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Abstract—
The question of how to calculate latency and buffer

bounds in complex networks is becoming ever more relevant
in today’s interconnected world. A number of approaches
to this problem have been developed; this paper provides
an introduction to the concepts as well as the application
of stochastic network calculus and shortly introduces two
alternative methods for calculating relevant bounds in net-
works: deterministic network calculus and classic queuing
theory. This paper also provides an overview of various open-
source tools that use these different approaches and, using
two different reference topologies, compares them regarding
important factors such as the tightness of bounds. While
the tested tools perform similarly in uncongested networks,
specific tools, such as DISCO SNC, can provide tighter
bounds and greater functionality. The results of one tool,
DISCO DNCv2, could not be reliably compared with those
of the others.

Index Terms—stochastic network calculus, queuing theory,
network performance evaluation, scheduling

1. Introduction

The increasing dependence on fast, reliable networks
in academia and elsewhere necessitated the formalization
of those networks. Quality of Service (QoS) guarantees
regarding delay, throughput, and packet loss are especially
important when measuring the performance of networks
and ensuring their QoS [1] . The required guarantees vary
depending on the needs of end-users and the contracts they
have with their respective network provider. A user who,
for example, is interested in real-time communication with
other users would be less interested in the lower bounds
on throughput and more interested in the upper bounds
on delay; on the other hand, a user who must send large
files would be more concerned with the lower bounds on
throughput.

Network calculus was first introduced in 1991 by Cruz
in two related papers, [2] and [3], as a new way to de-
termine the relevant bounds inside a communication net-
work. Since this initial publication, network calculus has
developed in two branches: stochastic and deterministic
network calculus. In short, deterministic network calculus
provides the worst-case bounds for a given network while
stochastic network calculus provides bounds based on
statistical distributions and a certain level of acceptable
exceedance of required bounds [4]. Deterministic network
calculus is often used to model networks in which there

is no tolerance for packet loss or long delays (e.g. critical
infrastructure). Stochastic network calculus can be em-
ployed to model networks which can tolerate a certain
amount of loss or delay in order to more closely mirror
the real-life requirements of many networks and users.
It can, therefore, be used to more accurately and tightly
find bounds / guarantees in networks that are inherently
statistical in nature [4].

2. Background

This section provides an overview of the fundamentals
of (stochastic) network calculus and its similarities and
differences with other theories.

2.1. Network Calculus

In order to be effectively used for network analysis
(i.e. deriving relevant bounds), a theory must be charac-
terized by the following five properties [4]:

1) Service Guarantees - Stochastic service guaran-
tees (e.g. backlog, delay) can be derived for
single nodes using a specific traffic model and
a specific server model.

2) Output Characterization - The output of a server
can be modeled using the same traffic model as
the input.

3) Concatenation - The concatenation (i.e. convolu-
tion) of multiple servers can be modeled using
the same server model.

4) Leftover Service - The service available to a
traffic flow can be modeled using the same server
model if multiple flows are simultaneously using
the service.

5) Superposition - The superposition of multiple
traffic flows can be modeled using the same traffic
model.

These properties, especially the third and fourth prop-
erties, allow for the concatenation of multiple service and
arrival flows; this, in turn, reduces the necessary calcu-
lations and can significantly improve the results when
compared to node-to-node analysis [4].

Network calculus characterizes networks using two
curves: service (server) and arrival (traffic). The arrival
curve describes the traffic sent using its upper bound
while the service curve defines a lower bound that a
server provides [4]. Often an “envelope process” is used
to describe these curves; the envelope process simply
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refers to a function which deterministically bounds the
process but is not necessarily tight. One of the main
advantages of network calculus is that service curves can
be concatenated (i.e. convoluted) using min-plus algebra
and thus more effectively analyzed.

2.2. Mathematical Basics & Notation

This section provides an overview of the notation used
and, partially, the fundamental mathematical concepts as
described and used in [4] and [5].

IF is used to denote the set of non-negative wide-sense
increasing functions in {a() : ∀0 ≤ x ≤ y, 0 ≤ a(x) ≤
a(y)} and for which it holds ∀x < 0 : a(x) = 0. This
set of functions is used to characterize arrival and service
curves as a function of time t.

Min-plus algebra is used to perform operations on
flows. An important algebraic structure when using min-
plus algebra is

(IF ∪ {+∞},+,∧)
which is a commutative diode with the zero element +∞
and the identity element 0 for all x ≥ 0 and +∞ otherwise
[6]. The min-plus convolution and deconvolution of two
functions, a and b, are respectively defined as follows:

(a⊗ b)(x) = inf
0≤x≤y

[a(x+ y)− b(y)]

(a� b)(x) = sup
y≥0

[a(x+ y)− b(y)]

A(t) refers to the (cumulative) arrival process and
A*(t) to the (cumulative) departing traffic process of a
(lossless) server. The backlog B(t) is then defined as
A(t)−A*(t). Aih and A*ih refer respectively to the arrival
and departure models of flow i in network element h.

