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Abstract—Operating System (OS) fingerprinting is an impor-
tant technique that can be used to identify OS. Currently,
there are many fingerprinting tools on the internet. This
paper offers an overview of some popular tools for OS
fingerprinting including Nmap, Xprobe, p0f, Satori etc. We
introduce the differences between their mechanisms and
information gains. We also introduce some papers that
show the automation of OS fingerprinting is possible. The
accuracy and efficiency of the fingerprinting technique can
be improved using machine learning.

Index Terms—operating system fingerprinting

1. Introduction

Operating system (OS) fingerprinting can recognize
OS that is running on the host. It can be used in the enter-
prise network to detect malware, which works through vir-
tual machines [1]. OS fingerprinting is also an important
skill in the penetration test, which is performed to assess
system security. Since different OSs have their unique
vulnerabilities, the attack method can be determined after
the OS is identified. Another use of OS fingerprinting is
to detect outdated OS versions that contain vulnerabilities
[2]. It is also useful in generating network statistics and
research.

This paper provides an overview of some popular
OS fingerprinting tools. In section 2 of this paper, some
necessary background knowledge is introduced. In sec-
tion 3, the mechanism of some popular tools for OS
fingerprinting and the information that can be gained
with them are briefly introduced. These include active
fingerprinting tools (Nmap, Xprobe2, RING), passive fin-
gerprinting tools (pOf, Ettercap, Satori, NetworkMiner)
and other tools that can be used for fingerprinting (SinFP,
ZMap, Scapy). Since most of them work manually, some
research focusing on automation of OS fingerprinting is
also introduced in section 4. These papers show that
the process of gathering, normalizing information, and
classifying OSs can be automated with higher accuracy.
Finally, a brief conclusion is in section 5.

2. Background

The name of OS fingerprinting vividly describes the
way it works. Just like we can uniquely identify a human
through the human fingerprint, we can identify an OS
by the information contained in the packets it sends. For
example, the values of Time-To-Live (TTL) field are one
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0s TTL | Window Size (bytes)
Linux 24 and 26 64 5840
Google customized Linux 64 5720
Linux kernel 2.2 64 32120
FreeBSD 64 65535
OpenBSD, Al 4.3 64 16534
Windows 2000 128 16534
Windows XP 128 B5535
Windows 7, Vista, and Server 8 128 8192
Cisco Router 105 124 255 4128
Solaris 7 255 8760
05X 64 65535

Figure 1: Popular OSs’ Time-To-Live (TTL) and window
size values [1]

of the indicators. While in the RFC 791 a prescribed value
for TTL has not been defined, different OSs then deter-
mine their own TTL values [3]. A recommended default
TTL is given in RFC 1700 [4], but it is not followed in
most implementations. A signature can then be generated
uniquely from integrating the different values for every
single OS. Fig.1 shows the TTL values and window size
values of popular OSs. Through comparing the generated
signature to the signatures stored in the database, an OS
can be identified.

OS fingerprinting has two types: active and passive.
With active OS fingerprinting, specific packets are sent to
the target host, and the information inside the response
packets is analyzed. Passive OS fingerprinting sniffs the
network traffic rather than sending packets to the hosts.
According to their different ways of working, their ad-
vantages are complementary and their information gains
are also different. Active OS fingerprinting has higher
accuracy and is easier to operate. In contrast, passive
OS fingerprinting is more concealed and can reduce the
likelihood of being discovered.

3. Different kinds of fingerprinting tools
In this section, popular tools are categorized and intro-

duced based on active fingerprinting, passive fingerprint-
ing and other types.

3.1. Active fingerprinting

We introduce Nmap, RING, Xprobe and its evolution
Xprobe2 as examples of active fingerprinting tools.
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# nmap -0 -v

SCanme . nmap.org

e nt: (47. | 31 (41.

Figure 2: The output of OS detection with verbosity

(5]

3.1.1. Nmap. Network Mapper (Nmap) is the most pop-
ular tool that can be used for active OS fingerprinting.
Nmap has two effective OS detection methods. One is OS
detection with verbosity, and the other is using a version
scan to detect the OS. We can receive the output shown
in Fig.2 with the following information [5]:

1. Device type. This field indicates the type of device,
e.g. router, firewall.

2. Running. This field shows the OS Family and OS
generation.

3. OS CPE. This field shows the Common Platform
Enumeration (CPE) representation of the OS or the hard-
ware. CPE is a naming standard for IT products and
platforms, which is machine-readable [6].

