
I8-Testbed: Introduction

Michael Haden, Benedikt Jaeger∗, Sebastian Gallenmüller∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: michael.haden@tum.de, jaeger@net.in.tum.de, gallenmu@net.in.tum.de

Abstract—There are different ways for testing of network
technologies. In this rapidly changing area the reproducibil-
ity of the performed experiments is especially important in
order to be validated for correctness by other scientists.
In this paper we present our I8-testbed, its architecture,
tools and workflow for fully automated and reproducible
network experiments. Special attention is paid to its main
part the internally developed plain orchestrating service
which manages the testbed orchestration, execution and
evaluation to achieve reproducible experiment results. An
important aim of this paper is to be a starting point and to
facilitate the entry for new users into the creation of own
experiments on the testbed.

Index Terms—testbeds, measurement, pos, reproducibility

1. Introduction

In experimental research the right testing infrastructure
plays a crucial role in achieving reproducible results.
There are various ways for an implementation depending
on the requirements of the particular research focus of
the chair. We present the testbed of our chair and its main
part the pos, the plain orchestrating service. It executes
the fully automated workflow for execution and evalu-
ation of network experiments. So far only a brief web
documentation of different parts of the testbed and some
example scripts exist [1] which in our experience causes
a prolonged learning period for a new user. Therefore it
is the motivation of this paper to provide a more detailed
documentation that gives an overview and acts as an entry
point for new users of the testbed to minimize the time
spend learning to create own experiments.

The goals of this paper are therefore to provide a
general understanding of the architecture of our specific
testbed for a new user, how the experiments are auto-
mated, orchestrated, executed and what distinguishes it
from different approaches. Moreover this paper should
provide a good overview of the different functionalities of
the testbed orchestration service pos, when each function
is used and how a typical experiment workflow looks like.
Finally after reading this paper a new user should be able
to understand the functioning of other testing scripts and
finally to create experiments on their own.

The paper is structured as follows. Section 2 explains
basic terms for the understanding of the further sections.
Section 3 reviews how the testbed compares to other
testbeds. In Section 4 we provide an overview of our
testbed architecture including pos. In Section 5 a typical

experiment workflow is shown on basis of an example
script, before the paper is concluded in Section 6.

2. Background

The ACM distinguishes experiment results into 3 main
categories [2]:

Repeatability means that the same experiment result
can be repeatedly obtained by the same researcher using
the same measurement setup each time. As the weakest
classification every well-controlled experiment should ful-
fill this condition.

Reproducibility has been achieved by an experiment
if the same results can also be obtained by a different
researcher but using the same measurement setup. This
presupposes that the original setup is made available for
other researchers by publishing all used tools and scripts
or by providing access to the infrastructure that was
initially used.

Replicability is the final goal for every experiment re-
sult. Different researchers obtain the same measurements
by using their own self developed experiment setup which
differs from the initial setup.

3. Related work

In this section we provide an overview of the differ-
ences between our testbed and some others that specify on
reproducible research mainly based on the research done
by Nussbaum [3].

A main characteristic of our testbed are the dedicated
hosts that are used for every test node together with the
live images that are booted for every experiment. This
puts it in a common ground with Emulab which also
uses a cluster of bare metal systems that are allocated
exclusively to users. In contrast to PlanetLab which uses
a container technology to share one host between different
users resulting in changing testing conditions.

Chameleon, CloudLab and Grid’5000 also support a
customized configuration by users like our testbed but not
all provide information about its implementation.

Compared to Planet-Lab where the Internet has a
direct impact on the experiment result and thus making
the results not reproducible [4] Emulab and our testbed
are in no influence by outside networks. That means that
all traffic which is needed for the experiment needs to be
generated by a load generator like MoonGen [5] on one
of the test nodes in the testbed.

Seminar IITM SS 20,
Network Architectures and Services, November 2020 61 doi: 10.2313/NET-2020-11-1_12

Management node
(pos)