2.3. Traffic Models

The traffic model originally introduced in [2] is the
(σ, ρ) traffic characterization and is deterministic. σ refers
to the burstiness and ρ to the rate of the traffic flow. A
popular implementation of this traffic flow is referred to as
a token bucket; a traffic flow / arrival curve A is bounded
by the (σ, ρ) model if the following condition holds for
all 0 ≤ s ≤ t [4]:

A(s, t) ≤ ρ · (t− s) + σ

In stochastic network calculus, this model is expanded
and depicted using the (σ(θ), ρ(θ)) traffic characterization
[4]. Using the moment generating function (MGF) of
the arrival curve, a bound can be derived for this traffic
characterization [4]; an arrival curve A is bounded by the
(σ(θ), ρ(θ)) model for some θ if the following condition
holds for all 0 ≤ s ≤ t:

1

θ
logE[eθA(s,s+t)] ≤ ρ(θ) · (t) + σ(θ)

Stochastic network calculus can then be used to find
and optimize θ by defining, for example, the maximum
allowed backlog and the probability with which this bound
must be respected [5]. There are a number of further
variations of the stochastic arrival curve introduced in [4]
including the traffic-amount-centric (t.a.c.) arrival curve,
the virtual-backlog-centric (v.b.c.) arrival curve, and the
maximum-backlog-centric (m.b.c.) arrival curve.

2.4. Similarities and Differences with Queuing
Theory

Queuing theory was first introduced in 1909 by A.K.
Erlang and is a branch of mathematics that focuses on
the modelling of the act of waiting in line [7]; queuing
theory was thus not developed with modern communica-
tion / packet networks in mind. One of the most common
proposals to model arrival and service curves is the M/M/1
model using a Poisson distribution. Although many net-
works can be modeled using queuing theory, multiple of
the properties, especially 3 and 4, described in Section 2.1
cannot, in general, be concluded for queuing theory [4].
In addition, queuing theory focuses on the calculation of
the average case and not the worst case, as in network
calculus [7].

3. Application and Comparison

This section provides an overview of a diverse set of
tools as well as their defining characteristics and defines
two reference topologies. The aforementioned tools are
then used to evaluate both reference topologies; the results
of all evaluations are subsequently analyzed and compared
with one another.

3.1. Tools

The tools which are introduced in this section are
all open-source and were developed primarily for use in
research. Table 1 provides an overview of the supported
network topologies (Tandem, Tree, and Feed-forward) as
well as important network calculus operations (Convolu-
tion and Deconvolution).

TABLE 1: Supported Topologies and Operations

Tandem Tree Feed-forward ⊗ �
DISCO SNC 3 3 3 3 7
DISCO DNCv2 3 3 3 3 3
SNC MGF Toolbox 3 3 7 3 3
OMNeT++ 3 3 7 7 7

3.1.1. The DISCO Stochastic Network Calculator.
The DISCO Stochastic Network Calculator (DISCO SNC)
is an open-source tool developed by researchers at the
Distributed Computer Systems (DISCO) chair of the Uni-
versity of Kaiserslautern [8]. It is a modular program
developed primarily in Java for the application of stochas-
tic network calculus and also provides a graphical user
interface (GUI) in order to “make the SNC accessible
even for SNC-inexperienced users“ [8]. It supports a
number of traffic characterizations including exponential,
exponentially bounded burstiness, and token bucket.

3.1.2. Stochastic Network Calculus Moment Generat-
ing Function Toolbox. The Stochastic Network Calculus
Moment Generating Function Toolbox (SNC MGF Tool-
box) is an open-source tool developed by Paul Nikolaus,
a researcher at the DISCO chair of the University of
Kaiserslautern [9]. It is a library developed in Python for
the application of stochastic network calculus and does
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Figure 1: Topology 1 - Tandem

not provide a GUI. It supports a number of traffic char-
acterizations, including Markov modulated on-off traffic,
exponentially bounded burstiness, and token bucket.

3.1.3. The DISCO Deterministic Network Calculator
v2. The DISCO Deterministic Network Calculator v2
(Disco DNCv2) is the second-generation open-source tool
developed by researchers at the DISCO chair of the
University of Kaiserslautern for analyzing networks using
deterministic network calculus [10].

3.1.4. Objective Modular Network Testbed in C++.
Objective Modular Network Testbed in C++ (OMNeT++)
is a discrete event simulator developed primarily in C++
and used for, among other things, modeling communi-
cation networks [11]. OMNeT++ was first introduced in
1997 and has since been expanded by multiple libraries,
including one for the simulation of queuing networks, and
a comprehensive GUI.