4. OS details. This field represents the detailed de-
scription for each matched fingerprint.

5. Uptime guess. This is a guess because Nmap can’t
ensure its accuracy.

6. Network Distance. Nmap can compute the number
of routers between it and a target host.

7. TCP Sequence Prediction. This field shows the
Initial Sequence Number (ISN) generation algorithm and
the difficulty of how hard it is to attack the host using
blind TCP spoofing.

8. IP ID Sequence Generation. This field indicates the
algorithm of how the host generates the lowly 16-bit ID
field in IP packets.

In the case of no fingerprinting matching, the “Service
Info” field might reveal the type of OS and Nmap provides
the most similar result. Using a fuzzy approach can let
Nmap guess more aggressively and offer a list of possible
matches with their confidence level in percentage. Nmap
also offers detailed information about the host with subject
fingerprints, when it cannot identify the host or when we
force it to print. An example of a subject fingerprint is
shown in Fig.3.

The scan line of the subject fingerprint describes the
conditions of the scan, which helps to integrate the finger-
prints in the database. Nmap conducts five response tests
through sending up to 16 special designed probes (13 TCP,
2 ICMP, 1 UDP). Below the scan line, the response lines
are related to the sent probes. The gained information in
each line according to the tests is shown in Fig.4.
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SCAN{V=5.85BETALXD=8/23%0T=22%CT=18CU=42341%PV=NEDS=0XDC=LEG=Y¥TM=4A01CEI0%
P=1686-pc-linux-gnu)

SEQ(SP=C9%GCD=1%TSR=CFR¥TI=ZHCI=7RIT=THT5=A)

0PS(01=M420CST11NWSX02=M480CST1INWSX03=M4@@CNNT 11NWSHE
04=M488CST1INWS¥05=1420C5T1INWSK06=M40@CST11)

WIN(W1=8000%W2 KW3=8008%1W4 i 2

ECH(R=YXDF=YXT=48%W=58218%0=1428CNNSNWS%CC=N%Q=)

T1(R=YEDF=Y%T=48%5=0%A=5+%F=ASKRD=0%Q=)

T2(R=N)

T3 (R=YEDF=Y%T=48%1=3000%5=08A=5+¥F=ASX0=1480CST1INWSXRD=0%0=)

T4 (R=YHDF=Y%T=40%=0%5=A%A=7%F=R%E0=%RD=0%0=)

TS (R=YEDF=Y%T=48%1=0%5=C%A=5+%F =ARX0=XRD=0%0=)

T6(R=YEDF=YET=48%W=-0%5=A%A=TXF=R¥0=KRD=0%0=)

(

(

(

=8

6

T7 (R=YEDF=Y®T=48%1=0%5=C8A=5+%F =ARKO=%RD=0%0=)

U1 (R=YH®DF=N¥T=40%TPL=164%UN=8%RIPL=G¥RID=GHRIPCK=G%RUCK=GHRUD=G)
IE(R=YXDFI=N%T=40%CD=5)

Figure 3: A subject fingerprint [5]

Test Line name Result
Sequence generation | SEQ GCD, SP, ISR, TI, II, TS, SS

OPS 01-06

WIN W1-W6

T1 R,DF, T,TG,W,S, A F,O,RD, Q
ICMP echo IE R, DFI, T, TG, CD
TCP ECN ECN R,DF, T,TG,W, O, CC, Q
TCP T2-T7 R, DF, T, TG, W, S, A, F, O,RD, Q
UDP Ul R, DF, T, TG, IPL, UN, RIPL, RID,

RIPCK, RUCK, RUD

Figure 4: The result obtained by each line classified by
the test

In the sequence generation test, six TCP probes are
sent. In the response line “SEQ”, seven results are shown.
Among them, the first three results (TCP ISN greatest
common divisor (GCD), TCP ISN counter rate (ISR), TCP
ISN sequence predictability index (SP)) are related to the
ISN generation algorithm. TI, IT and SS (Shared IP ID
sequence Boolean) are related to the IP ID sequence. TS is
about the TCP timestamp option algorithm. The response
line “OPS” contains the TCP options of the six received
packets (O1-06) and the “WIN” line includes the TCP
initial window sizes of them (W1-W6). The line “T1”
indicates values in the received packets that responses to
the first probe. The results are introduced together with
the TCP test below.

