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Abstract—Certificate Transparency (CT) can improve end
user’s security advancing the already established HTTPS; it
is an emerging, though not yet fully developed technology.
Its imperfections bring about new potential threats such as
Partitioning Attacks, leaking of domain names, or overloaded
logs. In this paper, we study how CT has been deployed so far
and which browsers already support it. We take a closer look at
logs and their requirements, as well as available HTTP headers
assisting CT. We further study the aforementioned threats and
demonstrate currently available countermeasures.

Index Terms—certificate transparency, log, browser, deploy-
ment, expect-ct, threats, equivocation, gossiping, leaking do-
main names, wildcard certificates, label redaction

1. Introduction

HTTPS ensures confidentiality on networks by en-
crypting communication. In a TCP connection, a client’s
browser performs a handshake with a webserver during
which an SSL certificate is submitted, proving authenticity
of the domain (represented as ’B’ in Figure 1). Website
owners request this certificate from a Certificate Authority
(CA) (’A’ in Figure 1). [1]

In 2011, however, hackers compromised the Dutch
CA DigiNotar and issued a fraudulent certificate targeting
Google users in Iran [2]. Subsequently, “the certificate
was revoked and the offending CA was removed from
client trust stores” [1], causing many Dutch websites using
a certificate from DigniNotar becoming inaccessible. On
numerous occasions, similar incidents were not detected
for several weeks causing a great deal of damage [3].

To better cope with such incidents, Certificate Trans-
parency (CT) has been developed [1]. It aims to provide
“an open auditing and monitoring system that lets any
domain owner or CA determine whether certificates have
been mistakenly or maliciously issued” [3], ultimately
protecting end users.

This paper provides an overview of background infor-
mation, CT’s current deployment, contemporary threats
and their countermeasures. The rest of this paper is struc-
tured as follows. Chapter 2 presents important background
information and introduces the key concepts. Chapter 3
focuses on CT’s current deployment. How successfully
has CT been developed so far? Is it already supported by
every browser? How does this support look like? Which
requirements must logs meet to become trusted? Can
HTTP headers assist if CT is not supported by default?
Chapter 4 focuses on contemporary threats and unintended
uses of CT. What are Partitioning Attacks and is there any

available countermeasure today? Why is the leaking of
domain names treacherous and can it be prevented? What
if logs become overloaded? Has it ever happened at all
and how could it be averted? Related work can be found
in Chapter 5.

2. Background

CT extends the existing TLS system by three new
actors: logs, monitors, and auditors. Figure 1 illustrates
the existing components in blue and supplementary ones
in green.
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Figure 1: Components of CT [4]

Logs are independently operated, publicly auditable
records of certificates. They are append-only: once a
certificate has been added to a log, it cannot be deleted,
modified, or retroactively inserted.

Logs are formed by a binary Merkle Hash Tree (with
leaves and nodes). Figure 2 exemplifies such a tree. Each
leave represents a value of the corresponding appended
hashed certificate. Leaves are paired with other leaves
forming nodes, which can be paired too forming further
nodes. Nodes also represent hash-values. The root hash,
comprising all nodes and leaves, is called the Merkle Tree
Hash (MTH). It assures logs are append-only since any
change of log’s entries leads to a different MTH. Logs
regularly sign it together with other information such as
the Merkle Hash Tree’s size and version. A signed MTH
is called Signed Tree Head (STH). [4]–[7]

“A certificate is considered included in a log when
it is covered by an STH” [5]. “When a log receives a
certificate, it replies with a Signed Certificate Timestamp
(SCT)” [1].

An SCT is a promise to add the certificate within a
time known as Maximum Merge Delay (MDD). There
are three ways to deliver an SCT either embedded as an
X.509v3 Extension, as an TLS Extension, or via OCSP
Stapling. The first method is most widely used and of-
tentimes the only supported. The CA logs the certificate
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Figure 2: Merkle Hash Tree: Log’s Structure [6], [8]

and embeds the SCT, thus it does not require any server
modification. [4]

In TLS Extension, domain’s server itself submits the
certificate to the log and obtains the SCT itself [4]. It is
considered the fastest method but requires modifying the
server, thus less supported [9]. OCSP Stapling is more
complex, very little supported and disabled in Chrome [5].

