
Network Simulation with ns-3

Niklas Kuse, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: niklas.kuse@tum.de, jaeger@net.in.tum.de

Abstract—As computer networks become more complex,
agile and flexible methods for research are required, allow-
ing for a faster development of new network technologies.
Network simulation provides this flexibility. This paper gives
an overview on the network simulator ns-3. In addition to
that, ns-3 is compared to OMNeT++ another well known
network simulator and other measurement methods using
real or emulated hardware. This paper references current
projects which were realized using ns-3 to give an overview
of the various application areas of ns-3.

Index Terms—network simulation, ns-3, network emulation,
comparison, testbed

1. Introduction

Today’s global network infrastructure is growing
faster and faster. In order to keep up with the growing
data demand, new and improved techniques to send data
through those networks are required. That can be achieved
through more and optimized research in this field. A
popular approach is network simulation, providing a
universal applicable and cost effective way. Cost-effective
in terms of manpower, material and working time as
development using network simulation brings benefits
for all these aspects. In addition, research results using
network simulation are deterministic and can be validated
by others, by sharing the simulation setup. Another way
is to build a network topology using real world hardware.
This is not as flexible and cost effective as network
simulation. This paper gives an overview on the network
simulator ns-3 including its main structure. In addition
to this, other in the research well known approaches are
named and compared to ns-3. To help to decide if ns-3 is
the best research tool for a specific question, this study
will provide an overview on current research using ns-3
in their evaluation.

The structure of this paper is as follows: Section 2
provides related literature. Section 3 explains the main
structure and design goals of ns-3. To get an idea of the
overall performance of ns-3, Section 4 compares ns-3
to OMNeT++, real and emulated hardware and gives
insights into the implementation of ns-3. Section 5 names
work of different research areas all using ns-3. Finally,
Section 6 summarizes the main statements of this study
and states further work that can be done to support the
conclusions drawn.

2. Related Work

ns-3 is not the only network simulator available. The
book [1] by Wehrle et al. provides a good overview on
contemporary simulators. The book contains code snip-
pets explaining many use cases. Additionally, the authors
provide insights into the implementation of the simulators
ns-3, OMNeT++ and others. This allows a better under-
standing of the use cases the simulators are aiming at.

To get more information on the performance of the
simulators ns-3 and OMNeT++, the author of this paper
recommends taking a look into the original papers by
Weingartner et al. [2], Rehman Khana et al. [3] and Khan
et al. [4]. These papers do not only compare ns-3 and
OMNeT++, but other simulators as well, allowing to get
a better overview of all simulators available. All three
papers determine ns-3 as the most performant simulator
of the ones tested.

ns-3 can also be used in cooperation with other soft-
ware. Gawłowicz et al. picture a good example on such
cooperation in [5]. With their paper they contribute ns3-
gym. A framework composed of ns-3 and OpenAI sup-
porting the research for better networking protocols using
reinforcement learning.

3. Structure and Functionality of ns-3

ns-3 is a network simulator targeting research and
educational usage [6]. The simulator is implemented in
C++ and provides bindings for Python, backing much of
the C++ API [7]. Therefore, simulations for ns-3 have to
be written in one of these languages as well. Allowing
executed tests to be more easy to debug [8, section 2.1]
and more realistic than simulations realized in a higher
abstraction level like the predecessor ns-2 does. Simula-
tions are more realistic, because the C++ code will be
executed and no extra level of complex interpretation has
to take place. By avoiding this extra level of abstraction,
the implemented code of the simulation is closer to the real
world implementation used later. Simulation is realized
by processing a discrete list of all events about to occur,
sorted ascending by their occurrence time [8].

ns-3 provides several model types allowing the user to
specify all the different components of a network. To run
the simulation, the user has to create all network parts
needed for the simulation with respect to the following
categories:

• Nodes, used for physical network systems e.g.
smartphones or switches.

Seminar IITM SS 20,
Network Architectures and Services, November 2020 67 doi: 10.2313/NET-2020-11-1_13



• Devices, representing the actual part of a network
node that is responsible for network communica-
tion like the ethernet card.

• Channels, illustrating cabels and other mediums
used to transfer data in the real world.

