
Network Simulation with OMNet++

Simon Bachmeier, Benedikt Jaeger∗, Kilian Holzinger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: Simon.Bachmeier@in.tum.de, jaeger@net.in.tum.de, holzinger@net.in.tum.de

Abstract—
In view of the current development, computer networks

are increasing in size and complexity. For development
reasons simulations became more important in this area.
OMNeT++ is a discrete event simulation environment. It
was available and present for over 20 years and designed
not as a network simulator, but for all-purpose use. This
results in its area of application being not only in computer
science fields. Over the years OMNeT++ has built a revenue
for being able to simulate all kinds of areas. From queuing
to wireless networks simulation, everything is possible. In
this paper the OMNeT++ framework is presented with a
detailed view into network simulation. Also, OMNeT++ is
compared to other popular network simulators, where its
strengths and weaknesses are discussed.

Index Terms—OMNet++, Network Simulation, NS-3, INET,
MiXiM

1. Introduction

The Internet backbone changed from a connection
between research communitys to commercial use. This
means already after eight and a half years of its lifetime,
it developed from six nodes with 56 kbps links to 21
nodes with multiple 45 Mbps links. During the early
stages, the Internet already grew to over 50,000 networks,
including outer space and all continents [1]. 2016 the
LTE networks nearly had 1.5 billion users with peak data
rates of 450 Mbps [2]. The number of deployed devices
using the Internet by 2020 has been estimated to be as
high as 20.8 billion [3]. These numbers show that it is
crucial that networks are functioning without errors. For
development reasons testing is needed when working with
networks. Testing with real networks can be very expen-
sive and does not scale, therefore network simulations
became very popular. Much hardware is needed for an
experiment. The size of the current networks makes it
hard to build a real simulation. A simulation breaks down
the functionality of a network and is able to build large
networks. A simulator capable of such is OMNeT++.
OMNeT++ stands for Objective Modular Network Test
bed in C++ [4]. It was introduced in 1997 [5] and is a C++
based discrete event simulator. OMNeT++ software is free
for academic and non-profit use. Its commercial version
OMNEST can be obtained on the official website [6]. As
Vargas states, OMNeT++ can be seen as a gap filler [5]. It
positions itself between open-source, research orientated
software and expensive commercial alternatives. To get a
better understanding of OMNeT++, Section 2 gives an

overview. OMNeT++’s approach to simulation is quite
different from other simulators like NS-3 [7] or JiST [8].
OMNeT++ does not provide simulation components di-
rectly, but gives a framework, which can be seen as a
basic building block. It also differs in its modularity,
components can be reused in all kinds of simulations.
In Chapter 3 there are examples and an explanation of
extensions for OMNeT++, so called frameworks, related
to network simulations. These frameworks, e.g. INET [9]
or MiXim [10] are developed independently and follow
their own update cycles. Over the years a many simulation
models, have been developed in a broad field, e.g. IPv6-
, peer-to-peer-, storage area-, and optical networks. Also
companies like IBM, Intel and Cisco are using OMNeT++
successfully in commercial projects or for in-house re-
search [5]. In this paper the author gives an overview of
OMNeT++, in order to understand why it was able to
remain and be popular over all those years since existing.
Therefore, it is important to understand how it works and
what makes it different from its competitors.
The papers’s structure is divided into to the following
sections: Section 2 gives an overview of OMNeT++, to
provide a basic understanding. How network simulation is
done, is shown in Section 3. Finally, Section 4, compares
OMNeT++ to other simulators in its class.

2. Structure of OMNeT++

OMNeT++ is a multipurpose network simulation
framework. It provides a building kit for many kinds of
simulations. At its core are reusable modules, which is
the reason why OMNeT++ is considered a component
architecture. The structure can be compared to LEGO
blocks [11], which is a good illustration. When there
are well implemented modules, they can be reused in
various ways in all kinds of simulations, just like LEGO
blocks. The following sections describe the functionality
of OMNeT++’s internal and external structure.