Both certificates and logs can lose their trust. Mis-
issued or bogus certificates are revoked. Misbehaving logs
can be fully distrusted, disqualified, or frozen. A frozen
log remains in read-only mode but cannot add any new
certificates or sign any new STHs, though existing STCs
remain being accepted. Logs face similar consequences
if they are disqualified, except that non-embedded SCTs
must be replaced. In case a log is fully distrusted, none
of its issued SCTs will be accepted anymore. [1]

Monitors detect suspicious certificates in logs and
verify the visibility of all certificates (’C’ in Figure 1).
They are typically run by CAs and since they maintain a
log’s complete copy, they can “act as a backup read-only
log”. [4]

Auditors are typically included in client’s browsers
and verify SCT’s validity [6]. They also assure that a
“certificate represented by a given SCT has in fact been
logged” by requesting an inclusion proof [1]. In addi-
tion, they can request a consistency proof to verify that
log’s entries have neither been modified nor retroactively
deleted and logs only present consistent views (’D’ in
Figure 1) [1].

3. Deployment

CT was first standardized in June 2013 with RFC
6962 [7]. Today, CT is already supported in more than
60% of HTTPS traffic [1]; still not every browser is capa-
ble of effectively handling it. Overall, CT is an emerging,
yet not fully developed technology.

In the following, we show which of the major four
browsers provide support. We take a more detailed look
at Chrome for two reasons. First, Google has been the
pioneer in CT deployment and its enforcement. Secondly,
Chrome was by far the most widely used browser world-
wide with over 65% in May 2020. Safari browser was
on the second place with 18%, followed by Firefox and
Edge both with around 3% [10]. We examine Chrome’s

and Safari’s policies for CT and trusted logs and finally
introduce two HTTP headers: Require-CT and Expect-CT.

3.1. Browser Inclusion

Fearing to break too many websites, browsers enforced
CT gradually. At first, Google required all Extended Vali-
dation (EV) certificates issued following January 2015 to
be CT-logged. In September 2017, Chrome also began to
provide support for the Expect-CT HTTP header. In July
2018, they enforced CT for all certificates issued since
May to comply with Chromium’s CT policy. If during a
TLS handshake the certificate is missing, expired or is not
logged, the connection fails and users are shown a security
warning. [1], [11]

Each certificate must be accompanied by at least two
SCTs from diverse qualified logs, one from a Google log
and one from a non-Google Log. This forces a potential
attacker to compromise multiple different logs simultane-
ously [12]. Currently qualified logs are listed in [13].

If at least one of the SCTs is delivered using TLS
extension or OCSP Stapling, the aforementioned criteria
is enough; otherwise, the number of required logs depends
on certificate’s validity period, as listed in Table 1. Should
it be shorter than 15 months, 2 distinct (qualified) logs
are sufficient. One more additional log is required in case
the certificate’s lifetime is between 15 and 27 months.
The policy argues against exceeding 27 months; however,
it does not prohibit it. Supposing the validity period is
longer than 27 months but maximum 39, 4 different logs
are needed; all longer valid certificates must be logged in
5 diverse logs. [12]

TABLE 1: Number of Embedded SCTs in Chrome [12]

Lifetime of Certificate Number of SCTs from distinct logs

< 15 months 2
>= 15, <= 27 months 3
> 27, <= 39 months 4

> 39 months 5

Apple quickly followed with its Safari enforcing all
certificates issued subsequent to October 15th, 2018 to
be CT-logged. Its CT policy comprises the same criteria
as Chrome’s [14]. Microsoft announced their aspiration
for CT checking in Edge [15], though there is no current
support yet [16]. Neither is any available for Mozilla Fire-
fox [17], their experimental implementation for telemetry
caused performance issues [18]. The middle column of
Table 2 displays the aforementioned four browsers and
whether they enforce CT.

