
Session: Secure Messenger with additional Measures for Metadata Protection

Johannes Martin Löbbecke, Holger Kinkelin∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: loebbeckejohannes@hotmail.de, kinkelin@net.in.tum.de

Abstract—With the widespread use of end-to-end encryption
in popular messengers, the security of direct messages has
improved significantly over recent years. However, due to the
lacking protection of metadata, like a user’s IP address and
contact list, the privacy of users is not completely protected.
The open-source application Session aims to provide the
features expected from a modern chat application while
implementing additional measures to protect the user’s meta-
data. This is achieved by using public keys as an identifier
and operating on a decentralized anonymous network to
send end-to-end encrypted messages. This paper presents
the techniques and approaches that Session uses to provide
additional privacy protection in comparison to other popular
messengers.

Index Terms—privacy protection, end-to-end encryption
(E2EE), metadata, decentralised, anonymous network

1. Introduction

Privacy protection in communication software has
been gaining increasing awareness since the revelations
of widespread mass surveillance in 2013. Since then,
many new messenger applications with additional security
measures have been developed and old applications have
implemented security protocols to protect their user’s
privacy. In particular the use of end-to-end encryption
(E2EE) protects the contents of messages.

However, while E2EE secures the contents of the
messages it does not completely protect the user’s privacy
from attacks that target metadata that can be directly
connected to a person like IP addresses and phone num-
bers as well as quantity and time of messages. Especially
protocols like VoIP are susceptible to tracking and timing
attacks, even if they are encrypted and transmitted over
anonymity networks.

Session is an open-source messenger application, that
attempts to provide further protection against these and
other issues while providing all the common features of
popular chat services like group chats, video calls, and
multi-device access. This is achieved by using existing
protocols, like the Signal protocol, and operating on Ser-
vice Nodes in a decentralized permissionless Network.

This paper will present the central protocols and tech-
niques that Session is built upon in Section 2, give an
overview of the measures in current messenger applica-
tions in Section 3, and then explain details of Sessions
implementation in the Sections 4 and 5. If not otherwise
cited, the Session implementation details are based on the

Session white paper found at [1] as well as an infor-
mal conversation with Session developers. The economic
viability of the Loki Blockchain, that Session is based
upon, has been formally analyzed using game theory by
Brendan Markey-Towler [2] and further details regarding
the staking requirement can be found in the research by
Johnathan Ross et al. [3].

2. Background
To develop a secure Messenger with additional privacy

protection measures, basic systems to protect the content
of messages as well as hide the IP addresses during rout-
ing are needed. The protocols, techniques, and network
presented in this section have been formally analyzed and
tested and can be used as a strong foundation in any secure
messaging service.

2.1. Signal Protocol

The Signal Protocol (originally known as TextSecure
Protocol) is a non-federated open-source cryptographic
protocol for E2EE. It can be used to protect the contents of
messages, voice calls as well as video calls while guaran-
teeing important like properties of deniable authentication,
perfect forward secrecy, integrity, destination validity, and
others. In particular, the properties perfect forward secrecy
and deniable authentication guarantee, that every time
a new session is created, a new key is generated for
that particular communication session, which means that
a single compromised communication session key, does
not compromise the content of past and future conversa-
tions. Furthermore, deniable authentication, ensures that
a sender can authenticate messages for a receiver, such
that the receiver cannot prove to a third party that the
authentication ever took place.The Signal Protocol uses
the well established elliptic curve known as Curve25519
as a basis for its key generation and the key exchange
protocol known as Elliptic-curve Diffie-Hellman. These
keys are often called X25519 keys. [4]–[6]

Since the code for the Signal Protocol is open-source,
it has been formally analyzed and found to be crypto-
graphically sound [6], which has further increased its
widespread use in several chat applications (see Table 1).