2.1. Modeling and Modules

OMNeT++’s architecture is built of modules commu-
nicating by messages. There are two types of modules,
the active modules, referred to as simple modules and
compound modules. Simple modules can be grouped into
compound modules, the second module type. Compound
modules group other modules an can be therefore seen
as passive only representing the internal functionalities.
Hierarchy levels are not limited, that is why OMNeT++’s

Seminar IITM SS 20,
Network Architectures and Services, November 2020 37 doi: 10.2313/NET-2020-11-1_08

Network

Compound module

Simple modules

Figure 1: Simple and compound modules. Arrows repre-
sent connections between modules via gates [11].

structure is considered hierachical [11]. The entire sim-
ulation model represented by a network, therefore is a
compound module. Simple modules are written in C++.
The communication of modules is done by messages. In
order to send messages, simple modules have input and
output gates for sending and receiving. It is also possible
to send messages directly to their destination, but normally
it is done using gates. In a simulation, messages can repre-
sent customers in queues or packages in a network. Input
and output gates can be linked by so-called connections.
Compound modules also have such gates and connections
to communicate with external modules. Connections can
only be established in a single level of module hierarchy
i.e sub modules can have connections to the compound
module gate or other sub modules inside a compound
module , but not to the outside. That is needed to maintain
the reusability of modules. These connections can be seen
as an own entity with parameters like bit error- rate or
delay. Connections with predefined parameters, so called
termed channels, can also be reused [11].

2.2. Design of a Model

An OMNeT++ model has a starting module, the sys-
tem module. From the system module at the top level
there are nested modules with a hierarchical structure with
no boundaries to the bottom. With no limits in depth the
user has the opportunity to build every structure he wants.
The model structure is written in OMNeT++ network
description language, short NED. The simple modules at
the bottom are programmed in C++ using the simulation
class library provided by OMNeT++. Listing 1 shows a
C++ code example by TU-Ilmenau [12].

i n c l u d e " omnetpp . h "
c l a s s MyModule : p u b l i c cSimpleModule
{

/ / a macro t h a t c a l l s c o n s t r u c t o r
and s e t s

/ / up i n h e r i t a n c e r e l a t i o n s h i p s :
Module_Class_Members (MyModule ,

cSimpleModule , 0)
/ / user − s p e c i f i e d f u n c t i o n a l i t y

f o l l o w s : . . .
} ;
Def ine_Module (MyModule) ; / / announce

t h i s c l a s s as a module t o OMNeT
Listing 1: Example of a simple module’s C++ code. The
class MyModule describes the functionality of a simple
module. User can specify how to react on messages.

Executing
Model

SIM ENVIR

Model
Component

Library

Cmdenv,
Tkenv,

or
Qtenv

Figure 2: Logical architecture of an OMNeT++ simulation
programm [11].

2.3. Architecture

The previous sections gave a short overview of OM-
NeT’s internal structure. Figure 2 gives a understanding of
the high level and logical architecture. ENVIR, CMDENV
and TKENV describe the user interface libraries. This is
the environment where the simulation is executed. It also
describes the origin of input data and where simulations
result go to. ENVIR is a library, which presents itself
as a connection, containing all common user interface
code. CMDENV and TKENV are ENVIR based libraries
that have a specific user interface implementation. The
all-purpose interface is CMDENV, known as the com-
mand line user interface. It is a small portable and fast
interface that works on all platforms, which provides a
console e.g. linux and is mainly used for batch execution.
TKENV is a graphical user interface, for debugging and
visualization of simulations. This environment describes
the simulation’s execution, from debugging to visualizing.
It is possible to embed a OmNeT++ simulation into a
larger application by replacing the user interface. The
component library is built by the code of compiled simple
and compound modules [5]. At the beginning of the
simulation execution phase, the simimulation kernel builds
the simulation model, which is the model created for the
simulation. [13]

3. Network Simulation with OMNeT++

As stated in the previous sections OMNeT++ itself is
merely a framework. That means in the base version only
supports routing messages [5]. This feature traversions
of a network and building a graph data structures. In
addition, a user could further use graph algorithms to
traverse it. But with nothing more provided the user has to
implement a whole network with protocols and network
associated structures himself. With the design of OM-
NeT++, however, a simulation can be easily extended by a
network framework. Network simulation with OMNeT++
is simplified by extending it with existing frameworks
such as INET [9] elaborated in section 3.1 or, specialized
on mobile and wireless networks, the MiXiM framework,
elaborated in section 3.2 [10]. Importing a framework is
similar to importing libraries in Java [11]. Framework
files are added to the project and can be accessed via
the import [11].