• Protocols, describing the actions carried out on
each network packet.

• Headers, organizing the data stored in packet head-
ers as required by network standards.

• Packets, used to depict the data passed over the
network with header information and payload.

Besides these components ns-3 provides more objects
helping with the simulation by providing random num-
bers or storing additional required information [8]. As
described above, the simulator works by processing a
sorted list of events. To achieve this, the network topology,
that is about to be simulated, has to be created using
the network parts named above. Initial events have to
be declared that will start the simulation and may result
in the creation of further events. To schedule events the
event occurrence time, an event handler and all its needed
parameters are handed over to the simulator. Once the
simulation is started, the simulator iterates over the list
of sorted upcoming events. For each event, the simulation
time is adjusted with the event time and afterwards the cor-
responding handler is called to process it. Events that get
triggered by this handler during simulation, will be added
into the simulators list of upcoming events and processed
accordingly. As the simulator hops from event to event,
the processing time is not in correlation with the real time.
The simulation stops after a specified simulation time, or if
the list of upcoming events in the topology runs out [8].
Because ns-3 is aimed towards research, it is important
that test results can be gathered in any way required.
To fit this constraint, ns-3 includes a tracing subsystem,
allowing to measure and log any data. Data collection is
supported in common data formats like pcap that can be
analysed with packet analyzer software like Wireshark.
For a more customized data collection, the trace sinks,
parts of the tracing subsystem for data consumption, can
be edited, to support any format of data output to meet
the users need. Besides these analysis tools, ns-3 ships
with software supporting the visualised debugging. The
AnimationInterface can be incorporated in the siumlatiom
to collect test result data for debugging. After finalizing
the simulation, this data can be viewed as a graphic,
showing the packet flow in the simulations topology [8].
All these features enhance ns-3 to be a good simulator to
fit many research and educational needs.

4. Comparison with other Methods

Besides ns-3, other network simulators like OMNeT++
and even other approaches using emulated or real hard-
ware exist. This section will evaluate the major differences
to these concepts.

4.1. OMNeT++

OMNeT++ is a discrete event based simulator like
ns-3. Just as ns-3, OMNeT++ is written in C++, but

simulations are modelled using NED, a description lan-
guage translated into C++ during simulation. OMNeT++
does not focus on network simulation only, allowing other
event based simulations to be modelled and executed as
well [2]. This is because OMNeT++ was originally not
designed as a network simulator. Nevertheless, simulations
are modelled using different approaches. Both tools can
run similar simulations as shown by Weingartner et al.
in [2]. Due to this, comparing the performance of both
is crucial to decide which one to use for research. As
shown in Figure 1, both tools perform simulations in
linear computation time regarding the network size with
ns-3 being slightly faster than OMNeT++. The second
performance test executed by the authors of [2] inves-
tigated the memory usage. Their results, as shown in
Figure 2, indicate a better memory usage of ns-3 compared
to OMNeT++.

Figure 1: Simulation runtime vs. network size [2]

Figure 2: Memory usage vs. network size [2]

Comparing these results to the ones measured by
Rehman Khana et al. in [3] and Khan et al. in [4] for
ns-3 and OMNeT++ shows that ns-3 is able to maintain
its advantage over OMNeT++ in different simulations.
When evaluating these performance measurements today,
it should be kept in mind that the three tests have been
performed between 2009 and 2014. Today’s versions of
both simulators might behave different due to OS and
software optimizations.

Another advantage of ns-3 is the implementation of
packets. As packets in a network are carrying payload,
this has to be possible in the simulation as well. For many

Seminar IITM SS 20,
Network Architectures and Services, November 2020 68 doi: 10.2313/NET-2020-11-1_13



simulation use cases the actual payload itself does not mat-
ter, but only its size. Therefore, dummy payload is only
saved as a number representing the size used. As packets
are subject to changes in a real world network, packets in
ns-3 have to be as well. E.g. protocol headers are added
or removed in different processing stages. Because ns-3
only passes pointers of packets around, changing the data
for this pointer would as well result in changes at earlier
stages of the packet, which are not intended. To avoid this,
ns-3 enables a copy-on-write policy. This means, packets
are duplicated, if a function writes to the memory at a
pointer it has received from others [8]. Copy-on-write
allows the programm to copy as little memory as pos-
sible. This again results in an optimized memory usage.
In OMNeT++ packets are represented by C++ classes
containing all carried information. In addition, each packet
contains a pointer to its payload (the wrapped packet).
Contrary to ns-3, OMNeT++ includes a copy-on-access
policy to reduce the copy of unused packets [9, section
3.3.5].