Next is the ICMP echo test. SS represents the result of
testing whether the IP ID sequence is shared between TCP
and ICMP. During the test two ICMP echo requests are
sent to the host. R represents responsiveness. The value
is true when reply is received. DFI indicates the Don’t
Fragment bit for ICMP. T means initial Time-To-Live, and
TG represents its guess if Nmap can’t get the value of T.
CD represents ICMP response code.

And then is the TCP explicit congestion notification
(ECN) test. ECN is a method that intends to reduce
network congestion without dropping packets and improve
network performance [7]. Nmap sends an SYN packet that
sets the ECN CWR (Congestion Window Reduced) and
ECE (ECN-Echo) congestion control flags in this test. The
value of CC (explicit congestion notification) indicates the
setting of CWR and ECE congestion control flags in the
response SYN/ACK packet.

Afterwards is the TCP test. Six TCP probe packets
with specific TCP options data are sent to the host. Except
for R, T, TG, W and O which have already introduced
above, DF (Don’t Fragment), S (TCP sequence number),
A (TCP acknowledgement number), F (TCP flags), RD
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(TCP RST data checksum), and Q (TCP miscellaneous
quirks) are also recorded as results. For RD, Nmap checks
if the host returns data like error message in the reset
packets. Q indicates the result for checking two quirks in
some implementation.

Finally, in the UDP test, a UDP packet is sent to
a closed port. IPL (IP total length) indicates the length
of the response packet. UN (Unused port unreachable
field nonzero) represents the result of checking whether
the last four bytes in the header is zero or not. RIPL
(Returned probe IP total length value) indicates the value
of the returned IP total length. RID (Returned probe IP
ID value) represents if the probe IP ID value has been
altered by the host. RIPCK (Integrity of returned probe IP
checksum value) shows if the IP checksum still matches
the packet, although it has been altered by network hops
during transit. RUCK (Integrity of returned probe UDP
checksum) shows if the UDP checksum remains the same.
RUD indicates the integrity of returned UDP data.

3.1.2. RING. Nmap has a great performance under the
condition of one opened, one closed TCP port and one
closed UDP port. RING is a tool as a patch against Nmap
that can be used when there’s only one opened port.
RING exploits the mechanism of packet retransmission in
TCP three-way handshake, which has not been considered
in other tools. An OS’s signature can be established by
forcing timeouts and then measuring the delay between the
packet retransmission or analyzing the information such
as TCP flags, sequence number or acknowledge number

[8].

3.1.3. Xprobe. Xprobe is based on analysis of ICMP in-
stead of TCP. Xprobe has advantages when the differences
between the TCP implementation are subtle, for example,
some Microsoft based OS. The number of datagrams that
Xprobe sends is very small. Thus Xprobe is stealthier. It
can send only one datagram and receive the corresponding
reply and then recognize up to eight different OSs [9].
Xprobe uses the following methods to fingerprint OS:
ICMP error message quoting size, [CMP error message
echoing integrity (based on the different implementations
of IP total length field, IPID, 3bits flags and offset fields,
IP header checksum, UDP header checksum, precedence
bits issues with ICMP error messages), DF bit echoing
with ICMP error messages, the IP time-to-live field value
with ICMP messages, using code field values different
from 0 with ICMP echo requests, and TOS echoing [10].

3.1.4. Xprobe2. The tools like Nmap and Xprobe rely on
a static decision tree to perform the results of identifica-
tion. This approach reduces accuracy because of network
topology or the nature of the fingerprinting process itself.
For instance, a packet might be affected while in transit,
or the user can alter some characteristics of a TCP/IP
stack’s behaviour [11]. To improve the problem, Xprobe2
utilizes a fuzzy approach with OS fingerprinting. The
fuzzy approach is a matrix-based fingerprinting matching
approach using the OCR (Optical Character Recognition)
technique. The results are shown in a matrix that includes
the scores (from 0 (NO) to 3 (YES)) of each test for
each OS, and a total score will be calculated for each
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OS. However, Nmap has already implemented this fuzzy
approach [12].