TABLE 2: Browsers’ CT-Support [12], [14], [16], [17],
[19], [20]

Browser CT Enforcement ExpectCT Support

Chrome yes yes
Safari yes no

Firefox no no
Edge no yes

3.2. Log Requirements

In the following, we explain which criteria need to be
met for a log to become and remain trusted in Chrome and
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Safari. It is important to note that both Google and Apple
can always withdraw their trust in a previously accepted
log again for any reason. Overall, their log policies are
almost identical. [21], [22]

3.2.1. Inclusion Request Requirements. When applying
for log inclusion, its operators must provide a log’s de-
scription, policies for accepting and rejecting certificates,
as well as log’s MDD. They must further list all accepted
root certificates, log’s public key and its URL for the
public HTTP endpoint. They must finally provide contact
information for people both operating and representing,
Apple requires two contacts respectively. [21], [22]

An example (Nimbus 2018) for an inclusion request
can be found in [23].

3.2.2. Monitoring: Ongoing Requirements. Both
Google and Apple monitor the log after accepting its
inclusion request to verify it conforms to their CT
policies. They expect the following criteria to be met at
any time. [21], [22]

Logs must comply with RFC 6962 and implement its
CT correspondingly, e.g., being append-only and publicly
auditable. They must always provide consistent views
to different parties, i.e., avoiding equivocation (see Sec-
tion 4.1). Their MDD must not exceed 24 hours. Both
Google and Apple further require an uptime of 99%,
though both measure it individually. [21], [22]

Apple instructs to “trust all root CA certificates in-
cluded in Apple’s trust store” and to “accept certificates
that are issued by Apple’s compliance root CA to monitor
the log’s compliance with these policies” [22]. Google
does similarly and also issues own certificates for monitor-
ing purposes that must be accepted when requested [21].

3.3. HTTP Headers

A site operator can utilize an HTTP header to neces-
sitate all certificates for its domain being logged even if
CT is not enforced by default in the browser. This has
been particularly important for certificates issued prior to
May 2018 as these certificates are not required to be CT-
logged to be shown as valid in Chrome [19]. A common
header is Expect-CT, an alternative is Require-CT. The
latter one, however, is unofficial and relatively unpopular;
while 7,300 domains were using the Expect-CT header,
and only 8 were using Require CT as shown by Gasser et
al. in [5]. Expect-CT may become outdated by June 2021
since certificates issued before May 2018 will all expire
until then [19].

Expect-CT is formed by three directives: a compul-
sory max-age, as well as an optional enforce and report-
uri [24]. “The following example specifies enforcement of
Certificate Transparency for 24 hours and reports viola-
tions to foo.example” [19].

Expect −CT :
max−age =86400 , e n f o r c e ,
r e p o r t − u r i =" h t t p s : / / foo . example / r e p o r t "

Most commonly, however, only the reporting feature is
used by setting max-age to zero and leaving out the en-
force directive [5]. To the best of our knowledge, Expect-
CT support is currently only implemented in Chrome and

Edge, not, however, in Safari or Firefox, as displayed in
the right column of Table 2 [19], [20].

4. Threats and Countermeasures

New technology often has weaknesses at the beginning
that offer attackers new possibilities. Next, we introduce
three threats arising with CT: equivocation, leaking of
domain names, and overloaded logs. In addition, we
demonstrate potential countermeasures.

4.1. Equivocation and Gossiping

Ideally, even if an attacker uses a bogus certificate, as
long as the end user pays attention to warnings and uses a
browser supporting CT, a conventional man-in-the-middle
(MITM) attack is useless. The connection fails prior to
causing any harm. Since the certificate is logged, CT
monitors can quickly detect it and prompt its revocation.
If the attacker is capable, however, to prevent monitors
and auditors to detect the rogue certificate by hiding its
entry in the log, they would impede any security measures.
Monitors simply cannot ascertain the rogue certificate and
the corresponding isolated (browser-) auditor is provided a
fraudulent, though in itself consistent view. Such an attack
relies on a second Merkle Hash tree version within a log
with a different STH. [6]

It is called ‘Split-View’, ‘Partitioning Attack’, or
‘Equivocation’ [5], [6], [25].

To successfully counteract it, there is a technology
called ‘Gossiping’ whereby auditors gossip about a log.
They exchange STHs or SCTs to verify their view is con-
sistent with others’ view [26]. Unfortunately, it has “next
to no deployment in the wild” yet [5]. Gossiping faces two
major challenges. First, a defined and scalable mechanism
must be standardized among all clients; secondly it entails
a high risk of uniquely identifying (fingerprinting) clients
by means of gossiped STHs or SCTs, and thus violating
their privacy [27].

