Extending ZMap: Round-Trip Time Measurement via ICMP and TCP

Bernhard Vorhofer, Patrick Sattler*, Johannes Zirngibl*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: bernhard.vorhofer@tum.de, sattler@net.in.tum.de, zirngibl@net.in.tum.de

Abstract—ZMap is a high-performance network scanner for
Internet-wide network surveys. Due to its modular architec-
ture, it allows researchers to conduct a variety of different
types of scans and can be extended with custom modules.
The aim of this paper is to outline the process of how we
implemented two modules for ZMap and the IPv6-enabled
ZMapv6 for measuring round-trip time. The first sends
ICMP echo request packets, the other is based on the existing
SYN scan module and allows RTT measurement using TCP.
We give a brief overview of ZMap’s implementation and
discuss key architectural aspects that influenced our module
design. Furthermore, we present the results of multiple tests
we conducted using the new modules and compare them
to an earlier study involving large scale round-trip time
measurement. The experiments suggest that the implemented
modules are working correctly. However, we found a dis-
crepancy between ZMap’s reported values and timestamps
captured during the measurement using a network analyzer.

Index Terms—Network scanning, measurement, round-trip
time

1. Introduction

ZMap is a network scanner for Internet-scale network
surveys. As Durumeric et al. have shown in [1], this tool
is capable of scanning the entire IPv4 address space in
under 45 minutes. ZMap was extended with IPv6 support
along with three new modules by Gasser et al. [2], result-
ing in ZMapv6. The added IPv6-enabled modules allow
scanning using ICMP echo request, TCP SYN or UDP
messages.

In this paper, we present two new modules for ZMap
and ZMapv6. One of them, the ICMP time module, has
been ported from the existing IPv4 version. The other is
based on the existing SYN scan module and allows RTT
measurements via TCP without using the TCP Times-
tamps option. These modules, along with the existing
ICMP time module, enable large-scale round-trip time
measurements using ZMap. This can be useful in a variety
of applications, for example for finding bottlenecks in
large networks.

The ICMP time module provides the same function-
ality as the existing IPv4 version of this component,
but does so using IPv6. Since the basic structure of the
ICMPv6 header is identical to its version four counterpart,
porting the ICMP time module to version six of the
Internet Protocol was matter of refactoring the existing

Seminar IITM SS 20,
Network Architectures and Services, November 2020

code. Therefore, the implementation details of this module
are not described any further in this paper. However,
we discuss the results of tests we performed using the
ICMPv6 time module in Section 4.3.

The TCP time module accomplishes two things at
once. First, it performs a standard SYN scan, determining
whether a specific port is open for each target host. Sec-
ond, the round-trip time is determined for each responding
host by measuring the delay between the transmission of
a SYN segment and the arrival of the corresponding SYN-
ACK segment.

One noteworthy piece of related work is D. J. Bern-
stein’s description of SYN cookies [3], a method of em-
bedding information in the TCP sequence number field
originally intended as a countermeasure against SYN flood
attacks. ZMap uses a similar technique in its TCP time
modules to include additional data in probe packets.

In the following sections, we first give a brief overview
of ZMap’s architecture before discussing the implementa-
tion details of the TCP time module in Section 3. Finally,
we present the results of experiments we conducted in
Section 4.

2. ZMap primer

This section gives a brief introduction to ZMap and
its modular architecture, mostly summarized from the
original paper by Durumeric et al. [1].

ZMap owes its exceptional speed at least in part to
the stateless nature of its architecture — the tool was
specifically designed with performance in mind. Target
addresses are selected using a cyclic multiplicative group,
which distributes them randomly across the IPv4 address
space. This also eliminates the need for storing addresses
already scanned because each address in the address space
is reached exactly once.

To distinguish scan responses from background traffic,
probe modules embed scan- and host-specific validation
data in headers of probe packets (where possible). This
allows responses to be validated on receipt without keep-
ing additional per-connection state. ZMap generates a
message authentication code (MAC) of the destination
address for probe modules to use as validation data.

2.1. Architecture

ZMap’s modular architecture can be split into three
basic parts: the scanner core, output modules and probe
modules. The scanner core handles packet transmission

doi: 10.2313/NET-2020-11-1 06

0 1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0B Source Port | Destination Port
4B Sequence Number
8B Acknowledgement Number
12B Offset Reserved | § | é | § | '@ | ; | z Window
16B Checksum Urgent Pointer
20B Options (0 or more multiples of 4 Byte)
Data

—— V" AN~ AT N — .

Figure 1: TCP Header

and receipt, address generation and other fundamental
tasks. It also invokes probe- and output modules via
callbacks, for example to generate packets before they are
sent or to validate packets after they have been received.
Output modules allow for multiple forms of scan output,
e.g. CSV files, JSON files or writing entries to an in-
memory Redis database. Since output modules are not
immediately relevant for this work, we will not elaborate
on the details of their implementation. Probe modules
provide multiple different scan methods, for example TCP
SYN scans or ICMP echo scans. Their implementation is
further discussed in Section 2.3.