2.2. Onion routing

Onion routing is a well-reviewed technique for protect-
ing metadata during network communication. The mes-
sage that is being transmitted is protected by multiple

Seminar IITM SS 20,
Network Architectures and Services, November 2020 21 doi: 10.2313/NET-2020-11-1_05



layers of encryption, akin to the layers of an routing. Every
hop removes a layer of encryption and therefore knows
only the next hop, while the actual sender and receiver stay
anonymous, since every intermediate node only knows
the immediately preceding and following nodes. However
this technique does not protect against traffic analysis
and the exit node can be a single point of failure. The
weaknesses of onion routing have been analyzed multiple
times, especially regarding TOR (See Section 2.3). [7],
[8]

2.3. TOR

TOR, derived from the name of the original project
"The onion Router", is a free and open-source server
application licensed under the BSD 3-clause license. TOR
is an altruistic network, that allows users to protect
their privacy through onion routing Protocols running on
volunteer-operated servers. Similarly, TOR can circum-
vent censorship, by providing access to otherwise blocked
destinations and content. TOR has been both extensively
peer-reviewed as well as analyzed in formal studies, and
can, therefore, be a good inspiration or building block for
further software. [7]–[9]

3. Overview of popular secure messenger ap-
plications

This section presents an overview of popular messen-
ger applications that use different forms of E2EE encryp-
tion to provide certain levels of privacy protection.

3.1. WhatsApp

At 1.600 Million monthly active users, as of October
2019 [10], WhatsApp is the most popular Messenger
application. It provides users with the expected features
in sending messages, creating group-chats, and sharing
different forms of media like pictures and videos.

Messages on WhatsApp are encrypted using the Signal
Protocol presented in Section 2.1. WhatsApp is closed-
source and has not allowed independent code audits,
which makes formal analysis and testing difficult, there-
fore raising privacy concerns.

3.2. Signal

Signal is an open-source messaging service developed
by the Signal Foundation and Signal Messenger LLC.
Unlike commercial software like WhatsApp, Signal relies
on donations and support for its commercial viability.

Signal uses the Signal Protocol as presented in Sec-
tion 2.1 and provides further privacy protection by en-
crypting the sender’s information in the message, and only
storing the login dates, rather than more detailed informa-
tion. While providing significant protection, Signal still
has several vulnerabilities. In particular through the use
of a phone number as identifier for the users as well as
centralized servers. (see Section 5.2) [11], [12]

TABLE 1: Overview

Name E2EE reviewed ‘Identification
WhatsApp Signal Protocol No Phone Number

Signal Signal Protocol Yes Phone Number
Telegram MTProto partly Phone Number

reviewed applications have allowed independent code audits and have
been formally tested

3.3. Telegram

Telegram, unlike Signal, is only in part open-source,
with its client-side code being open to the public, while the
server-side code is closed-source. While all server-client
communication is in default encrypted, E2EE is only
optional for messaging and video chat between users. [13]

Telegram has received notable criticism, for using its
untested E2EE algorithm known as MTProto and making
its use optional between users, as well as storing critical
information like contacts, messages, and media on their
centralized Server. [14], [15]

4. Session Basics

This section presents the basic functions and building
blocks of the Session messenger.

4.1. Protections

The goal of Session’s design is to provide the follow-
ing protections to its users.

• Sender Anonymity: Personal identity of the Sender
is only known to the recipients of the messages, while
their IP address is only known to the first hop in the
onion routing path.

• Recipient Anonymity: The IP address of the recipi-
ent is only known to the first hop in the onion routing
path.

• Data Integrity: Session ensures the integrity of the
messages both regarding modification and corruption.
Messages where this integrity is violated, are dis-
carded.

• Storage: For the duration of their time to live(TTL),
messages are cached and delivered to clients.

• E2EE: Messages maintain the properties of Deniable
Authentication and Perfect Forward Secrecy.

4.2. Incentivized Service Nodes

In a centralized Network the central authority is al-
ways a single point of failure, which is why, with the
rise of Bitcoin, decentralized Networks have become in-
creasingly popular, with projects exploring applications in
different fields. In a permissionless network new users can
join at any time and provide additional nodes. [16]

However, many of these projects have struggled with
similar problems like overloaded servers, as well as se-
curity concerns regarding attacks like Sybill attacks. Here
an attacker creates multiple anonymous nodes and can,
therefore, use traffic analysis to deanonymize users and
access private data. [7], [17]

Seminar IITM SS 20,
Network Architectures and Services, November 2020 22 doi: 10.2313/NET-2020-11-1_05