There are various experimental gossiping-mechanims;
however, it is important to note that they “are drafts
and are subject to rapid and substantial change” [6]. We
demonstrate two of them, STH Pollination and Google’s
current experimental Minimal Gossip, an extension and
refinement of the prior.

4.1.1. STH Pollination. In STH Pollination, both clients
and auditors submit STHs to and receive them from the
servers representing STH pools. Clients and auditors do
not communicate directly. [26]

Since “an STH uniquely represents an entire tree
version”, it suffices for a consistency verification. “STHs
are normally not considered privacy sensitive, as long as
they are shared by a large set of clients”. Therefore, there
are two restrictive measures. First, only fresh, maximum
14 days old STHs are gossiped; older ones are discarded.
Secondly, participating (gossiped) logs are prohibited to
issue (sign) new STHs more frequently than once per
hour; otherwise, they will be ignored. In effect, the two
measures guarantee having at most 336 pollinated STHs
for each log at any time. These are finally verified by
auditors and monitors for consistency. [6]
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4.1.2. Minimal Gossip. Google’s Minimal Gossip ap-
proach implements an altered version of STH Pollination.
It focuses on minimal modification of already existing CT
and introduces a new synthetic certificate chain conjoining
a root and a leaf certificate. The root certificate identifies
the gossiper (usually an auditor) and “indicates minimal
gossip use”. Pollinated (destination) logs add it to their
acceptable roots, thus trusting the gossiper. Each STH
received from a source log is embedded in a separate leaf
which is then added to the destination log. The leaf cer-
tificate is valid for only 24 hours and marked as critical to
avoid being mistakenly recognized as a valid conventional
certificate. The verification can then be performed using
goshawk. [27]

Goshawk “scans a destination log for gossiped
STH values and checks consistency against the source
logs” [28].

4.2. Domain Names Leaking and Label Redaction

Logs can easily be misused by attackers to discover
new domain names that would otherwise remain secret.
The new information aids targeting victims precisely, thus,
exposing the whole CT ecosystem to risk. [29]

Likewise, logs complicate keeping new products con-
fidential prior to their public release. Let us assume, the
company Guenther GmbH (‘guenther.eu’) is developing a
new product ‘Moepi’ and dedicates an individual domain,
‘moepi.guenther.eu’, to it. Competitors could discover and
ascertain Moepi’s development by simply scanning a log
since logged domain labels, in this case ‘moepi’, are
publicly readable. [30]

We look at three countermeasures: starting with
the least applicable wildcard certificates, following with
name-constrained intermediate CA certificate, and fin-
ishing with the most applicable mechanism called label
redaction. The more applicable a mechanism is, the higher
its complexity. [31]

4.2.1. Wildcard Certificates. In wildcard certificates,
a wildcard “*” label effectively hides the private do-
main. For instance, the domain ‘secret.example.com’ can
be replaced by ‘*.example.com’; ‘moepi.guenther.eu’ by
‘*.guenther.eu’. [31]

Wildcard certificates, however, face two limitations.
First, they cannot be used when dealing with EV certifi-
cates. Secondly, they can only cover one level of subdo-
main, conforming to RFC 2818. Consequently, ‘*.exam-
ple.com’ could not replace ‘top.secret.example.com’ since
it involves 2 levels of subdomains. [31], [32]

A special type are partial-wildcard certificates, e.g.,
‘*p.example.com’, which covers both ‘top.example.com’
and ‘flop.example.com’. Partial-wildcard certificates,
however, are disabled in major browsers and should, there-
fore, not be used. [32]

4.2.2. Name-Constrained Intermediate CA Certificate.
Another way is logging a name-constrained intermediate
CA certificate instead of the “end-entity certificate issued
by that intermediate CA” [31].