4.2. Real Hardware

In addition to running network simulators,
measurements can be performed using real hardware
composed in a testbed. Using real world hardware allows
the researcher to execute protocols and other software
to be tested in their native environment. This results
in more accurate test results, containing information
a simulator could not determine [10] like random
interference on wireless networks. Most simulators make
assumptions (on the environment or based on random
numbers) while simulating the network topology [11].
As network simulators are mainly constructed for
research, they allow tests to be deterministic [11].
This constraint is highly required in scientific
research allowing other researchers to verify the
claimed statements. In contrast to this, testbeds
using real hardware can not fit this constraint.
As described by the author in [11] testbeds using
wireless communication have to be shielded against
external radiation. As this might be hard in larger scale
networks, the author describes that their testbed runs
tests during the night when less devices are emitting.
In addition to that, their testbed allows to be reset to
any point of the experiment, if unexplainable results are
gathered afterwards. Adding such features allows the test
results to be more reproducible, but not deterministic.
Another drawback using real hardware is that test
enviroments can not be scaled as easy as in network
simulators. In order to scale networks, additional
hardware has to be bought and added, resulting
in network simulation to be more affordable [3].
These expenses require experiments to be planned
more accurately in advance to minimalise experiment
costs. Additionally, these expenses make it harder
for other researchers to execute and verify the tests.
Observing experiments in testbeds can be challenging as
well, because test results can not be transferred using
the same communication channel as the test data. Using
the same channel, the test results would interfer with
the test experiment resulting in non-determinism. This
requires the data to be gathered and evaluated after the

completion of the test or adding another communication
channel [11]. Besides testing in testbeds, a researcher can
perform active or passive measurements in a real world
network e.g. the internet. Using active measurements, the
topology of a network part is analysed by sending packets
to other machines and determining the transfer rate or
elapsed time. In contrast to this, passive measurement
describes oberserving the traffic and packets, passing
a specific node without sending packets [12]. As these
measurements do not require to build a new network, it
comes with advantages in costs. In addition, results are
gathered on a real network making them representative.
On the other hand, results can vary according to the
workload in the network.

4.3. Emulated Hardware

Besides network simulation and testbeds using real
hardware, there also is a method taking parts of both. Re-
search approaches using emulated hardware would result
in a simulator controlling the experiment, but sending the
data over real, physical hardware [11]. Emulated hardware
allows tests to be more affordable than using only real
hardware. Nevertheless it has the same drawback with
respect to non-determinism, because data is transferred
using the same real world channels as approaches using
only real hardware. ns-3 supports such a research method,
as it can by used as the simulator sending its data over
the hardware [8].

5. ns-3 in Research

As mentioned above, ns-3 is a network simula-
tor aiming towards research. This section provides an
overview of recent work using ns-3. All these ap-
proaches have some specific requirements that differ
from the classic ones which most common networks
do not have. As ns-3 is able to match all these re-
quirements, this overview should help to decide, whether
ns-3 is the correct tool for a research task or not.
Quantum key distribution. ns-3 is used by Mehic et al.
in their paper [13] providing a module for quantum key
distribution. Quantum key distribution requires a specific
topology containing two communication channels. One
referred to as ’Quantum channel’ is used for the transfer of
quantum key material. The other one is used for the trans-
mission of encrypted data and verification. As described
by the authors, the quantum channel always has to be
a point-to-point connection. Additionally the network has
to meet some specific security requirements. Quantum key
distribution on real hardware is limited to a transmission
distance of about 100km using optical fibres. Building a
testbed using this technology is expensive as well. As a re-
sult of this and the fact that ns-3 can deal with all require-
ments, follows that ns-3 is a good choice for such research
tasks [13]. It should be mentioned that the module de-
scribed by the authors is made available with their paper.
Electric vehicle. According to Sanguesa et al. in [14],
network simulation becomes more and more important for
electric vehicle development. This is, because simulating
scenarios for vehicular networks is too expensive to be
done on real hardware. As cars become more and more