2.2. Transmission and reception

To avoid unnecessary kernel overhead, ZMap makes
use of raw sockets for packet transmission. Consequently,
probe packets are assembled on the data-link layer, which
allows for the Ethernet header to be cached and reused
because the source (local network interface) and destina-
tion (gateway) MAC addresses remain unchanged during
a scan. Packet reception is achieved using libpcap, a
C/C++ library for traffic capture. Furthermore, this library
provides a first filter for incoming packets, so traffic
clearly not related to the current scan is discarded before
it reaches the active probe module.

2.3. Probe modules

Probe modules are responsible for constructing probe
packets to be sent to and validating responses received
from target hosts. The scanner core provides the active
probe module with a single buffer which holds the data
to be sent. Before a scan commences, the probe module
populates the empty buffer with any necessary headers.
Values set at this stage (e.g. source and destination MAC
addresses in the Ethernet header) are not modified during
the rest of the scan, as mentioned before.

For each scan target, the probe module in use fills all
host-specific header fields in the buffer with data provided
by the scanner core. This includes the network layer
addresses as well as validation data. It is desirable to
include as much of the validation string as possible in the
probe packet while ensuring it is placed in header fields
which allow recovery of the validation data from the probe
response. The reason for this is that more validation data
decreases the probability of a false positive, i.e., an incom-
ing packet unrelated to ZMap being erroneously classified
as a probe reply. After the probe module has populated
the buffer, the scanner core handles transmission of the
packet.

Seminar IITM SS 20,
Network Architectures and Services, November 2020

Whenever a packet is received, the scanner core calls
two probe module callbacks in succession. First, the
incoming message is validated, i.e., validation data is
extracted from the header and compared to the expected
validation string provided by the scanner core. Second,
and only if validation succeeded, the received packet is
processed. The primary purpose of this step is to pass
values from the received packet to the active output mod-
ule for formatting.

3. TCP time module

The TCP time module extends the existing TCP SYN
scan module with the capability of measuring round-
trip time during a partial three-way handshake. This is
achieved in a manner similar to measuring RTT using
ICMP: a timestamp is included in the probe packet in
a way which allows it to be recovered from the response,
thus allowing the time difference between transmission
of the probe packet and reception of the response to be
determined without keeping additional state.

In our research, we found two viable methods of
measuring round-trip time using TCP. The first, which was
employed for the TCP time module, utilizes the sequence
number field (see Figure 1 for reference) to embed a
timestamp in the TCP header. The second makes use of a
TCP option intended for precisely this use case.

3.1. Embedding and recovering the timestamp

The problem we faced when first attempting to imple-
ment RTT measurement without using the TCP Times-
tamps option was that the sequence number field provides
only four bytes of space for the timestamp, but the times-
tamp structure used in other modules is eight bytes in size.
As a consequence of this, we decided to reduce the size
of the timestamp by using a relative timestamp instead
of an absolute one and decreasing its resolution from one
microsecond to one millisecond.

Furthermore, since the original TCP SYN scan module
utilizes both the source port and the sequence number
fields for validation data, the amount of validation data
included in the probe packet needed to be reduced in order
to accommodate the additional timestamp data. With the
sequence number field occupied by the timestamp, this
leaves only the source port field available for validation
data. Because we chose to only allow ports from the
standard Linux ephemeral port range (32768 to 61 000),
the effective validation string length (binary logarithm of
the number of available ports) is approximately 14.8 bit,
even though the source port field is two bytes in size.

doi: 10.2313/NET-2020-11-1 06

When the probe module is initialized before the scan
starts, a timestamp is stored in a global variable which
all of the relative timestamps included in probe packets
use as a reference. For each probe packet, a 32 bit value
representing the number of milliseconds passed since the
scan started is used as the initial sequence number. In
contrast to the timeval struct used in the ICMP time
module, this timestamp provides only millisecond instead
of microsecond resolution. With the information about
libpcap’s internal timestamp precision found in [4], we
conclude that the prospect of achieving microsecond pre-
cision without employing specialized hardware is ques-
tionable at best. Coupled with the fact that most round-trip
time measurement tools we have used (most notably ping)
report results in millisecond precision, this supports our
decision to reduce the timestamp resolution. When a SYN-
ACK message is received, the timestamp can be recovered
by subtracting 1 from the acknowledgement number field
in its header.