3.1. INET

INET is a model library, which is specialized in de-
signing new protocols [14]. With INET the user can build

Seminar IITM SS 20,
Network Architectures and Services, November 2020 38 doi: 10.2313/NET-2020-11-1_08

hosts, routers and other network devices by using reusable
components. INET provides components that are easy to
modify and understand so that users can build their own
components [14]. Some of INET’s features are: IPv4/IPv6
network stacks, pluggable protocol implementation for
various layers, wired/wireless interfaces and many more.
In the following a project by Mohammed Alasmar and
George Parisis will be presented which uses INET [15]. It
uses the OMNeT++ with the INET framework to evaluate
modern data center transport protocols.
Data center networks (DCNs) are getting more important,
because they are used for the infrastructure of search ser-
vices such as Google, social networks, cloud services and
video streaming (e.g. Disney+). Alasmar et al. state that
OMNeT++ in addition to INET is perfect for simulating
and evaluating data transport protocols in DCNs [15]. The
reason lies within INET’s flexibility. New protocols can
be easily added to the project and network devices (e.g.
switches, routers etc.) are already provided. For example,
there are simple module implementations for TCP and
UDP, which users can use and extend. Within this project,
a simulation model for the neighbor discovery protocol
(NDP) and a FatTree network topology generator was
built. Also, a data center environment that can be used
to evaluate and compare data transport protocols, such as
NDP and TCP, was developed. This outlines the possibil-
ities with OMNeT++, not only creating simulations, but
also creating a framework for other evaluations. In the
simulations specialized on NDP protocols they used OM-
NeT++’s save tool command line to process and compare
the results [15].

3.2. MiXiM

Another example for a network simulation framework
which runs on OMNeT++ is MiXiM (mixed simulator).
This framework is specialized for mobile and wireless
networks. It offers detailed models of radio wave prop-
agation, interference estimation, radio transceiver power
consumption and wireless MAC protocols [10].
Following there is a short example of a simulation using
the MiXiM framework, in order to improve the Quality of
Service (QoS) in a wireless sensor network (WSN) [16].
This paper was written by Kodali et al [16]. The reason
behind it was, that in a real time environment WSN are
often unreliable and inaccessible, which has a bad effect
on the QoS. In the paper the authors discuss adjustments
of power, range and bit rates to attain adaptive topology
control (ATC), in order to maintain the QoS of a WSN,
which have a broad spectrum of usage. For example, it
is used by the military or for weather monitoring, with
the core concept of sensing, computing and communica-
tion. MiXiM was chosen because it supports the mobility
framework which is used for the WSN network. The
performance of Carrier Sense Multiple Access (CSMA)
was measured in packet end-to-end delivery ratio and
throughput. As Kodali et al state in their conclusion, they
were able to improve the network performance by 29%,
by varying the range and power adaption [16].

3.3. Recent Use of OMNeT++

This section provides an overview of projects featuring
OMNeT++.

• UAV (Unmanned aerial vehicle) Swarm Network:
The paper, deals with a swarm intelligence-based
damage-resilient mechanism for UAV swarm net-
works. The authors build a simulation in OM-
NeT++, which presents a mechanism to recover a
unified UAV swarm network after suffering dam-
age [17].

• Secure Data Transmission and Sinkhole Detection:
OMNeT++ is used for evaluating better methods
for improved security in a multi-clustering wire-
less sensor network by homomorphic encryption
and watermarking [18].

