rates. From this
data it creates a model which includes the recent maxi-
mum available bandwidth, and the minimum recent RTT.
This model then will be used to calculate how fast BBR
will send the remaining data. This way, the throughput can
be adjusted before packet loss appears, and the bandwidth
will be better utilized while optimizing the median RTT
and also generating less overhead in retransmission. [6]

Consequently, the bandwidth bottleneck of a BBR
connection is the bit rate of the slowest hop in the path,
which is exactly what we want to measure with Ndt7
[3]. Also, the kernel level data generated by BBR will
be stored and attached to the Ndt7 raw data on Google
Cloud storage.

2.4. Ndt7 Protocol Specification

Ndt7 differentiates between the upload and download
tests as two completely independent tests. Therefore, the
following HTTP paths are specified for GET requests:
/ndt/v7/download and /ndt/v7/upload [3]

The client starts by requesting the desired test with
the corresponding path, while requesting a WebSocket
upgrade. If no error occurs, the server will reply with the
101 Switching Protocols status code. [3]

doi: 10.2313/NET-2020-11-1 17



When the WebSocket channel has been created suc-
cessfully and the requested test was a download test,
the server starts flooding the channel with binary frames,
which must contain between 2'° and 224 random bytes.
If an upload test was requested, the client has to flood the
WebSocket channel in this way. This frame size might be
dynamically adjusted throughout the execution to better
adapt to environmental requirements. [3]

A running time of up to 10 seconds for every execution
is expected. During this interval, server or client are
always permitted to provide textual frames, containing
measured application level data in JSON format from its
own side to support the counterpart with reliable speed
measurements. E.g. these might be interesting if one
would like to find out, how many bytes the counterparts
application layer received of the acknowledged bytes on
transportation layer.

These textual frames can be ignored completely from
both sides as they only provide additional application-
level information and are not mandatory to the protocol. If
available, M-Lab servers attach these measurements under
Client Measurements to the raw data. [3]

3. The influence of TLS on Ndt7

The specification itself claims that "Ndt7 should con-
sume few resources" [3]. This gave the motivation why we
wondered, whether TLS on weak clients with low CPU
power, influences measurements, as it is the default choice
for Ndt7 connections.

To test this, a stress test was set up, which would
bring the protocol to its limits. A Raspberry Pi 2 Model B,
running Raspbian Buster Lite release 2020-02-13, worked
as a good representative of a weak client, according to
the hardware specification?. It was directly plugged into a
computer, running Ubuntu 20.04 LTS, using a cat 6 Eth-
ernet cable. This computer provides way higher resources
in terms of CPU power (i7-6700k) and network interface
speed (1Gbit/s). The Raspberry Pi only offers a low-end
CPU (ARM Cortex-A7) and a network interface with up to
100Mbit/s. The fast computer was running the official M-
Lab server software® and BBR was enabled on the system.
The Raspberry Pi was running a Ndt7 client software by
Simone Basso*.

The goal of this setup was to create a small network,
where the results of a speed test would be given by the
hardware of the Raspberry Pi, as it has the slowest hard-
ware in every relevant point. If the computational power
does not take any influences, we would expect the results
to be capped by the network interface of the Raspberry
Pi at around 100Mbit/s, no matter if the communication
is encrypted or not.

The Client software was executed 10 times using the
WS (no TLS) scheme and 10 times using the WSS (TLS)
scheme. The client first executes a download test, followed
by an upload test.

Figure 1 shows a boxplot of the measured TCP
level throughput, using the data which was collected
by the server throughout the tests. The median value

2. https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
3. https://github.com/m-lab/ndt-server
4. https://github.com/bassosimone/ndt7-client-go-minimal

Seminar IITM SS 20,
Network Architectures and Services, November 2020

MBit/s
Hardware restriction at 100MBit/s

—_—

100
90
80
70
60
50
40
30 _—
20
10

0

Il No TLS download No TLS upload B TLS download TLS upload

Figure 1: Box plot speed test results TLS vs. no TLS

(line between box borders), the mean value (cross), the
Ist quartile (bottom border of each box) and the 3rd
quartile (top border of each box) are represented in the
Figure. Each plot includes 10 test executions to exclude
measurement artifacts. We used the following method to
calculate the results for Figure 1 from the raw data:

Download := Ackno’wledgedBytESmuz * 8 MbZt/S
FElapsedTimemaqz
._ ReceivedBytesmax * 8 ]
UplOEld T FElapsedTimemax Mblt/s

As Figure 1 shows, for all results, median and mean
value nearly line up. The boxes are represented as lines
because the results only varied in the range of less than
IMbit/s.