Session aims to prevent these problems by incentiviz-
ing good node behavior and creating a financial precon-
dition for their Loki Service Network. This network inte-
grates a blockchain and therefore requires anyone wishing
to host a server for Session, to go through a staking
transaction, during which an operator has to lock an
amount of cryptocurrency assigned to the node.(equivalent
value of 7.420 USD as of 10/02/2020) [18]

This ensures, that whenever a buyer decides to run a
new Service Node, the supply of Loki is decreased, since
it is locked during the staking mechanism and therefore
removed from the market. This means that the financial
resources to acquire enough Service Nodes for a Sybill
attack are significant and increase exponentially with the
scale of the attack.

Furthermore, the use of a blockchain integrated net-
work allows for a reward system, where whenever a new
block is mined, the service node is paid with a part of the
block reward. This incentive system has been formally
analyzed using game theory by Brendan Markey-Towler.
[2] Combined with a consensus-based testing suite, it
ensures a high standard of operation and honest node
behavior, while being an alternative approach to altruistic
networks like TOR or I2P.

4.3. Onion Requests

Service Nodes provide Session with access to a dis-
tributed network with a high standard of operation, but
to transmit messages while protecting the user’s identity
from third parties as well as protecting the contents of the
messages it still needs encryption and message routing.
Session, therefore, uses an onion routing Protocol(See
Section 2.2) referred to as Onion Requests. The purpose
of Onion Requests is to further protect the IP addresses
of Session users, by creating randomized three-hop paths
through the Service Node Network. For this purpose,
every Session client has access to a Service Node list,
containing the IP address of each Service Node, as well
as the corresponding storage server ports and X25519
keys. This list is fetched on the first launch and then kept
up to date through periodic queries on multiple Service
Nodes. On application startup, the Session client should
use this list to choose three random nodes to establish an
onion routed path. After testing whether this path creation
was successful, by sending down a request and waiting
for a response, the path should persist through multiple
requests. In case a response is not achieved, the client
will try to create a new path.

Client

Figure 1: Onion Requests

5. Extending for Messenger app functionality

Through Onion Requests and the Loki Service Net-
work, Session has access to an anonymous network as
well as bandwidth and storage space. This section presents
central services, that are built on top of the foundation,

to allow Session to provide the features expected from a
modern chat application.

5.1. Storage

Users of modern chat applications expect message
transmission to occur both for synchronous as well as
asynchronous communication. To reliably provide this
service with an app running on a decentralized network,
an additional storage level that provides redundancy is
needed, to deal with unexpected operational problems
like software bugs. For this purpose, session combines
its incentivized Service Nodes with a secondary logical
layer, called swarms.

These swarms are created by grouping together Ser-
vice Nodes and replicating messages across them. To
protect from malicious node operation, the initial swarm
a node joins is determined by an algorithm that gives
minimal influence to the Service Node operator. With
nodes joining and leaving the network, the compositions
of the swarms have to naturally change during operation:

• Starving swarm: In the case, that a swarm needs
more nodes, it can "steal" nodes from a different
swarm, which has more than its minimal amount of
n needed for operation (Nmin)

• All swarms at Nmin: The nodes of the starving
swarm will be redistributed among all other swarms

• Oversaturated swarms: In the case that multiple
nodes will join the network while all swarms are
already at maximum capacity (Nmax), a new swarm
will be created from a random selection of Ntarget
nodes, where Ntarget is defined as Nmin>Ntarget>Nmax
to ensure the new swarm is neither under nor over-
saturated.

Furthermore, to ensure intended node operation, changes
to swarm composition remain synchronized by pushing
data records to new members and redistribution of data
records by leaving nodes.

5.2. Identification

As can be seen in Table 1, most widespread messenger
applications rely on a phone number or email address as
an identifier. While this approach has obvious usability
advantages like ease of social networking or recovery of
login data, it is problematic regarding security and privacy.
High-level actors(a person or group, with a lot of resources
and access rights) like government institutions or service
providers can compromise user accounts tied to a phone
number. Furthermore, a high-level actor can in many states
directly connect a phone number to more personal infor-
mation like passport, social security number and more.
Even a low-level actor(who has limited resources) can
access databases that collect leaked data sets and use them
for spoofing attacks like SIM swapping attacks. Therefore,
Session instead uses X25519 public-private key pairs for
identification and new key pairs can be generated within
the application at virtually any time. Upon first launch a
user is presented with a generated pair and encouraged
to write down their long term private key for potential
account recovery in case their device is lost or for other
reasons out of service.