Seminar IITM SS 20,
Network Architectures and Services, November 2020 69 doi: 10.2313/NET-2020-11-1_13



interconnected, new and improved ways for this commu-
nication have to be found. This connection takes place to
enable better traffic management or autonomous driving.
ns-3 provides a perfect base for the development of such
protocols. Electric cars are dependent on electric energy
for all their operations. To provide a realistic simulation
of these vehicles, the authors of [14] provide a module
for energy consumption measurement in their paper. This
module provides a helper class to create an energy con-
sumption model for each node in the ns-3 simulation.
This module takes into account all important informa-
tion like weight or battery level during its evaluation.
To proof the good accuracy of their module, the results
are compared to a similar simulation using the traffic
simulator SUMO. For taking into account that the nodes
can move around dynamically as it might be required,
the next paper FlyNetSim provides a good approach.
FlyNetSim. ns-3 in not only a stand-alone network simu-
lator, but rather capable to incorporate with other software,
as shown in [15]. The authors use ns-3 in cooperation
with Ardupilot, an open source software for unmanned
vehicles navigation. With their paper they provide Fly-
NetSim. A simulator capable of simulating multiple un-
manned aerial vehicles. ns-3 enables their tool to provide
simulations for different communication ways between
the vehicles, using LTE or device-to-device communica-
tion, taking into account that the vehicles are moving
and distances between nodes are changing. The authors
choosed ns-3 because of its interfaces for external sys-
tems. A challenge the authors had to deal with is the
different time management used by ns-3 and Ardupilot.
As mentioned, ns-3 is a discrete event simulator. As
Ardupilot performs operations in real time, incorporating
both software is challenging. However, binding ns-3 to
a real-time scheduler allowed both ns-3 and Ardupilot
to incorporate with only a lack of accuracy in situa-
tions with many events in a short amount of time [15].
ns3-gym. ns-3 can not only work in cooperation with
other software, as described above, but rather simula-
tions can be controlled by external software, allowing
for even more complex cooperations. The authors of [5]
have created a framework that combines ns-3 and OpenAI
to support research for optimized networking algorithms
using machine learning based on reinforcement learning
(RL). Therefore, they incorporate ns-3 and OpenAI using
a custom middleware. This middleware is used, to enable
OpenAI to control specific nodes in the simulation. As
RL works by breaking the situation into steps executed
on after another, the middleware allows to start and stop
the simulation after such step in order to report the state
back to OpenAI. This allows OpenAI, to evaluate and
improve the learned after each step. In addition, ns3-gym
allows to evaluate knowledge gained from simulations
to be executed on real hardware afterwards, to improve
know-how in real world situations.

6. Conclusion and Further Work

A main goal of network simulation is to provide a
platform to develop and test new communication technolo-
gies. ns-3 fits this requirement by providing a framework
that can be extended by anybody allowing it to become
more and more robust. Another advantage of ns-3 is the

simplicity to scale topologies and execute deterministic
simulations. Both are constraints to develop new robust
and reliable technologies. Approaches using emulated or
real hardware are not able to match. On top of that,
ns-3 uses good approaches to reduce mistakes done by
the developer during the simulation development. This
avoids the occurrence of memory leaks during simulation
execution and results in an optimized memory usage.
Comparing ns-3 to OMNeT++ shows that it is more per-
formant than the latter, even though both are implemented
using C++. As shown in Section 5 modules for many
research fields are available for ns-3 simplifying its usage.
In the authors opinion, this enables ns-3 to be considered
in many research evaluations using any kind of network.
Thus, many research fields can profit from the benefits
ns-3 provides.

As mentioned in Section 4.1 the cited performance
evaluations of OMNeT++ and ns-3 were all performed
between 2009 and 2014. Due to the possible perfor-
mance improvements in OS and simulator, these results
might not be representative anymore. To get insights into
their today’s performance, some additional test would be
required. To aquire such information, performance test
using today’s OS and simulator versions and the ones of
the cited paper could be performed. Running the same
simulation structure in the old and current version would
allow to determine the performance improvements done in
the last years, resulting in a better understanding of today’s
accuracy of the results drawn from the cited papers. Back
then, the cited papers were produced five years apart and
the performance comparison was quite similar. This leads
us to the conclusion that the performance comparison
would not differ significantly today.