Xprobe2 allows users to modify the modules used for
testing. In general, there are seven modules loaded: ICMP
echo, time-to-live distance, ICMP echo, ICMP timestamp,
ICMP address, ICMP info request and ICMP port un-
reachable. After the tests, Xprobe?2 offers a list of possible
OSs with their corresponding probability in percentage
sort from the highest to the lowest.

3.2. Passive fingerprinting

The most well-known passive fingerprinting tool pOf
and other tools such as Ettercap, Satori and NetworkMiner
are introduced in this section.

3.2.1. pOf. The name of pOf is the acronym for passive
OS fingerprinting. Almost all passive fingerprinting tools
today reuse pOf for TCP-level checks [13]. Though pOf
can never be as accurate as Nmap, because its analysis is
based on the packet sent by the host itself, it is still an
ideal and precise tool and can be helpful when Nmap is
confused.

Except source IP address, port, the TCP flag, OS,
network distance, uptime, the output also offers a raw
signature. The 67-bit signature consists of information
of window size (16 bits), initial time-to-live (8 bits),
maximum segment size (16 bits), “Don’t fragment” flag
(1 bit), window scaling option (8 bits), sackOK option (1
bit), nop option (1 bit), initial packet size (16 bits) [12].

3.2.2. Ettercap. Ettercap is an open-source tool and is "a
multipurpose sniffer/interceptor/logger for switch LANs"
[14]. It is popular for detecting man-in-the-middle attacks
and enables OS fingerprinting. As a generalist, Ettercap’s
function of OS fingerprinting is not as precise as pOf. This
information can be gained by Ettercap’s fingerprinting: IP
address, port, network distance, hostname, device type,
fingerprint and OS.

3.2.3. Satori. Satori is a tool based on the analysis of
DHCP. The advantage of DHCP is unicast. One of the
methods is to use the difference of actual time, seconds
elapsed, transaction ID fields of the captured packages to
recognize OSs. Another method, also the main method of
Satori, is to analyze the parameters of DHCP’s option 55,
which indicates the parameter request list. Other options
can also be used to help to analyze specific OS, for
example, option 51 (IP Address Lease Time) and option
57 (Maximum DHCP Segment Size) for Linux [15]. The
lease of DHCP can also be exploited to recognize OSs
[16]. As the result of OS fingerprinting, Satori offers IP
address, fingerprint and a list of possible OSs with their
weight up to 12. The higher the weight, the bigger the
possibility.

3.2.4. NetworkMiner. NetworkMiner is an open-source
tool for Windows that can be used as a passive network
sniffer/packet capturing to detect OSs [17]. NetworkMiner
uses the database from pOf, Ettercap, and Satori. It also
makes use of the MAC-vendor list from Nmap. The
information is shown according to hosts but not to packets
or frames on NetworkMiner. IP address, MAC address,
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vendor, hostname, OS, time-to-live, network distance and
open TCP ports of each host can be gained using Net-
workMiner. The results of OS fingerprinting are listed
according to different databases, containing guesses with
their confidence interval in percentage.

3.3. Others

There are other types of tools that also can be used
for OS fingerprinting. Some of them work with the help
of the functions of the tools that we have introduced in
section 3.1 and 3.2. Some combine active and passive
fingerprinting. We briefly introduce them in this section.

3.3.1. SinFP. SinFP is a hybrid OS fingerprinting tool
that is active and passive. It is designed for addressing
the increasingly strict limitations and accurately identify
OSs in worst network conditions. For active OS finger-
printing, only three standard requests will be sent to the
target, and these standard-compliant frames ensure that
the responses are replied from the right target but not
the devices in-between. After receiving the responses, the
active signature with 15 elements (5 elements for each
of the three packets) can be established. The 5 elements
are respectively: a list of constant values, TCP flags, TCP
window size, TCP options and MSS (Maximum Segment
Size). For passive OS fingerprinting, SinFP implements
the method that modifies a passive signature and then
compares it with active signatures. The database of SinFP
has strict conditions for each signature. The principle is
that the response is not from devices in-between and the
target has at least one open TCP port [18].