Seminar IITM SS 20,
Network Architectures and Services, November 2020 23 doi: 10.2313/NET-2020-11-1_05



ClientA ClientB

Swarm
Onion Request Onion Request

Figure 2: Asynchronous Routing

ClientA ClientB

Listening NodesOnion Request Onion Request

Figure 3: Synchronous Routing

5.3. Message Routing

Through the usage of swarms, as explained in Section
5.1, as well as the public X25519 keys as long-term
identification, messages can now be addressed to other
Session users, but the actual messages still need to be
transmitted. To ensure that the user experience is similar
to other modern chat applications, message routing needs
to handle both synchronous and asynchronous routing.

5.3.1. Asynchronous Routing. When a user sends a mes-
sage and either sender or recipient are offline as well as in
the default case, Session uses asynchronous routing (Fur-
ther details on determination in Section 5.3.2) as illus-
trated in Figure 2. For asynchronous routing the sender‘s
client will use the recipients identification key (see sec-
tion 5.2), to determine the recipients swarm through the
deterministic mapping between Service Nodes and long-
term-public keys. The sender then serializes the message
using the Protocol Buffer method and packs it in a wrapper
containing the recipient’s public key, a timestamp the TTL
as well as the proof of work. By requiring proof of work,
spam attacks become more computationally expensive
and, therefore, less practical. Onion Requests create the
path towards the recipient’s swarm, where the package is
spread to three different Service Nodes inside the swarm.
These Service Nodes then spread the message to the other
Service Nodes in the swarm. By targeting multiple Service
Nodes and spreading the message amongst all members
of the swarm, enough redundancy is introduced, to ensure
that the message will not be lost for the duration of its TTL
and can, therefore, be received whenever the recipient
connects to the network.

5.3.2. Synchronous Routing. Asynchronous routing is
also used in the default case since the Protocol Buffer
of any asynchronous message also contains the online
status of the sender as well as a specified Service Node
in their swarm, on which they are listening. This means
a recipient’s client can then set up a synchronous rout-
ing through the specified listening node, by exposing its
listening node in the network as illustrated in Figure 3.
Once set up the two clients can now simultaneously use
Onion Requests to send messages through the network to
the conversation partner’s respective listening nodes. Since
messages are not propagated through the swarms, there is

no redundancy being created and no proof of work is sent.
To prevent lost messages, acknowledgments are sent back
after every received message. If a message times out, if for
example the recipient went offline, the message is resent
using the default asynchronous routing.

5.4. Modifications to the Signal Protocol

While onion routing hides the user’s IP addresses via
Onion Requests, the actual content of the messages still
needs to be encrypted. Session uses the Signal Protocol
as described in Section 2.1 as its basis and adds some
slight modifications to adapt it to a decentralized net-
work. Additional information is added to each message,
to ensure correct routing and verifying correct message
creation. Furthermore the sharing of prekey bundles is
instead conducted by a "friend request" system. Whenever
a user first initiates communication with a new contact, a
friend request will be sent. This friend request contains a
short written introduction as well as the sender’s prekey
bundle and metadata like the sender‘s display name and
public key, which as explained in the previous sections
can be used to reply to the sender. These friend requests
are themselves encrypted for the recipient’s public key
using the Elliptic-curve Diffie–Hellman protocol, that the
Signal Protocol is based on. In the case that the recipient
accepts the friend request, they can then use the prekey
bundle to exchange messages, encrypted with the Signal
Protocol as desired.

6. Conclusion

Surveillance on the internet is constantly increasing
both by individuals as well as states and corporations. In
a time where many countries and regimes are working
increasingly towards blocking free communication and
expression, it has become more important then ever to not
just protect the contents of conversations via techniques
like E2EE, but also the information if, when, and between
whom the conversation took place.

