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Abstract—In the analysis of big-data, graph databases get a
lot of attention due to their capability of dealing with large,
unstructured, and rich data. The existing graph storage and
analysis systems have different strengths and weaknesses
depending on the use-case.

In this paper, we will examine the three popular graph
databases Neo4j, Apache Giraph, and MsGraphEngine in the
context of storing and analyzing TLS scans. We will compare
their storage architecture and graph processing capabilities
to conclude that MsGraphEngine and Apache Giraph are
better suited for our large-scale data analysis than Neodj,
where MsGraphEngine can be best adapted to our needs.

Index Terms—graph database, tls scan, big data, olap

1. Introduction

In the field of graph processing, traditional database
systems such as Relational Database Management Sys-
tems (RDBMS) and diverse NoSQL stores face problems
due to the irregularity, richness, size, and the structure of
the data [1]. A plethora of new databases called Graph
Databases (graph DBs) have been developed, thus, spe-
cialized on storing and processing graphs. They can help
reveal new information in the data by efficiently applying
graph algorithms.

Graph DBs differ in data architecture and access, data
distribution, query language and execution, and support
for different transactions; see Section 2. Hence, the prefer-
able graph DB is specific to the use-case. In this paper,
we analyze and compare three popular graph DBs, namely
Neodj, Apache Giraph, and MsGraphEngine in the context
of processing Transport Layer Security (TLS) scans. TLS
is a widespread security protocol on the internet.

In Section 2 we explain the fundamentals of graph
databases. We then define our problem and derive re-
quirements on the Graph DB in Section 3. Finally, we
analyze our candidates and compare them according to
our requirements in Sections 5 and 6, respectively.

2. What are Graph Databases?

Graph Databases are specialized databases for han-
dling graphs. They can cope with data-inherent properties
that other DBs struggle with. In contrast to tabular data,
graphs have an irregular structure, e.g. different incoming
and outgoing numbers of edges per node [2]. Often, nodes
and edges contain rich data such as labels and properties,
which are inconsistent in size. Moreover, graphs can grow
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large in size, as we will see in Section 3.2, while modi-
fications are made and information is ever-changing. On
top, graph algorithms require irregular access to nodes and
edges and, therefore, a low latency [1]. Ultimately, Graph
DBs are designed to efficiently run graph algorithms.

Due to the requirements, a variety of different ap-
proaches have emerged, based on which graph databases
can be distinguished. In the following, we will briefly
explain these key concepts.

2.1. Graph Models

There exist three graph models, of which variants are
implemented by graph DBs. The most common is the
Labeled Property Graph (LPG) model [1]. The Resource
Description Framework (RDF) and the Hyper Graph
model are used by fewer databases and do not concern
the DBs discussed here.

A Property Graph is defined as the tuple
(N,E,p,\,0) [3]. Let N and E denote finite sets
of nodes (also called vertices) and edges such that
N N E = (. Then, the function p : E — (N x N) maps
the edges to their corresponding start and end node.
Additionally, the graph contains rich data associated to
nodes and edges. Such data can be labels and properties,
defined by the functions A : (N U E) — P*(L) and
o: (NUE) x P — P*(V), respectively. Here, L, P,
and V are sets of labels, property names, and property
values, respectively. The operator P7(-) denotes the
power set excluding the empty set.

2.2. Storage Architectures

The storage architecture determines the efficiency and
scalability of graph operations. Its index structures must
provide an efficient way of querying the elements of the
graph, while maintaining modifiability when it scales [1].

Some Graph DBs are based on more fundamental
databases such as key-value stores or wide-column stores;
see [1]. Native graph DBs use specially adapted storage
architectures for graphs.

2.3. Types of Transactions

There are two types of transaction which a graph DB
can be optimized for, namely Online Transaction Process-
ing (OLTP) and Online Analytical Processing (OLAP).

With OLTP, the user performs many smaller transac-
tional queries that are processed interactively on the client
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for more in-depth analysis. This requires a low latency for
transactions. The queries are local in nature, i.e., do not
affect the graph on a global scale [1]. The graph database
mainly acts as a storage system.

Conversely, OLAP is mostly executed on the server,
i.e. the server performs exhaustive graph algorithms, while
the client awaits the result. The requests are fewer, but
often span the whole graph. The main goal is a high
throughput, which is often achieved by a high degree of
parallelization on the server [1].