3.2. Alternative method for RTT measurement

An alternative method of measuring round-trip time
using TCP is by using the aforementioned TCP Times-
tamps option [5]. It was designed specifically for mea-
suring round-trip time, among other uses. Although this
would simplify the task at hand, the method we im-
plemented in the TCP time module offers a significant
advantage: it does not require any TCP extensions to
be supported and enabled. Kiihlewind et al. [6] tested a
selection of popular web servers for support of certain
TCP options and extensions. The results of their tests from
2012 show that in total, roughly 80 % of responding hosts
supported the timestamp option.

Additionally, some administrators might decide to dis-
able this option for security reasons. The reason for this
is that, as Beverly et al. [7] describe, TCP timestamps
can be used to estimate the uptime of a host, potentially
allowing attackers to discern whether a security patch is
installed or not. With the technique employed in the TCP
time module, measurements can be made regardless of
TCP timestamp support on the target host.

3.3. Implications of using less validation data

When reducing the amount of validation data included
in the probe packet TCP header, the question of whether
the remaining data is sufficient for discriminating between
scan responses and background traffic arises. For this
application, there is only one specific scenario we need to
be concerned about: an unsolicited incoming TCP segment
leading to a false positive and, consequently, an incorrect
round-trip time value. More specifically, only an incoming
SYN-ACK or RST message can lead to such an error,
because any other type of message will be discarded by
libpcap before it reaches the validation function due to the
packet filter set up for the module.

Since a SYN-ACK is received only during an outgo-
ing connection attempt in normal operation, it is safe to
assume that these messages would only be received due
to another program in the process of establishing a TCP
connection while a scan is being performed. Outgoing
TCP connections are usually assigned an ephemeral port

Seminar IITM SS 20,
Network Architectures and Services, November 2020

from the same range ZMap uses for probe packets. Even
though it is possible that a program is assigned the exact
port that would lead to a false positive in terms of response
validation, the probability of this happening should be
rather low considering the large number of ports available.
To further reduce the odds of such an error occurring,
network activity unrelated to ZMap should be reduced on
the scanning machine where possible.

Another case that should be considered is the effect
a scan has on existing TCP connections. If a connection
to a target host exists on the same port ZMap uses for
its probe of that specific host — which is unlikely, as
mentioned above — can this lead to an RST message?
According to the TCP protocol specification [8], a SYN
received in one of the synchronized states does not lead
to a reset. Rather, an ACK message containing the next
expected sequence number would be sent. Since such a
packet would be discarded by the libpcap filter, existing
connections do not interfere with the network scanner.

4. Test results

1,400
1,200 |
1,000
800" » .
600 s % .
4005 .
200 =+ 3 -
0

ZMap RTT [ms]

)

200 |
400 |
600 |
800 |-

1,000 |

1,200 |

1,400

tcpdump RTT [ms]

Figure 2: tcpdump vs. ZMap ICMPv4 RTT (red line
represents both measurements reporting the same value)

In order to confirm the functionality of the newly
implemented modules, we conducted several tests and
recorded more than 600000 responses. We compare our
results to those presented by Padmanabhan et al. [9] by
plotting the cumulative distribution function (CDF) of the
RTT measurements.

4.1. Testing methodology

Two series of ZMap measurements were conducted
to verify the functionality of the implemented modules.
For the TCP module test, probes were sent to ran-
domly selected hosts and nearly 400000 replies have
been recorded. For ICMPv6, hosts from the Alexa' Top
1 Million web server list (which is not offered anymore
at the time of writing) were probed and approximately
250000 replies have been recorded. These two tests have
been carried out from inside the university network.

1. https://www.alexa.com/topsites

doi: 10.2313/NET-2020-11-1 06

]_ T T T T T

0.8 |- =
. 0.6 =
[
© 04} |
0.2 - |
O | \‘ L Ll L1l
10 100 1,000
RTT [ms]
(a) ICMPv6

1 T —
0.8
0.6
0.4
0.2

CDF

100
RTT [ms]

1,000

10

(b) TCP (IPv4)

Figure 3: Cumulative distributions of ZMap RTT measurements

During our tests, network traffic was captured us-
ing tcpdump, an open-source network protocol analyzer.
This allowed us to cross-reference the timestamps of
outgoing and incoming packets as recorded by tcpdump
with ZMap’s round-trip time measurements. Naturally,
the expected result would be the tools reporting similar
values, but we found that a significant number of Zmap’s
measurements diverge substantially from the RTT values
indicated by the captured timestamps (see Section 4.2).

4.2. Validation of RTT measurements

To assess the overall quality of ZMap’s round-trip
time measurements, we conducted an additional test using
the existing ICMP time module. ZMap was configured to
probe randomly selected hosts until 100 echo replies were
collected. As mentioned before, tcpdump was capturing all
network traffic throughout the test so we could compare
the RTT calculated using the timestamps in the capture
file with ZMap’s reported values. Even though libpcap
timestamps may not be the most precise [4] (tcpdump
captures packets using libpcap), they suffice for a rough
estimate of the actual RTT.