Test node 2Test node 1

Server pairs

Test node 2Test node 1

Test node 2Test node 1

Figure 1: Testbed architecture

4. I8-Testbed

The chair infrastructure we use for our network exper-
iments consists of multiple testbeds with different points
of focus. [1] One testbed with a focus on testing Software
Defined Networking (SDN) for instance is built up of
15 test nodes (servers) having different network connec-
tivity. [5] Each testbed is structured in a management
node and the different test nodes as seen in Figure 1. A
dedicated bare-metal server controlled over the Intelligent
Platform Management Interface (IPMI) is used for every
node instead of using virtualization to prevent a possible
distortion of the results by the simultaneous use of a server
by several users. IPMI allows the management and control
of the server hardware over network also if powered off or
unresponsive and therefore eliminates the need for being
physically present in front of the server. To encourage re-
producibility new images of the desired operating systems
are live booted for every test to get reproducible results.
A reboot therefore leads to a fresh operating system and
a loss of all data on the node but also forces users to plan
out their experiments including configuration and result
gathering as scripts. Which in turn has the advantages
that every experiment by itself is fully repeatable and
every test node stateless which results in less administra-
tive workload to maintain each system. Each authorized
user has a home directory and remote ssh access to
the management node and root access on the test nodes
which enables others to replicate the experiments. On the
management node runs the management tool pos (plain
orchestrating service) daemon which follows the overall
sequence of allocating the needed hosts, orchestrating the
experiments and collecting the experiment data. The pos
daemon offers a REST-API which can be accessed by
using the python library posapi or its command line
interface pos cli, both accessible from the management
node. They allow reservation, allocation, configuration
and management of test nodes and are used to launch
commands on them. From the test nodes themselves the
communication with the pos daemon happens through
the python library postools or via the pos_⁎ commands
on the command line. They are used to synchronize test
nodes, start, kill or wait for an additionally process in
the background or transferring test results or files that are
needed for the experiment between the management node
and the test nodes. The configuration of the experiments
happens over variables that are set for the experiment to
make the configuration easier.

Management node
(pos)

LoadGenDuT

1

2
3

4

2

4

Figure 2: Typical experiment setup [5]

Yes

Nocalendar entry? create calendar
entry

Yes

No

nodes
allocated? free allocation

allocate nodes set image

start nodeslaunch commandswait for finish

set config
variables

Figure 3: Typical node allocation workflow

5. Workflow of the I8-Testbed

This section provides a high-level overview of the
workflow of a typical experiment from setup, execution to
evaluation, first from the management node side as seen
in Figure 3 and then from the side of the testing nodes as
seen in Figure 5. A typical experiment setup consists of
two test nodes, one of which is the LoadGen with a load
generator like MoonGen [5] and the other the DuT as seen
in Figure 2. In the following example we will explain an
experiment to measure the impact of restricting the CPU
frequency on the network latency between two nodes.
After the management node has setup the nodes 1 and
the experiment is configured 2 , one node, the LoadGen,
will generate traffic that is sent to the other node, the DuT
3 , who forwards the received traffic back to the sender.
The latency of the packets is measured and the results
are transferred back to the management node 4 . This
setup is often used in various ways to benchmark software
like firewalls for latency or data rate of the connection.
The corresponding commands that are referenced in the
following sections for the management node and the two
test nodes are to be found in Listing 1, Listing 2 (DuT)
and 3 (LoadGen) respectively. The references per line of
the test node scripts follow the pattern (DuT, LoadGen)
or (D) (L) e.g. (7,4) or (D7) (L4) when referencing to line
7 in the DuT and line 4 in the LoadGen script.

5.1. Management node

Access to testbed. To get access to the chair infrastructure
including the testbed, a chair account is needed which will
be created together with the user’s advisor. The account is
created and the user gets the corresponding password. Due
to security reasons the infrastructure of the chair itself is
only accessible mostly via ssh key instead of ’password
only’. Therefore it is necessary to upload a ssh key to the
ssh gateway where it is added into the central ldap.

Reservation. To allow a simultaneous use of the different
nodes of a testbed by several users and a better organiza-
tion of the resources over time a reservation for needed

Seminar IITM SS 20,
Network Architectures and Services, November 2020 62 doi: 10.2313/NET-2020-11-1_12

Figure 4: Web calendar reservation [6]

nodes is mandatory for every experiment. This reservation
can be done by authorized users through a calendar web
view as seen in Figure 4 where all reserved nodes and
their users are listed, by using the pos cli on the used
testbed itself or by specifying a duration when creating
the allocation. The reservation can be extended later on.
To get familiar with the system it is desirable to use
the nodes with 1 Gbit/s connection because of their low
usage. The nodes are getting reserved for the time of the
calendar entry during which a claim of the node allocation
(which follows shortly) by other users (except admins) is
prevented. After the reservation has expired the allocation
can be freed by everyone.

Node allocation. With a valid calendar entry the alloca-
tions of needed nodes can now be freed if still allocated
by their last user (1) and a new allocation can be created
with the pos cli (3). An allocation ID and the path to a
new corresponding directory for this experiment will be
created and returned. By using the ID more nodes can be
added later. Admins can also free any reservation by using
the --force flag.