24. ACID

A database complies with ACID if it ensures the
following properties. Transactions are always performed
completely or not at all (Atomicity). Data always remains
consistent, i.e., a completed transaction always produces
valid output (Consistency). Concurrent transactions can-
not see intermediate results (Isolation). The result of
completed transactions persists (Durability) [4]. This also
applies to graph DBs.

3. Problem Statement

This section describes the dataset that needs to be
processed and the resulting requirements on the database.

3.1. Input Data

We use the TLS scanner goscanner, see [5], to scan
the internet for servers using the TLS protocol. The output
are .csv tables containing information such as used certifi-
cates, ports, and protocols about all servers. The servers’
IP is a unique identifier. An exemplary scan is shown in
Table 1.

TABLE 1: Exemplary TLS scan

Host Port Server Name Protocol
2a00:1450:4001:81f::200e 443 google.com TLSv1.2
172.217.22.78 443 google.com TLSv1.3
192.30.253.113 443 github.com TLSv1.3

We want to store this table together with additional
information as a directed graph connecting servers, server
properties, domain names, certificates, and certificate au-
thorities. We use labeled edges to express relations. An
exemplary graph is shown in Figure 1.

In the future, scanners may gather even more infor-
mation, such as more server properties or direct relations
between servers. This input data structure is therefore not
fixed, but rather the current state.

3.2. Requirements on the Graph Database

In the following, we derive a list of requirements on
the graph DB based on the properties of our dataset.

3.2.1. Scalability. TLS scans easily reach sizes up to
200 GB with over 400M entries. Thus, the graph DB
must be able to efficiently deal with large numbers of
nodes and edges, while the data quantity per node is
comparatively low (limited to mostly the node name and
a few properties).
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Figure 1: Exemplary graph structure of a TLS scan cor-
responding to Table 1
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3.2.2. Fast Loading. TLS scans are performed on a
frequent basis. Once a new scan is ready, the old one
is obsolete. Thus, the most recent scan shall be inserted
into the graph DB as quickly as possible to have more
time for analysis. Due to the huge data size, the insertion
speed is a relevant parameter.

3.2.3. Adaptability. As explained above, our input data
structure is not fixed. If we want to focus on different
aspects in our analysis, we may need to change the graph
structure or add additional information. Thus, the graph
DB must to adapt to our needs.

3.2.4. OLTP and OLAP. As we focus on graph analysis,
OLAP will be more suited for us than OLTP. Due to the
scale of the dataset, we need a system designed for high
throughput.

However, the support of OLTP could be useful as the
client requests the server for information via an API. Thus,
the graph algorithm running on the client can be written
in the programming language we prefer. Also, it requires
less computational power of the server and is good for
locally inspecting the data, e.g., getting information about
one specific TLS server.

4. Related work

There exists a variety of surveys on graph DBs, each
specialized on different aspects. In 2019, Besta et al. [1]
published an exhaustive survey covering general design,
data models and organization, data distribution, and trans-
actions and queries of graph DBs. Over 40 databases were
compared and classified accordingly. Focusing on scalabil-
ity and performance, Barpis and Kolovos [6] investigated
the performance of graph DBs compared with RDBM
Systems in the context of model-driven engineering. In
2015, Kaliyar [7] published a brief overview over popular
graph DBs, such as Neo4j, DEX, HyperGraphDB, and
Trinity, concentrating on data modeling. A benchmark
of graph algorithms performed on different graph DBs
was published in 2013 by McColl et al. [2]. In 2018,
Patil et al. [8] reviewed both implemented and theoretical
computational techniques for graph DBs.

So far, no survey compares the above-mentioned graph
databases Neo4j, Apache Giraph, and MsGraphEngine
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based on the requirements stated in Section 3.2, i.e, the
special case of large-scale data sets with a possibly chang-
ing data structure, the need for fast loading, and OLAP.

5. Analysis of the Graph Databases

In the following, we introduce the three graph DBs
Neo4j, Apache Giraph, and MsGraphEngine.

5.1. Neodj

The database Neo4j is one of, if not the most popular
Graph DB, hence, why we have chosen this DB for
comparison in our paper. According to its creators, Neo4j
benefits from their first-mover advantage and a thriving
community. It claims to scale well, to support highly
parallel graph processing and to have high loading speeds
[9]. It is implemented in Java.