By building on the Signal application with the Signal
Protocol and using onion routing like in TOR, Session
combines formally tested measures for security and pri-
vacy protection, with a decentralized network. The in-
centive structure designed around the Loki Service Net-
work presents a commercially viable approach to anony-

Seminar IITM SS 20,
Network Architectures and Services, November 2020 24 doi: 10.2313/NET-2020-11-1_05



mous networks and allows for protection against common
problems like Sybill attacks and overloaded servers. By
extending their systems with an additional logical layer
in swarms, Session can use both asynchronous and syn-
chronous routing, to provide the functionality expected
from a modern chat application.

Further extensions that allow for the use of multi-
device, attachments and group chats, were out of the scope
this paper, but are described in the Session white paper as
found on their GitHub page and in [1]. Some features like
video chats are as of May 2020 still under development.

References

[1] K. Jefferys, M. Shishmarev, and S. Harman, “Session: A Model
for End-To-End Encrypted Conversations With Minimal Metadata
Leakage,” 2020, [Online; accessed 25/03/2020].

[2] B. Markey-Towler, “Cryptoeconomics of the Loki network,” 2018,
[Online; accessed 25/03/2020].

[3] K. Jefferys, J. Ross, and S. Harman, “Loki Cryptoeconomics:
Alterations to the staking requirement and emission curve.” 2019,
[Online; accessed 25/03/2020].

[4] M. D. Raimondo, R. Gennaro, B. Dowling, L. Garratt, and D. Ste-
bila, “New approaches to deniable authentication.” Journal of
Cryptology, May 2009.

[5] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, and
T. Holz, “How secure is textsecure?” in 2016 IEEE European
Symposium on Security and Privacy (EuroS P), March 2016, pp.
457–472.

[6] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Ste-
bila, “A formal security analysis of the signal messaging protocol,”
in 2017 IEEE European Symposium on Security and Privacy
(EuroS P), April 2017, pp. 451–466.

[7] A. Sanatinia and G. Noubir, “Honey Onions: a Framework for
Characterizing and Identifying Misbehaving Tor HSDirs,” [Online;
accessed 22/03/2020].

[8] TorProject.org, “Toor Project: FAQ,” [Online; accessed
26/03/2020].

[9] “Tor Project: Overview,” https://2019.www.torproject.org/about/
overview.html.en, [Online; accessed 18/03/2020].

[10] J. Clement, “Most popular global mobile messenger
apps as of October 2019, based on number of monthly
active users,” https://www.statista.com/statistics/258749/
most-popular-global-mobile-messenger-apps/, 2019, [Online;
accessed 12/03/2020].

[11] Signal.org, “Technology preview: Sealed sender for Signal,”
https://signal.org/blog/sealed-sender/, 2018, [Online; accessed
15/03/2020].

[12] M. Lee, “Battle of the secure messaging apps: How signal beats
whatsapp,” The Intercept, 2016.

[13] “Telegram F.A.Q,” https://telegram.org/faq#
q-why-not-open-source-everything, [Online; accessed
22/03/2020].

[14] “why telegrams security flaws may put irans
journalists at risk,” https://cpj.org/blog/2016/05/
why-telegrams-security-flaws-may-put-irans-journal.php, [Online;
accessed 22/03/2020].

[15] W. William Turton, “why you should stop us-
ing telegram right now,” https://gizmodo.com/
why-you-should-stop-using-telegram-right-now-1782557415,
[Online; accessed 22/03/2020].

[16] X. Xu, I. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso,
and P. Rimba, “A taxonomy of blockchain-based systems for
architecture design,” in 2017 IEEE International Conference on
Software Architecture (ICSA), 2017, pp. 243–252.

[17] D. McIntyre, “Ethereum Classic Gas System Economics Ex-
plained,” [Online; accessed 25/03/2020].

[18] Developers, “Loki documentation, loki service node
staking requirement,” https://docs.loki.network/ServiceNodes/
StakingRequirement/, [Online; accessed 17/03/2020].

Seminar IITM SS 20,
Network Architectures and Services, November 2020 25 doi: 10.2313/NET-2020-11-1_05