• Novel Segment Based Safety Message Broadcast-
ing in Cluster-Based Vehicular Sensor Network:
With multiple vehicles sending messages in vehic-
ular sensor networks, data collisions occur more
often, leading to corrupted packages. To counter-
act, OMNeT++ ist used for validation [19].

4. Comparison to other Network Simulators

Over the last years computer hardware has signif-
icantly improved. Also, networks as a topic got more
attention, with the world being more connected than ever.
The complexity of systems and networks topology is in-
creasing drastically. To implement new network structure
or protocols, it is indispensable to test, before actually
deploying them. For example, when an untested defective
new structure is pushed into an established network, fixing
it will be costly and effort to fix that, while the system is
still running. There are two kinds of test environments.
A real system with existing hardware or a simulation.
As already mentioned, the increased complexity makes it
very expensive to build real systems for testing. Therefore,
simulations have gained a lot of attention over the past
years. Two network simulators which gained a lot of
popularity during the last years are OMNeT++ and NS-
3 [20]. In the following sections a comparison between
these two simulators takes place. Also taking OMNeT++
design decisions, described in the previous sections, into
account described by A. Vargas and R. Hornig [5] and
comparing them to other simulators. After the comparison
to NS-3, the paper presents a short comparison to other
popular simulators.

4.1. Comparison to NS-3

NS-3 (network simulator version 3) is the successor
of the of NS-2, which is not supported anymore nor
has backwards-compatibility. It is an open source discrete
event network simulator [21], that tries to maintain an
open environment for researchers to share their projects.
The simulator itself is a C++ library and an integrated
development environment is needed. During a simulation
the network data traffic can be collected in a pcap-file.
Then it is possible to analyze the file via wireshark or
similar software. Wenhan Yao compared these two simula-
tors in his master thesis [21]. Other sources are the general

Seminar IITM SS 20,
Network Architectures and Services, November 2020 39 doi: 10.2313/NET-2020-11-1_08

comparisons to other simulators in various scenarios [22]–
[24]

4.1.1. Structural Differences of the Simulators. In OM-
NeT++, a NED file is used to describe the structure
of a model, while the behavior of modules is written
in C++. For simulations, the user has to choose a user
interface (e.g. CMDENV,TKENV) see Figure 2 and define
the starting parameter in an omnetpp.ini file. Then the
result of a simulation is written into vector and scalar
files, which can be evaluated by external software. For a
simulation in NS-3, the user starts with a script written
in C++ or Python. The script defines the topology of the
network and how the simulations is run. A network is
described by its nodes, connections and devices and their
usage [21]. The models, which can be used for simulation,
can be found in the NS-3 library. All the parameters of
simulation are also written into the script, for example data
rate, IP address and positioning of nodes. The resulting
data can go to a pcap file, which can also be analyzed.
Both simulators are using C++ to describe their mod-
ules. NS-3’s connection to modules is more direct than
OMNeT++’s. In NS-3, the script can directly access the
modules from the library, while in OMNeT++ the NED
files are interposed. In other words, in OMNeT++ you
need NED files to create and access modules, which
makes the simulation more complex. OMNeT++ has visu-
alization options already included. This simplifies network
simulation decisions for less experienced users, compared
to NS-3 with no included visualization. It is possible,
though, to visualize the output files from NS-3, in order
to have a visualization of graphs. This works similar to
OMNeT++, where the output files can be processed by
various programms [21].

4.1.2. Differentiation between OMNeT++ and NS-3.
The GUI is one of OMNeT++’s main advantage, com-
pared to NS-3. It can picture signals e.g TCP packages
and components of a network structure. An example of
a GUI screen can be seen in Figure 3. In simulations
OMNeT++ always uses more computer resources than
NS-3 [21], [25]. Also, OMNeT++ takes longer to execute.
Another core difference is that NS-3 was built for network
simulation, while OMNeT++ is multipurpose. Therefore,
it is less workload for the user to create a simulation
in NS-3, because the whole structure can be written in
one script rather than having to implement modules, NED
files and specify user interfaces. Both simulators deliver
good performances, with similar workloads on the testing
system and messages throughput. An outstanding feature
is OMNeT++ visualization. The integrated GUI and the
possibility to visualize the simulation, debugging process
or even the structure of a simulation are one of the out-
standing features of OMNeT++ [21], [22], [24]. But it is
important to mention that both simulators are giving good
simulation results for similar simulations in execution time
and workload of the system [20]–[22], [24].