Such an intermediate CA certificate comprises a name
constraint extension [see RFC 5280] with two core com-
ponents, permitted and excluded subtrees. A permitted

subtree explicitly defines an allowed namespace, whereas
an excluded subtree disallows certain namespaces. As-
suming we want to allow ‘example.com’ and its sub-
domains (e.g., ‘top.secret.example.com’), we would enter
‘example.com’ (for the domain itself) and ‘.example.com’
(for all subdomains) under permitted subtrees. Likewise,
to disallow ‘bad.example.com’ and its subdomains, we
would add ‘bad.example.com’ and ‘.bad.example.com’
under excluded subtrees. [31], [33], [34]

The following criteria must be met to log a name-
constrained intermediate CA certificate. First, it must con-
tain a non-critical extension indicating the acceptability
of not logging certificates issued by the according inter-
mediate CA. Secondly, there must be at least one DNS-
name defined in permitted trees; and finally, excluded
subtrees must disallow the full range of IPv4 and IPv6
addresses. [31]

This method is included by default in CT 2 [see
RFC6962-bis], a currently developed improved version of
CT [35], [36]. Its latest version is 34 [37].

4.2.3. Label Redaction. Label redaction can effec-
tively hide non-wildcard domain-names by replac-
ing them with redacted labels. In case of Guen-
ther GmbH, ‘moepi.guenther.eu’ would be redacted to
‘(redacted).guenther.eu’. [30]

Each redacted label is determined, inter alia, using
a hash function and a Base 32 Encoding function (see
RFC 4648). Using hashing, legitimate domain owners
can verify that each redacted label corresponds with the
original label. A redactedSubjectAltName extension helps
reconstructing the certificate by imparting which labels
have been redacted. [31]

Nevertheless, label redaction is not absolute, as it may
be forbidden by client’s policies [31].

Furthermore, it requires domains owners to include
new domains (new products) as subdomains of an existing
domain. Thus, label redaction would not be sufficient pro-
vided Guenther GmbH wants to allocate an independent
domain for Moepi, such as ‘moepi.com’. It would require
redacting the domain to ‘(redacted).com’ which will be
rejected by logs. Likewise, wildcard certificates (‘*.com’)
also fail in this particular situation. [30]

4.3. Overloaded Logs and Log Splitting

Large CAs submit certificates to only a small number
of CT logs, leaving them with a massive number of
certificates [29]. This can lead a log to performance issues
due to overload, which may result in disqualification or
being frozen [29]. E.g., Google’s log Aviator, which was
frozen on November 30th, 2016 due to failing to add a
certificate within the MDD [38].

Today, log operators often split their logs into several,
one for each year, as can be seen in [39]. It reduces the
number of certificates per log significantly. A potential
disqualification affects only the logs expiring in the same
year and not all together, thus, reducing the overall dam-
age. The year represents the year of certificate’s expira-
tion, e.g., Nimbus 2018 promising to log only certificates
expiring in 2018 and being frozen straight afterwards. [23]

Nevertheless, one may criticize these measures as not
thoroughgoing enough. Despite log splitting, one Nimbus
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CT log encountered performance issues in 2018 during
an update, risking being disqualified [40]. Nimbus and
Google Argon are among the largest CT logs. The final
(fixed) STH of ‘Nimbus 2019’ has had over 493 million
entries, while the one of Google Argon 2019 has had
over 857 million entries [41], [42]. One potential solution
could be CAs distributing “their logging load more evenly
among logs and log operators” [29].

5. Related Work

Scheitle et al. analyze the deployment of CT until
the first half of 2018 and define new threats of certifi-
cates; they do not, however, study possible countermea-
sures [29]. Gasser et al. observe CT logs and search
for violations of its requirements. They also examine
HTTP headers and gossiping [5]. Stark et al. investigate
challenges facing in deployment and its adoption on the
web until 2019 [1].

6. Conclusion

In this paper, we provided an overview of CT’s current
deployment state; how Google and Apple have progres-
sively implemented it so far, while others fall behind. We
studied how CT can be unintendedly used by attackers or
competitors to discover new domain names and how the
use of wildcard or intermediate CA certificates, as well
as label redaction can hinder them. We illustrated equiv-
ocation as a threat to the CT ecosystem and presented
Google’s experimental Minimal Gossip, an extension of
STH Pollination, as a potential solution. Further research
could be done examining gossiping’s impact once it has
been officially deployed and standardized.
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