References

[1] K. Wehrle, M. Güneş, and J. Gross, Modeling and tools for network
simulation. Berlin, Heidelberg: Springer, 2010.

[2] E. Weingartner, H. vom Lehn, and K. Wehrle, “A performance
comparison of recent network simulators,” in 2009 IEEE Interna-
tional Conference on Communications, June 2009, pp. 1–5.

[3] A. u. Rehman Khana, S. M. Bilalb, and M. Othmana, “A perfor-
mance comparison of network simulators for wireless networks,”
2013.

[4] M. A. Khan, H. Hasbullah, and B. Nazir, “Recent open source
wireless sensor network supporting simulators: A performance
comparison,” in 2014 International Conference on Computer, Com-
munications, and Control Technology (I4CT), Sep. 2014, pp. 324–
328.

[5] P. Gawłowicz and A. Zubow, “Ns-3 meets openai gym: The
playground for machine learning in networking research,” in
Proceedings of the 22nd International ACM Conference on
Modeling, Analysis and Simulation of Wireless and Mobile
Systems, ser. MSWIM ’19. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 113–120. [Online]. Available:
https://doi.org/10.1145/3345768.3355908

[6] “Ns-3 homepage,” https://www.nsnam.org/, [Online; accessed 06-
June-2020].

[7] “Using python to run ns-3,” https://www.nsnam.org/docs/manual/
html/python.html, [Online; accessed 14-June-2020].

[8] G. F. Riley and T. R. Henderson, The ns-3 Network Simulator.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 15–34.
[Online]. Available: https://doi.org/10.1007/978-3-642-12331-3_2

[9] A. Varga, OMNeT++. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 35–59. [Online]. Available: https://doi.org/
10.1007/978-3-642-12331-3_3

Seminar IITM SS 20,
Network Architectures and Services, November 2020 70 doi: 10.2313/NET-2020-11-1_13



[10] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy,
P. Huang, S. McCanne, K. Varadhan, Ya Xu, and Haobo Yu,
“Advances in network simulation,” Computer, vol. 33, no. 5, pp.
59–67, 2000.

[11] B. Blywis, M. Guenes, F. Juraschek, and J. H. Schiller,
“Trends, advances, and challenges in testbed-based wireless
mesh network research,” Mobile Networks and Applications,
vol. 15, no. 3, pp. 315–329, 2010. [Online]. Available:
https://doi.org/10.1007/s11036-010-0227-9

[12] V. Mohan, Y. R. Janardhan Reddy, and K. Kalpana, “Active
and passive network measurements: A survey,” International
Journal of Computer Science and Information Technology, vol. 2,
pp. 1372–1385, 2011. [Online]. Available: http://ijcsit.com/docs/
Volume%202/vol2issue4/ijcsit2011020402.pdf

[13] M. Mehic, O. Maurhart, S. Rass, and M. Voznak, “Implementation
of quantum key distribution network simulation module in

the network simulator ns-3,” Quantum Information Processing,
vol. 16, no. 10, p. 253, 2017. [Online]. Available: https:
//doi.org/10.1007/s11128-017-1702-z

[14] J. A. Sanguesa, S. Salvatella, F. J. Martinez, J. M. Marquez-Barja,
and M. P. Ricardo, “Enhancing the ns-3 simulator by introducing
electric vehicles features,” in 2019 28th International Conference
on Computer Communication and Networks (ICCCN), July 2019,
pp. 1–7.

[15] S. Baidya, Z. Shaikh, and M. Levorato, “Flynetsim: An open
source synchronized uav network simulator based on ns-3
and ardupilot,” in Proceedings of the 21st ACM International
Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, ser. MSWIM ’18. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 37–45. [Online].
Available: https://doi.org/10.1145/3242102.3242118

Seminar IITM SS 20,
Network Architectures and Services, November 2020 71 doi: 10.2313/NET-2020-11-1_13