4.2. OMNeT++ and Other Simulators

This section provides a summary of the comparison
from OMNeT++, NS-3, NS-2, SimPy and JiST, done by
Weingartner et al [20]. SimPy incorporates a different

Figure 3: Example of a GUI in an OMNeT++ Simula-
tion [26].

simulation approach as a process-oriented discrete-event
simulator and is written in Python [20], [23]. Another
different simulation approach is presented by JiST. It is a
high performance Java based simulation environment and
just a simulation kernel [5], [20]. The authors built equal
simulation scenarios for all the simulators, to compare
them to each other. Their result was that only SimPy had
slightly higher loss rates, still acceptable results thou. Af-
terwards they went to performance testing of the different
simulators under equal conditions. Overall, the conclusion
was that NS-3 has the best performance, while JiST
advantages are in simulation run time. But OMNeT++
is the only simulator providing a GUI. JiST and NS-3
simulations are source code developed. The authors wrote
that all of them are equally suited for network simulations,
but it depends on the situation which one to choose [20],
[23], [24].

5. Conclusion

Varga and Hornig describe in their paper the core
elements of OMNeT++’s design, which is also crucial
for large scale simulation [5]. The hierarchical structure
with its reusable components, takes a huge part in its
success. It means less work for the user by just reusing
finished modules as much as possible. Another key point
which differentiates OMNeT++ to many other simulators
is its GUI and the possibility to visualize the simulation,
debugging and the structure. Debugging consumes a lot
of time in projects. Visualization often helps and reduces
time consumption. Simulations are modular customizable
allowing a user to embed an emulation into a larger
application. This integration opens up many areas of
application. As other simulators, OMNeT++ can produce
output files to have a better analysis with other programs.
However, the structure of OMNeT++ with its layers makes
small simulations often more complex than they need
to be. For example, when a user just wants to create
a test simulation, where two nodes send each other a
package, in OMNeT++ you need to define the kernel and
structure of al parts from the system . The NED language
was designed to scale well. With increasing complexity

Seminar IITM SS 20,
Network Architectures and Services, November 2020 40 doi: 10.2313/NET-2020-11-1_08

in networks, however, it reaches its limits. Therefore,
improvements to the software itself had to be made, where
the user has to adjust too. Furthermore, the environment is
clearly divided in parts like NED modules which requires
more computer resources for network simulations. Over-
all, however, OMNeT++ follows a clear structure, which
makes it easy to handle, also within large simulations.

References

[1] B. Leiner, V. Cerf, D. Clark, R. Kahn, L. Kleinrock, D. Lynch,
J. Postel, L. Roberts, and S. Wolff, “A brief history of the internet,”
Computer Communication Review, vol. 39, pp. 22–31, 10 2009.

[2] D. López-Pérez, D. Laselva, E. Wallmeier, P. Purovesi, P. Lundén,
E. Virtej, P. Lechowicz, E. Malkamaki, and M. Ding, “Long term
evolution-wireless local area network aggregation flow control,”
IEEE Access, vol. 4, pp. 9860–9869, 2016.

[3] Z. Yan, H. Li, S. Zeadally, Y. Zeng, and G. Geng, “Is dns ready for
ubiquitous internet of things?” IEEE Access, vol. 7, pp. 28 835–
28 846, 2019.

[4] “OMNet++ Homepage,” http://www.omnetpp.org, [Online; ac-
cessed 8-May-2020].

[5] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment,” 01 2008, p. 60.

[6] “OMNEST Homepage,” https://omnest.com/, [Online; accessed 24-
May-2020].

[7] “NS-3 Homepage,” https://www.nsnam.org/, [Online; accessed 24-
May-2020].

[8] “JiST Homepage,” http://jist.ece.cornell.edu/, [Online; accessed 24-
May-2020].