Configuration. The configuration of the experiment
works by using YAML formatted files that are referenced
at with the pos cli (4). For most use-cases only simple
key value configuration is needed. The variables of the
configuration will then be loaded to the specified nodes
where they can then be accessed by the nodes with the
pos cli. The variables can be either set as local or global.

Image. Because of the live booted operating system the
desired image of each node needs to be selected and
started (7). There are multiple testbed images available in-
cluding the most current versions of standard distributions
which are updated regularly. Usually a regular Debian
image is enough for the experiments. Custom images are
also supported by using mandelstamm [7] which is a
collection of scripts for building custom images for pos-
controlled testbeds.

Booting. The management node can now transfer the
selected image to the nodes and boot them by using PXE
boot. When reset is specified the nodes will be stopped
if running and then booted (9).

Command launching. The experiment itself on the test
nodes consists of bash or python scripts which contain
the commands that shall be executed on the nodes. These
scripts are selected via the pos cli (11), automatically

transferred to the defined nodes and executed. The com-
mands can be launched as blocking, non-blocking or
queued. Now the test nodes run the experiment as de-
scribed in the next section. When invoked as non-blocking
or queued a command ID is returned which can be used
to wait for the commands to finish (13).

After the experiment is done the used nodes are
stopped and their allocation will be freed (14). The exper-
iment results are now available on the management node
where they can be further processed and analyzed.

Evaluate results. The results are placed in the directory
as stated at the allocation with a root directory that is
named with a unique timestamp of the experiment and
under that is the configuration of the experiment and the
uploaded results which make then the experiment easier
to reproduce. On the second level are folders for configu-
ration, each node that was involved in the experiment and
energy measurements if the node supports them. Config
contains values that define the configuration of the nodes
like kernel version, physical address and the configuration
variables that were set for the experiment. This is essential
to replicate the results with identical resources and con-
figuration. The test node directories contain the program
code that was used for the experiment, the produced output
of the program and the actual results that were specified to
be uploaded. If energy measurements were started during
the experiments they are also in a separate directory.

Listing 1: Experiment script on management node [8]
1 pos a l l o c a t i o n s f r e e NODE1
2 pos a l l o c a t i o n s f r e e NODE2
3 pos a l l o c a t i o n s a l l o c a t e NODE1 NODE2
4 pos a l l o c a t i o n s v a r i a b l e s NODE1 PATH
5 pos a l l o c a t i o n s v a r i a b l e s NODE2 PATH
6 pos a l l o c a t i o n s v a r i a b l e s NODE2 PATH −−as − g l o b a l
7 pos nodes image NODE1 debian − b u s t e r
8 pos nodes image NODE2 debian − b u s t e r
9 pos nodes r e s e t NODE1

10 pos nodes r e s e t NODE2
11 pos commands l a u n c h −− i n f i l e PATH NODE 1 −−

queued
12 pos commands l a u n c h −− i n f i l e PATH NODE 2 −−

queued
13 pos commands a w a i t ID
14 pos a l l o c a t i o n s f r e e ALLOCID

5.2. Test node

The scripts on both nodes are now executed and start
their procedure.

Setup system. First, the shell is configured to log every
command to be able to retrace the sequence of events later
(1) and exit when an error occurs (2). Afterwards, various
system specific variables of the DuT are logged like the
current kernel version (3) that might be of interest in the
experiment evaluation later.

Both nodes then clone the program code that is used
for the experiment (8,5), in this case libmoon and the
tool MoonGen which builds upon it. A specific branch
is checked out by fetching the corresponding variable that
was set beforehand (10,7) and the hash of the exact git
commit is written back (11,8) to the management node.
Important configuration variables like the exact commit

Seminar IITM SS 20,
Network Architectures and Services, November 2020 63 doi: 10.2313/NET-2020-11-1_12

build code

get config
variables

configure system

synchronize
nodes

run experiment

upload results

Yes

more
tests?

Figure 5: Typical experiment workflow

that is used are again logged for future reference. It should
be noted that the access of allocated variables creates
traffic on the management interface and should therefore
be only used between measurements or during setup to
not distort the experiment results. Now the code on both
nodes can be freshly built (12,9) and the DuT is configured
for the experiment by disabling turbo boost and locking
the frequency of the CPU (14) on a value specified in
the configuration. Additional variables like the network
interfaces that are to be used and the measurement period
are fetched. By specifying the minimum and the maximum
transfer speed that should be tested in combination with
the delta that shall be used between the tests, the LoadGen
calculates the individual speed steps that are to be tested
in this experiment (L14).