The median values of the non-encrypted tests are
as expected around 100Mbit/s. The graph shows them
at 93.6Mbit/s for the download and 93.9Mbit/s for the
upload.

Interestingly, the encrypted tests revealed way lower
results. The median is drawn at 28.5Mbit/s for the down-
load and at 27.8Mbit/s for the upload.

As the encryption is the only thing that changed and
encryption is a highly CPU consuming process, this highly
indicates the low computational power of the Raspberry
Pi to be the limiting factor in this connection. This would
mean that speed test results can be influenced by how fast
ones CPU is and does not necessarily show the maximum
up- / download rate.

My suggestion would be to give weak clients the op-
tion to disable any kind of textual frames. So, no personal
data would be leaked and they could safely execute non-
encrypted tests, as this might be the only chance to receive
results, which are not influenced by their CPU. Otherwise
they might receive influenced results or reveal sensitive
data.

4. Working with M-Lab

Switzerland was one of the first European countries,
which considered taking down some of the most popu-
lar streaming websites during the COVID-19 pandemic
because the internet congestion raised drastically. [7] To
show how to access M-Labs data, this section will look
at the up- and download speeds during the pandemic in
Switzerland, to see if the mentioned increased internet
congestion took a noticeable effect on peoples speed test
results.

doi: 10.2313/NET-2020-11-1 17



This is done in two approaches. The first one is about
raw data from M-Labs Cloud Storage and processing it.
The second one takes advantage of the prepared views
on the data by using M-Labs Big Query tables. The time
span from 01/01/2020 until 05/24/2020 was selected for
both approaches, as this was the most recent entry in the
data set at that time.

4.1. Approach 1: Using raw data

This approach works with unprocessed raw data,
which was directly downloaded from the public Google
Cloud Storage. Ndt7 is not yet supported by a Big Query
table.

Ndt7 raw data is saved in JSON format. Parsing the
data to a MySQL Database and adding geolocation infor-
mation about the client’s IP address by using the GeoLite2
Databases by Maxmind, revealed that around 77% of the
tests in this data set came from the USA. Only 5826 of
the approximately 7 million total samples could be traced
back to Switzerland in the total data set. Even though all
European M-Lab servers do provide Ndt7 support already,
seemingly not many clients have implemented the newest
version yet.

Because an average of only 40 Samples per day can
be influenced easily by single contributors, this approach
could not be further pursued, as the result will be unrep-
resentative. Still, this section could come up with useful
information, which will be helpful for future work with
M-Lab.

4.2. Approach 2: Using Big Query

To receive a more representative result than in chapter
4.1, more samples would be required. Therefore, we could
also use legacy data from older Ndt versions, which are
supported by Big Query.

The Big Query project by M-Lab provides two tables
called unified_downloads and unified_uploads, which
will be used in this section. They combine data from
legacy Ndt versions. Geolocation information has already
been added.

A SQL request asking for the median download
and upload rates per day in Switzerland, showed a re-
sult, where the median values drastically dropped on
03/10/2020. To find out more, the SQL request was ex-
panded by the amount of total test requests per day.

This revealed that the unexpected behavior of the
median rates seem to correlate with the total amount of
daily test requests (#reqests). #requests instantly raised
from an average of 5000 to over 25000 on 03/10/2020,
while up- and download rates decreased at the same time.
This unfiltered data can be found in the data directory.