5.1.1. Storage Architecture. Neo4j stores edges, nodes,
and properties in records of fixed size. These are address-
able, contiguous blocks of memory. Records storing a
node or an edge are called node records and edge records,
respectively. Properties are stored in property records and
can hold up to four properties. For large property values,
there is an additional dynamic store [1].

These three types of records are used to store a prop-
erty graph (see Section 2.1) as depicted in Figure 2. Let
nl and n2 denote two nodes, which are connected by the
edge e2. Both nodes have further connections to nodes
that are not explicitly depicted for simplicity.

Node records contain a reference to the edge record of
the first edge that is attached to the node. In our example
the record of n1 points to the record e2. It also stores labels
and a pointer to a property record [1]. For administration
purposes, the node record keeps flags, which are omitted
in the figure.

Edge records contain pointer to the node records of
the start and end node. It stores one label and a pointer to
a property record. Each edge record belongs to the adja-
cency lists (AL) of the start and end node. These adjacency
lists are implemented as doubly linked lists [1]. Hence, an
edge record also stores forward and back pointers for both
ALs. Due to these linked lists, Neo4j supports index-free
adjacency., i.e., no special index structure is required for
querying the adjacencies of a node.

Due to the index-free adjacency, Neo4j deals well with
large graph sizes. No index structure needs to be kept up-
to-date.

The storage is disk-based, meaning that not the entire
graph is kept in the RAM [10].

5.1.2. Data Distribution and Types of Transactions.
Neo4j does not support distributed data across servers.
The data may be replicated but cannot be segmented [1].

It fully supports ACID in all transactions [10] and can
be used for both OLAP and OLTP [1].

5.2. Apache Giraph

Apache Giraph is an open-source implementation of
Google’s Graph Analysis System Pregel. It was famously
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Figure 2: Storage architecture of Neo4j

used by Facebook to process a large-scale Graph with
a Billion nodes and more than a Trillion edges within
minutes [11], making it an interesting candidate for us.
Giraph is much more than just a Graph storage system.
It was designed to perform exhaustive graph analysis
on distributed servers and to interface with a variety of
services in Apache’s framework Hadoop; see [12].

5.2.1. Distributed Computing. The system Hadoop by
Apache is the basis for Giraph’s capability to deal with
big data. It is an open-source implementation of the
MapReduce programming model developed by Google.
Its core idea is to split the computation in a Map and a
Reduce function that both accept and generate key/value
pairs. In the first step, Map generates a set of intermediate
values with intermediate keys. The intermediate values are
grouped by the intermediate keys. In the second step, the
Reduce function reduces each group to a more simple
value. Both steps can be parallelized on multiple machines
[13]. Giraph uses a variant of MapReduce, also called
map-only [12], meaning that there are no Reduce steps
between Maps.

However, graph algorithms are often hard to paral-
lelize. Therefore, the algorithms are executed in super-
steps. Each super-step is parallelized on the machines.
Once the machines have finished the super-step, the next
one is started. This is also known as the Bulk Synchronous
Parallel programming model. The programming is vertex
based, meaning that nodes are the fundamental entities of
processing. In between two super-steps, nodes can send
messages to other nodes [10].

Hadoop manages the exchange of messages, code,
and other information between the many workers and the
master that controls the computation.

5.2.2. Storage Architecture. Nodes, edges, and messages
are stored as Java objects and are serialized to byte arrays.
To avoid memory management issues and to minimize
Java’s expensive garbage collection, Giraph performs parts
of the memory management on its own [12].
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Nodes are stored in objects instantiated by the class
Vertex. Each vertex object has a unique ID, a value (a
generic), and a set of outgoing edges; see [14].

The outgoing edges of a node are stored in an object
that can be an instance of different classes implementing
the OutEdges interface. According to the use-case, the
user can choose between different implementations. In
case one wants to efficiently iterate over all outgoing
edges, a byte array or a linked list may be most efficient.
For random access, on the other hand, a hash map for
indexing the edges may be more suitable. The user is also
allowed to create own implementations of the OutEdges
interface [12].

Objects of the class Edge store a pointer to the target
node and a value that is a generic.

Without different specification, Giraph stores the entire
graph in the RAM of the distributed machines and is, thus,
memory-based [15].

5.2.3. Types of Transactions. Due to its nature, Giraph
supports OLAP but is not suited for OLTP. It is optimized
for graph analysis rather than for storing graphs. Hence,
there is no point in investigating the compliancy with
ACID.