Synchronize nodes. The steps are then synchronized with
the DuT by setting the corresponding variable from the
LoadGen (L15) and initiating a sync on both nodes by
using an instruction that will only return when all nodes
called it (20,16). This ensures that the DuT can receive the
variable of the steps (21) that was set from the LoadGen
which completes the experiment setup.

Run experiment. Now the actual experiment can be
started which is divided into multiple test runs with a
different transmission speed as specified in the speed
steps. Each step begins by specifying a location of the
experiment results on the LoadGen named after the current
step (L19) and a synchronization of the two nodes (24,20).
The freshly built programs can then be launched in the
background with the defined configuration (25,22). The
LoadGen starts a Lua script that generates traffic with
a specified packet rate on a defined port, receives it
again on a different one and writes the latency of the
received packets to a file. The DuT also executes a Lua
script of libmoon that simply forwards the traffic that it
receives back to the transmitter. When running the scripts
a command id is specified, named after the current step,
which is later used as reference point to the launched
command.

Upload results. After the measurement period has expired
(L24) the LoadGen kills the program per command id
(L25) and uploads its results back to the management
node (L26). A sync is then initiated (2,27) which informs
the DuT that this test run is finished and the program on
its side can also be killed (D28). The experiment is now
repeated with the rest of the steps that are to be tested
after which the script is done and exits.

Listing 2: dut.sh [9]
1 s e t −e

2 s e t −x
3 p o s _ s e t _ v a r i a b l e h o s t / k e r n e l − v e r s i o n $ (uname −v)
4 p o s _ s e t _ v a r i a b l e h o s t / os $ (uname −o)
5 p o s _ s e t _ v a r i a b l e h o s t / machine $ (uname −m)
6 GIT_REPO=$ (p o s _ g e t _ v a r i a b l e g i t / r epo)
7 DUT= libmoon
8 g i t c l o n e −− r e c u r s i v e $GIT_REPO $DUT
9 cd $DUT

10 g i t c h e c k o u t $ (p o s _ g e t _ v a r i a b l e g i t / commit)
11 p o s _ s e t _ v a r i a b l e g i t / commit − hash $ (g i t rev − p a r s e

−− v e r i f y HEAD)
12 . / b u i l d . sh
13 . / s e t u p − h u g e t l b f s . sh
14 echo 1 > / s y s / d e v i c e s / sys tem / cpu / i n t e l _ p s t a t e /

n o _ t u r b o
15 echo $ (p o s _ g e t _ v a r i a b l e cpu − f r e q) > / s y s / d e v i c e s

/ sys tem / cpu / i n t e l _ p s t a t e / m a x _ p e r f _ p c t
16 echo $ (p o s _ g e t _ v a r i a b l e cpu − f r e q) > / s y s / d e v i c e s

/ sys tem / cpu / i n t e l _ p s t a t e / m i n _ p e r f _ p c t
17 RUNTIME=$ (p o s _ g e t _ v a r i a b l e r u n t i m e −−from − g l o b a l

)
18 PORT_TX=$ (p o s _ g e t _ v a r i a b l e p o r t / t x)
19 PORT_RX=$ (p o s _ g e t _ v a r i a b l e p o r t / rx)
20 pos_sync −− t a g s y n c _ s t e p s
21 STEPS=$ (p o s _ g e t _ v a r i a b l e −− remote −−from − g l o b a l

s t e p s)
22 pos_sync
23 f o r STEP i n $STEPS ; do
24 pos_sync
25 pos_ run dut$STEP −− . / b u i l d / $DUT examples / l2

− f o r w a r d . l u a \
26 $PORT_TX $PORT_RX
27 pos_sync
28 p o s _ k i l l dut$STEP
29 done

Listing 3: loadgen.sh [10]
1 s e t −e
2 s e t −x
3 GIT_REPO=$ (p o s _ g e t _ v a r i a b l e g i t / r epo)
4 LOADGEN=MoonGen
5 g i t c l o n e −− r e c u r s i v e $GIT_REPO $LOADGEN
6 cd $LOADGEN
7 g i t c h e c k o u t $ (p o s _ g e t _ v a r i a b l e g i t / commit)
8 p o s _ s e t _ v a r i a b l e g i t / commit − hash $ (g i t rev − p a r s e