Figure 2 shows the results of this test. It is clear
that ZMap tends to report higher RTT values than those
measured by tcpdump. Furthermore, there is a consider-
able inconsistency in the ZMap measurements — numer-
ous values deviate significantly from those obtained from
the capture file. Closer examination of the timestamps
revealed that the receive timestamps are the cause of this
inaccuracy, which leads us to believe that somewhere in
the receiving process, a variable amount of delay causes
unreliable receive timestamps. Further investigation to find
the source of this delay is out of scope for this paper.

4.3. ICMPv6 time module

For the ICMPv6 test, around 200000 probe replies
were collected. The cumulative distribution function in
Figure 3a was plotted using a subsample of roughly 1000
data points. Systematic sampling was used to select the
samples, i.e., the replies were ordered by round-trip time
before values were selected at regular intervals to yield
the desired sample size.

The function has similar characteristics to that in [9,
Figure 7]. It seems that our dataset contains a larger
portion of comparatively low values, though it should be

Seminar IITM SS 20,
Network Architectures and Services, November 2020

noted that our sample size is several orders of magni-
tude smaller. Nevertheless, we believe this shows that the
ICMPv6 time module is working as intended.

4.4. TCP time module

Around 400000 replies were collected for the TCP
over IPv4 test, roughly 1000 of which were selected (using
systematic sampling) to plot the CDF in Figure 3b. This
graph shows even more similarity to that in [9, Figure 7],
with significantly more values above 200 ms. Keeping in
mind the restricted sample size and the aforementioned
variability of receive timestamps, we believe this shows
that the values reported by the TCP time module are
plausible.

5. Conclusion and future work

With the new modules we implemented for ZMap, two
additional scan types now have the capability to report
round-trip time measurements — ICMPv6 and TCP. This
allows researchers to collect one more metric from large-
scale network surveys, determining not only reachability
but also response time.

During our tests, we discovered an unexpected dis-
parity between RTT values reported by ZMap and mea-
surements we recorded simultaneously using tcpdump.
This was observed with all of the modules, including
the existing ICMP time module. Before the source of
this measurement error is found and eliminated, we are
unable to reliably determine the precision of the imple-
mented modules’ measurements. The reason for this is that
ZMap’s measurements can not be directly compared to
values calculated using the captured timestamps. However,
we compared the distributions of round-trip time measure-
ments to [9, Figure 7] and found that they exhibit very
similar characteristics, which suggests that the modules
themselves do indeed work as intended.

Other than finding and resolving the cause of the ob-
served measurement error, possible future work includes
implementing a ZMap module for RTT measurement us-
ing the TCP Timestamps option. Although we decided
against employing this protocol extension for our TCP
time module, it might be useful in some situations to have
both methods at one’s disposal.

doi: 10.2313/NET-2020-11-1 06

References

(1]

(2]

(3]

(4]

(3]

Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast
Internet-wide Scanning and Its Security Applications,” in 22nd
USENIX Security Symposium (USENIX Security 13). Washington,
D.C.: USENIX Association, Aug. 2013, pp. 605-620.

O. Gasser, Q. Scheitle, S. Gebhard, and G. Carle, “Scanning
the IPv6 Internet: Towards a Comprehensive Hitlist,” CoRR, vol.
abs/1607.05179, 2016.

D. J. Bernstein, “SYN cookies.”
//cr.yp.to/syncookies.html

“Manpage of PCAP-TSTAMP.” [Online]. Available: https://www.
tcpdump.org/manpages/pcap-tstamp.7.html

D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger,
“TCP Extensions for High Performance,” Internet Requests for
Comments, RFC Editor, RFC 7323, September 2014. [Online].
Available: http://www.rfc-editor.org/rfc/rfc7323.txt

[Online]. Available: http:

Seminar IITM SS 20,
Network Architectures and Services, November 2020

(6]

(7]

(8]

(9]

M. Kiihlewind, S. Neuner, and B. Trammell, “On the State of
ECN and TCP Options on the Internet,” in Passive and Active
Measurement, M. Roughan and R. Chang, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 135-144.

R. Beverly, M. Luckie, L. Mosley, and K. Claffy, “Measuring and
Characterizing IPv6 Router Availability,” in Passive and Active
Measurement, J. Mirkovic and Y. Liu, Eds. = Cham: Springer
International Publishing, 2015, pp. 123-135.

J. Postel, “Transmission Control Protocol,” Internet Requests for
Comments, RFC Editor, RFC 793, September 1981. [Online].
Available: http://www.rfc-editor.org/rfc/rfc793.txt

R. Padmanabhan, P. Owen, A. Schulman, and N. Spring, “Time-
outs: Beware Surprisingly High Delay,” in Proceedings of the 2015
Internet Measurement Conference. Association for Computing
Machinery, 2015, pp. 303-316.

doi: 10.2313/NET-2020-11-1 06