3.3.2. ZMap+p0f. ZMap is a free and open-source net-
work scanner that has a very fast scanning speed. ZMap
can scan the whole public IPv4 address space within
45 minutes with a gigabit Ethernet connection [19]. To
achieve OS fingerprinting, one possible way is to run
ZMap and to launch pOf in the background at the same
time.

3.3.3. Scapy. Scapy is a program that can be used for
packet manipulation. It supports active and passive OS
fingerprinting by using the functions of Nmap and pOf.
On the other hand, it can actively fingerprint Linux kernel
2.4+ through establishing a TCP three-way handshake
with the target and then sending a segment with no TCP
flags and arbitrary payload. If the response set the flag
ACK, then the target is Linux server (2.4+ kernel) because
no other well-known current OS accepts this kind of
segment and this behaviour is hard to alter for Linux.
[20]

4. Machine Learning applied to OS finger-
printing

Machine learning can realize the automatic process
of OS fingerprinting. In [21], Aksoy et al. develop a
mechanism that classifies OS with high accuracy using
machine learning. They collect header information of IP,
ICMP, UDP, DNS, HTTP, IGMP, TCP, FTP, SSH and SSL
protocol manually to train the classifiers, instead of using
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Type Tool Protocol
Active MNmap TCP, ICMP, UDP
fingerprinting | RING TCP
Xprobe ICMP
Xprobe?
Passive pOf TCP
Fingerprinting | Ettercap TCP
Satori DHCP
MetworkMiner | Combines pOf, Ettercap and Saton
Others SinfFP TCP
Zmap+p0f Use pOf
Scapy TCP + functions of Nmap and pCf

Figure 5: A brief conclusion of the protocols that are used
by each tool

available OS fingerprinting approaches. The classifiers can
successfully detect OSs automatically. Since the approach
sniffs packets passively, it is seen as passive fingerprinting,
but the approach can also apply for active fingerprinting.

In [22] Schwartzenberg automates the process of up-
dating the database and recognizing the new OSs with the
help of machine learning. The database of pOf has been
updated manually all the time, and this is a complicated
work. The accuracy of pOf decreases because the database
has not been updated for new OSs. The approach in [22]
attempts to address this problem. The automatic process
of extracting the characteristics and normalizing the in-
formation is proved to be possible. In addition to this,
after using the traditional approach to identify OS, the
unrecognizable OS can be classified with higher accuracy
using the process that implemented machine learning and
trained by existing system set.

Anderson and McGrew [2] present a new approach
that integrates TCP/IP, HTTP and TLS features to identify
OSs. This approach uses a machine-learning classifier and
can identify minor versions with an accuracy of 97.5%.
Even under the condition of applying obfuscation, the
performance of this approach is robust. The accuracy
decreases to 94.95% against an obfuscation level of 25%.

5. Conclusion

According to the introduction above, we can find out
that Nmap sends more probes and gained more infor-
mation than others. Therefore, the accuracy of Nmap is
higher. Different from Nmap, Xprobe2 is based on ICMP
and implements a fuzzy approach. RING is more like
a patch for Nmap, it detects OSs in another point of
view. But since Nmap is popular, there are already many
measures against Nmap. Hence, the tool like SinFP helps
to steer by the limitations. In the field of passive OS
fingerprinting, pOf is already a very mature tool. Other
passive OS fingerprinting tools reuse pOf more or less.
Fig.5 briefly concludes the protocols that these tools use
for fingerprinting. Using the machine learning technique,
the OS fingerprinting process can be automated to increase
accuracy and efficiency.

This paper only offers a part of an overview of TCP/IP
OS fingerprinting. For instance, Nmap has specific tests
for IPv6 fingerprinting. The mechanism and the infor-
mation gained by it differ. Further work can focus on
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a

wider overview of fingerprinting tools, that use the

characteristics of IPv6 to recognize OS.
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