−− v e r i f y HEAD)
9 . / b u i l d . sh

10 . / s e t u p − h u g e t l b f s . sh
11 RUNTIME=$ (p o s _ g e t _ v a r i a b l e r u n t i m e −−from − g l o b a l

)
12 PORT_TX=$ (p o s _ g e t _ v a r i a b l e p o r t / t x)
13 PORT_RX=$ (p o s _ g e t _ v a r i a b l e p o r t / rx)
14 STEPS=$ (c a l c _ s t e p s)
15 p o s _ s e t _ v a r i a b l e −−as − g l o b a l s t e p s $STEPS
16 pos_sync −− t a g s y n c _ s t e p s
17 pos_sync
18 f o r STEP i n $STEPS ; do
19 OUTFILE = " / tmp / h i s t o g r a m $ {STEP } . csv "
20 pos_sync
21 s l e e p 2
22 pos_ run loadgen$STEP −− . / b u i l d /$LOADGEN

examples / l2 − load − l a t e n c y . l u a \
23 $PORT_TX $PORT_RX − r $STEP − f $OUTFILE
24 s l e e p $RUNTIME
25 p o s _ k i l l loadgen$STEP
26 p o s _ u p l o a d $OUTFILE
27 pos_sync
28 done

6. Conclusion

The I8-Testbed with pos simplifies the whole testing
workflow and eases the realization of reproducible experi-
ments by providing a reliable orchestration for performing

Seminar IITM SS 20,
Network Architectures and Services, November 2020 64 doi: 10.2313/NET-2020-11-1_12

and evaluating network experiments. A main problem
was that the introduction to reproducible research on our
testbed for new users may be difficult because no good
entry point and overview was present. We believe we have
improved it by starting with presenting the meaning of
different reproducibility terms and the characteristics and
differences of our testbed in comparison to others. By
proving a thorough explanation of the general architecture
of the testbed, pos and the interaction between parts of
the testbed in combination with a typical workflow we
think that a new user gets a good entry and overview
into working with our testing infrastructure. Moreover
a typical example script that is the foundation for most
of the experiments was provided and explained in detail
which gives a good overview over all functions of pos,
should enable a new user to understand additional scripts
and finally implement own experiments on the basis of
this one on the testbed.

References

[1] “I8-testbeds Wiki,” https://gitlab.lrz.de/I8-testbeds/wiki/-/wikis/
home, 2020, [Online; accessed 03-June-2020].

[2] “Artifact Review and Badging,” https://www.acm.org/publications/
policies/artifact-review-badging, 2020, [Online; accessed 08-June-
2020].

[3] L. Nussbaum, “Testbeds support for reproducible research,” in
Proceedings of the Reproducibility Workshop, ser. Reproducibility
’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 24–26. [Online]. Available: https://doi.org/10.
1145/3097766.3097773

[4] N. Spring, L. Peterson, A. Bavier, and V. Pai, “Using planetlab for
network research: Myths, realities, and best practices,” SIGOPS
Oper. Syst. Rev., vol. 40, no. 1, p. 17–24, Jan. 2006. [Online].
Available: https://doi.org/10.1145/1113361.1113368

[5] S. Gallenmüller, D. Scholz, F. Wohlfart, Q. Scheitle, P. Emmerich,
and G. Carle, “High-performance packet processing and measure-
ments,” in 2018 10th International Conference on Communication
Systems Networks (COMSNETS), 2018, pp. 1–8.

[6] “baltikum Calendar,” https://kaunas.net.in.tum.de/, 2020, [Online;
accessed 15-June-2020].

[7] “mandelstamm - Create OS images for the pos-controlled testbeds,”
https://gitlab.lrz.de/I8-testbeds/mandelstamm, 2020, [Online; ac-
cessed 08-June-2020].

[8] “simple-moongen setup.sh,” https://gitlab.lrz.de/I8-testbeds/
pos-examples/-/blob/master/tutorials/simple-moongen/bash/setup.
sh, 2020, [Online; accessed 15-June-2020].

[9] “simple-moongen dut.sh,” https://gitlab.lrz.de/I8-testbeds/
pos-examples/-/blob/master/tutorials/simple-moongen/bash/
commands/dut.sh, 2020, [Online; accessed 15-June-2020].

[10] “simple-moongen loadgen.sh,” https://gitlab.lrz.de/I8-testbeds/
pos-examples/-/blob/master/tutorials/simple-moongen/bash/
commands/loadgen.sh, 2020, [Online; accessed 15-June-2020].

Seminar IITM SS 20,
Network Architectures and Services, November 2020 65 doi: 10.2313/NET-2020-11-1_12