[9] “INET Framework,” https://inet.omnetpp.org/, [Online; accessed
11-May-2020].

[10] “MiXiM Framework,” http://mixim.sourceforge.net/, [Online; ac-
cessed 11-May-2020].

[11] “OMNet++ Simulation Manual,” https://doc.omnetpp.org/omnetpp/
manual/, [Online; accessed 9-May-2020].

[12] “C++ code snippet,” https://www.tu-ilmenau.de/fileadmin/
media/telematik/lehre/Projektseminar_Simulation_Internet_
Protokollfunktionen/Material/03_OmNet__.pdf, [Online; accessed
27-May-2020].

[13] [Online; accessed 15-August-2020]. [Online]. Available: https:
//ewh.ieee.org/soc/es/Nov1999/18/userif.htm

[14] “INET introduction,” https://inet.omnetpp.org/Introduction, [On-
line; accessed 12-May-2020].

[15] M. Alasmar and G. Parisis, “Evaluating modern data centre
transport protocols in omnet++/inet,” in Proceedings of 6th
International OMNeT++ Community Summit 2019, ser. EPiC
Series in Computing, M. Zongo, A. Virdis, V. Vesely, Z. Vatandas,
A. Udugama, K. Kuladinithi, M. Kirsche, and A. F\"orster,
Eds., vol. 66. EasyChair, 2019, pp. 1–10. [Online]. Available:
https://easychair.org/publications/paper/4xwP

[16] R. Kodali and M. Vijay Kumar, “Mixim framework simulation of
wsn with qos,” 05 2016, pp. 128–131.

[17] M. Chen, H. Wang, C. Chang, and X. Wei, “Sidr: A swarm
intelligence-based damage-resilient mechanism for uav swarm net-
works,” IEEE Access, vol. 8, pp. 77 089–77 105, 2020.

[18] H. A. Babaeer and S. A. AL-ahmadi, “Efficient and secure data
transmission and sinkhole detection in a multi-clustering wireless
sensor network based on homomorphic encryption and watermark-
ing,” IEEE Access, pp. 1–1, 2020.

[19] I. S. Alkhalifa and A. S. Almogren, “Nssc: Novel segment based
safety message broadcasting in cluster-based vehicular sensor net-
work,” IEEE Access, vol. 8, pp. 34 299–34 312, 2020.

[20] E. Weingartner, H. vom Lehn, and K. Wehrle, “A performance
comparison of recent network simulators,” in 2009 IEEE Interna-
tional Conference on Communications, 2009, pp. 1–5.

[21] W. Yao, “Analyse und vergleich der netzsimulatorenns-3
und omnet++,” p. 74, 05 2018, [Online; accessed 21-May-
2020]. [Online]. Available: http://midas1.e-technik.tu-ilmenau.de/
~webkn/Abschlussarbeiten/Masterarbeiten/ma_yao_sw.pdf

[22] Xiaodong Xian, Weiren Shi, and He Huang, “Comparison of
omnet++ and other simulator for wsn simulation,” in 2008 3rd
IEEE Conference on Industrial Electronics and Applications, 2008,
pp. 1439–1443.

[23] V. Oujezsky and T. Horvath, “Case study and comparison of simpy
3 and omnet++ simulation,” in 2016 39th International Conference
on Telecommunications and Signal Processing (TSP), 2016, pp.
15–19.

[24] A. Zarrad and I. Alsmadi, “Evaluating network test scenarios for
network simulators systems,” International Journal of Distributed
Sensor Networks, vol. 13, no. 10, p. 1550147717738216, 2017.
[Online]. Available: https://doi.org/10.1177/1550147717738216

[25] S. B. A. Khana and M. Othmana, “A performance comparison of
network simulatorsfor wireless networks,” pp. 1–6.

[26] [Online; accessed 11-June-2020]. [Online]. Available: https:
//docs.omnetpp.org/tutorials/tictoc/part2/

Seminar IITM SS 20,
Network Architectures and Services, November 2020 41 doi: 10.2313/NET-2020-11-1_08