3.2. Reference Topologies

In order to compare the tightness of the bounds cal-
culated by the aforementioned tools, this section defines
two relatively simple network topologies which can be
modeled in every tool. Figure 1 models a tandem (chain)
network with three service curves; the arrival curve enters
the first node and is processed by all three service curves.
Figure 2 models a (fat) tree network with two arrival
curves entering the two lowest nodes respectively and both
departing curves being sent to the root node / service
curve. S1, S2, and S3 provide a constant service rate
of 5, 4.9, and 4.5 respectively in both topologies. The
bounds on the departure curve(s), A*A1

S3 for the tandem
topology as well as A*A1

S1 and A*A2
S1 for the tree topology,

are of interest for the analysis. The arrival curve(s) A1
and A2 are characterized by an exponential distribution
with exp(λ); multiple values for λ are tested. For both
stochastic network calculus tools, the tolerance for the
delay as well as the backlog bound was set to .05. The
graphed results for the tree topology are cumulative results
of both A*A1

S1 and A*A2
S1 .

The arrival curve(s), which can be represented by the
exponential distribution with the parameter λ, are bounded
by the σ(θ), ρ(θ)) traffic characterization for all θ < λ
with σ(θ) = 0 and ρ(θ) = 1

θ (
λ
λ−θ ) [12]. This can be

used to provide a deterministic bound on the stochastic
distributions for DISCO DNCv2.

3.3. Configuration of Tools

This section documents the methods used to configure
each tool and derive relevant bounds using the tandem
topology and backlog bound as an example.

A*A1
S1 & A*A2

S1

A2A1

S3S2

S1

Figure 2: Topology 2 - Fat Tree

3.3.1. DISCO SNC. The following configuration can be
loaded directly into the DISCO SNC GUI for λ = .3.
# C o n f i g u r a t i o n o f Network
# I n t e r f a c e c o n f i g u r a t i o n . Un i t : Mbps
I v1 , FIFO , CR, 5
I v2 , FIFO , CR, 4 . 9
I v3 , FIFO , CR, 4 . 5

EOI
# T r a f f i c c o n f i g u r a t i o n . Un i t Mbps or Mb
# One f l o w w i t h t h e r o u t e v1−>v2−>v3 w i t h p r i o r i t i e s and c h a r a c t e r i z a t i o n
F F1 , 3 , v1 : 1 , v2 : 1 , v3 : 1 , EXPONENTIAL, . 3
EOF

3.3.2. SNC MGF Toolbox. This Python file for λ = .3
can be run in the root folder of the project once all
dependencies have been added.
i f __name__ == ’ __main__ ’ :

p r i n t ( " Tandem Pe r fo rmance Bounds : \ n " )

DELAY_PROB_BOUND = P e r f o r m P a r a m e t e r ( p e r f o r m _ m e t r i c =PerformEnum . DELAY_PROB,
v a l u e = . 0 5 )

S e r v e r 1 = C o n s t a n t R a t e S e r v e r ( r a t e = 5 . 0 )
S e r v e r 2 = C o n s t a n t R a t e S e r v e r ( r a t e = 4 . 9 )
S e r v e r 3 = C o n s t a n t R a t e S e r v e r ( r a t e = 4 . 5 )

Convo lv edSe rve r = Convolve ( Convolve ( Se rve r1 , S e r v e r 2 ) , S e r v e r 3 )

TandemTopology = S i n g l e S e r v e r M i t P e r f o r m ( a r r _ l i s t =[DM1( lamb = . 3 ) ] ,
s e r v e r = Convo lvedServer ,
per form_param =DELAY_PROB_BOUND)

# Grid s e a r c h f o r param between 0 . 1 and 5 . 0 w i t h g r a n u l a r i t y 0 . 1
p r i n t ( Op t imize ( TandemTopology , number_param =1 ,

p r i n t _ x =True ) . g r i d _ s e a r c h ( b o u n d _ l i s t = [ ( 0 . 1 , 5 . 0 ) ] ,
d e l t a = 0 . 1 ) )

It is important to note that SNC MGF Toolbox does
not support FIFO multiplexing / scheduling and instead
always uses arbitrary scheduling. Arbitrary scheduling
provides a worst-case bound on any scheduler, including
FIFO.