5.3. MsGraphEngine (Trinity)

Microsoft’s Graph Engine Trinity is a distributed graph
processing framework based on a globally addressable
key-value store. It can be customized using the Trinity
Specification Language (TSL) [16].

5.3.1. Storage Architecture. The core element of Trinity
is a key-value store, where values are addressable system-
wide across several machines. The values (called cells)
are binary blobs of variable size that can hold arbitrary
data. Their usage is specified via the Trinity Specification
Language. Thus, the user can customize the graph schema
and adapt to the needs. Cells may hold node or edge data
or associated rich data [17]. A communication framework
passes messages between machines, which can also be
adjusted with TSL.

The key/value store is partitioned in trunks of fixed
size with individual hash tables for addressing. Each ma-
chine keeps multiple trunks. The entire store is loaded in
the RAM [17].

5.3.2. Distributed Query Execution. In Trinity, there
exist three types of workers: slaves, proxies, and a client.
Slaves store trunks and process and answer incoming
messages. Proxies only deal with messages and do not
store graph data. They can be used for gathering and
relaying results from slaves to the client. The client is
a worker that interfaces with the user [17].

The programming model is vertex centric. As with
Giraph, consecutive super-steps are performed. At each
step, a node receives messages from a fixed set of nodes,
which have been sent in the previous super-step [17].

5.3.3. Types of Transactions. There is no inherent mech-
anism ensuring ACID. However, Trinity provides mea-
sures such as spin locks for each storage cell to guarantee
consistency [17].

It can be used for both OLAP and OLTP.
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6. Comparison of the Graph Databases

In this section, we compare our candidates based upon
our requirements.

Scalability. All three graph DB discussed above are
scalable in size in terms of their graph model implemen-
tation. There are no index structures that would become
much more inefficient with growing size. However, with
bigger the graph size, more storage space and computa-
tional power is needed. This is where Giraph and Trinity
outperform Neo4j. They are specifically designed to run
distributed graph analysis taking advantage of the RAM
memory and the computing power of several machines.
Neo4j can run distributed, but with copies of the data set,
improving availability rather than storage capacity. It uses
disc memory, which is cheaper and persistent but not as
fast as the in-memory storage of Giraph and Trinity. The
performance of the latter is throttled by the network speed
of the cluster [17].

Adaptability. Neo4j is designed for storing labeled
property graphs, i.e., its graph model is fixed. This can
lead to both memory overhead and design constraints if
the data does not suit the model. In Giraph the user has
a certain freedom by choosing generic types, selecting
different implementations (see OutEdges) and writing own
classes. Trinity has even more degrees of freedom. Its
language TSL lets the user define the entire graph schema
and communication protocols. Thus, there is less storage
overhead than in Giraph [17]. However, the user has
to manually set up the database in TSL. Additionally,
Giraph stores Java runtime-objects including their meta-
data, causing storage overhead [17]. Again, Trinity or
Giraph may be the better choice.

Note that Trinity has a more restrictive programming
model than Giraph. Between super-steps, nodes can send
messages to arbitrary nodes in Giraph, whereas the re-
ceivers are fixed in Trinity. However, this increases the
efficiency of Trinity’s inter-machine communication [17].

ACID, OLAP, and OLTP. Giraph and Trinity do
not have built-in support for ACID, whereas Neo4j does.
We can use Neo4j for both OLTP and OLAP. However,
the benefit of OLAP may be limited due to the lack of
processing power of a single machine. Trinity is designed
to handle both use-cases well. It is a hybrid of Neo4j and
Giraph, so to speak, as Giraph is only useful with OLAP.

Input Loading. Solely based on the storage archi-
tecture, it is hard to estimate, which of the three contes-
tants will have the fastest loading time for our data set.

7. Conclusion and future work

We have compared the graph databases Neo4j, Apache
Giraph, and MsGraphEngine (Trinity) in the context of
storing and analyzing TLS scans. In summary, Neo4j
is most suited if we want to store and locally query a
smaller graph without much analysis. Conversely, Apache
Giraph is not suited for storing graphs but specialized for
distributed and parallel analysis of big data. Trinity serves
both and can be adjusted as needed. Future work could
include implementing and benchmarking graph algorithms
on the three DBs to be sure about the best choice.
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