Further examinations showed that single IP addresses
contributed multiple speed tests per day to the data set,
which must not be surprising, as people can tests their
internet speed multiple times per day. But besides some
clients, which were already contributing hundreds of re-
sults, there were 3 conspicuous IP addresses, which had
not contributed any data before 03/10/2020. They started
spamming thousands of low-end results per day into the
data set, beginning exactly on that date.

Seminar IITM SS 20,
Network Architectures and Services, November 2020

To filter them out, the next SQL request only took the
maximum contribution per IP per day in consideration.
This request is plotted in Figure 2. Mind that the y-axis on
the right side correlates with the amount of total requests
and the left y-axis with the up- and download median
values in Mbit/s.

2500

2000

2 L MWAMA N WA

80
1500

60
1000
40

20 500

0 0
1/1/2020 2/1/2020 3/1/2020 4/1/2020 5/1/2020

DownloadMedian UploadMedian TotalRequests

Figure 2: Throughput median in relation with #requests

According to this filtered data set, we can now see,
that COVID-19 could not take very obvious influence on
the median up- or download speed in Switzerland. The
upload rates slightly fluctuate at around 97.6Mbit/s, while
the upload values do so at around 36.7Mbit/s. No larger
or unexpected outbursts are noticeable. In average, the
download speed increased by 2.75Mbit/s from first half
(01/01/2020 - 03/15/2020) to second half (03/16/2020
- 05/24/2020) of the time span. The upload did so by
1.69Mbit/s. More significant was the increase of #requests.
This value has increased by an average of 145 for the
second half.

In summary, we can not say that these decreased val-
ues at the beginning of the year necessarily have to do with
the increased internet congestion during that time. The
deviation is very small. The increased volume of #requests
in the second half could be due to media coverage of the
topic, so people wanted to test their internet speed, even
though, it did not really decreased its median speed.

5. Conclusion and future work

After presenting the technological backround, the pa-
per showed how to work with the open-souce software of
the platform. It therefore revealed that a client can receive
different speedtest results in the same enviroment, just by
enabling the TLS encryption for the connection.

By presenting two possible approaches, the paper gave
an idea on how to work with the M-Lab data set. The
first one found out that for now, the platform lacks in
sufficient Ndt7 sample data from europe. The second
revealed a phenomena, where the median speedtest results
in switzerland correlated with the amount of total requests
made. This could be filtered out, but shows how the data
can be influenced by single contributors.

In the future, it will be interesting to look at services
like Neubot or Wehe and combine them with results from
core tests, like Tranceroute.

Furthermore, it will be worth finding out more about
the mentioned IP adresses, which were spamming the
results from Chapter 4.2. Where are they located? This
incidence might turn out to be related to COVID-19 in
some way.

doi: 10.2313/NET-2020-11-1 17



References

(1]

[2]

(3]

(4]

“Open Internet Measurement,” https://www.measurementlab.net/
about/, [Online; accessed 2020-05-28].

S. Soltesz, “The 2.0 Platform Has Landed — Thank you!”
https://www.measurementlab.net/blog/the- platform-has-landed/,
2020, [Online; accessed 2020-06-03].

M-Lab, “ndt7 protocol specification,” https://github.com/m-lab/
ndt-server/blob/master/spec/ndt7-protocol.md, [Online; accessed
2020-06-03].

The WebSocket Protocol, https://tools.ietf.org/html/rfc6455, 2011.

Seminar IITM SS 20,
Network Architectures and Services, November 2020

(5]

(6]

(71

D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a Deeper Understanding of TCP BBR Conges-
tion Control,” 2018.

G. Huston, “Open Internet Measurement,” https://blog.apnic.net/
2017/05/09/bbr-new-kid-tcp-block/, 2017, [Online; accessed 2020-
06-03].

“Netze wegen Corona-Kirise iiberlastet: Miissen die Schweizer bald
Netflix & Co. abschalten?” https://www.rtl.de/cms/schweizer-netze-
in-corona-krise-ueberlastet-netflix-abschaltung-droht-wie-ist-es-in-
deutschland-4506430.html, [Online; accessed 2020-12-08].

doi: 10.2313/NET-2020-11-1 17