3.3.3. DISCO DNCv2. This Java file for can be run for
λ = .3 and θ = .1 in the root folder of the project once
all dependencies have been added.
p u b l i c vo id run ( ) throws E x c e p t i o n {

S e r v i c e C u r v e s e r v i c e _ c u r v e _ 1 = Curve . g e t F a c t o r y ( )
. c r e a t e R a t e L a t e n c y ( 5 . 0 , 0 ) ;
S e r v i c e C u r v e s e r v i c e _ c u r v e _ 2 = Curve . g e t F a c t o r y ( )
. c r e a t e R a t e L a t e n c y ( 4 . 9 , 0 ) ;
S e r v i c e C u r v e s e r v i c e _ c u r v e _ 3 = Curve . g e t F a c t o r y ( )
. c r e a t e R a t e L a t e n c y ( 4 . 5 , 0 ) ;

Se rve rGraph sg = new Se rve rGraph ( ) ;

S e r v e r s0 = sg . a d d S e r v e r ( s e r v i c e _ c u r v e _ 1 , M u l t i p l e x i n g . FIFO ) ;
S e r v e r s1 = sg . a d d S e r v e r ( s e r v i c e _ c u r v e _ 2 , M u l t i p l e x i n g . FIFO ) ;
S e r v e r s2 = sg . a d d S e r v e r ( s e r v i c e _ c u r v e _ 3 , M u l t i p l e x i n g . FIFO ) ;

sg . addTurn ( s0 , s1 ) ;
sg . addTurn ( s1 , s2 ) ;

A r r i v a l C u r v e a r r i v a l _ c u r v e = Curve . g e t F a c t o r y ( ) . c r e a t e T o k e n B u c k e t ( 1 5 , 0 ) ;
sg . addFlow ( " f0 " , a r r i v a l _ c u r v e , s0 , s2 ) ;
CompFFApresets c o m p f f a _ a n a l y s e s = new CompFFApresets ( sg ) ;
T o t a l F l o w A n a l y s i s t f a = c o m p f f a _ a n a l y s e s . t f _ a n a l y s i s ;

t f a . p e r f o r m A n a l y s i s ( sg . ge tF low ( 0 ) ) ;
System . o u t . p r i n t l n ( " d e l a y bound : " + t f a . ge tDelayBound ( ) ) ;
System . o u t . p r i n t l n ( " b a c k l o g bound : " + t f a . ge tBacklogBound ( ) ) ;

}
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Figure 3: Backlog Bound - Tandem Topology
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Figure 4: Delay Bound - Tandem Topology

DISCO DNCv2 provides, depending on the choice of θ, a
bound of either infinity or 0; this is caused by the lack of
burstiness of the arrival curve and latency of the service
curves, which cannot be represented in the other programs.
The results produced by DISCO DNCv2 are, therefore, not
depicted.

3.3.4. OMNeT++. The variable “interArrivalTime“ of the
source refers to the time between generated jobs and is
set to exponential(λ). The variable “serviceTime“ refers
to the time required by the queue to serve a job and is set
to is 1

5 , 1
4.9 , and 1

4.5 for the three queues respectively. The
variable which represents the backlog bound for the entire
system is the sum of the variable “queueLength:max“ for
all queues. The delay bound is represented by the variable
“lifeTime:max“ of the sink. Each simulation was run for
2,000,000 events.

3.4. Results & Analysis

Figures 3 and 4 depict, respectively, the backlog and
delay bounds of the calculations and simulations for the
tandem topology. Figures 5 and 6 depict, respectively,
the backlog and delay bounds of the calculations and
simulations for the tree topology.

The data, produced by the most uniform configuration
of the heterogeneous tools possible, shows that the val-
ues for both the backlog and delay are similar for less
congested networks, i.e. networks with larger λ values. In
more congested networks, however, DISCO SNC almost
always provides significantly tighter bounds. The values
produced by the OMNeT++ simulations are frequently
smaller than those calculated by the other tools as it does
not necessarily provide a worst-case bound (with certain
tolerance) but the worst-case values found in simulations.
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Figure 5: Backlog Bound - Tree Topology
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Figure 6: Delay Bound - Tree Topology

4. Conclusion & Further Work

This paper described the basics of stochastic network
calculus as well as its similarities and differences with
deterministic network calculus and queuing theory. Four
tools used for the analysis of computer networks based on
these theories / methods were then introduced, compared,
and used to analyze simple reference topologies. The
tools’ heterogeneity posed the challenge of finding config-
urations that produce comparable results. The results show
that, although the tools provided similar results for the
tested networks, stochastic network calculus, specifically
the DISCO SNC tool, could provide the tightest worst-
case bounds. However, the limitation of the arbitrary
scheduler available in the SNC MGF Toolbox contributed
to the higher bounds produced by that tool. The results
produced by DISCO DNCv2 were, unfortunately, incom-
parable with those produced by the other tools.

This paper was limited to the relatively theoretical
application of stochastic network calculus. Further work
could examine the bounds produced by the introduced
tools in more complex settings and compare those with
results from simulations in different simulators or real-
world experiments.
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