
Time Synchronization in Time-Sensitive Networking

Stefan Waldhauser, Benedikt Jaeger∗, Max Helm∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
E-Mail: stefan.waldhauser@tum.de, jaeger@net.in.tum.de, helm@net.in.tum.de

Abstract—Time-Sensitive Networking (TSN) is an update to
the existing Institute of Electrical and Electronics Engineers
(IEEE) Ethernet standard to meet real-time requirements of
modern test, measurement, and control systems. TSN uses
the Precision Time Protocol (PTP) to synchronize the device
clocks in the system to a reference time. This common sense
of time is fundamental to the working of TSN. This paper
presents the principles and operation of PTP and compares
it to the Network Time Protocol (NTP).

Index Terms—clock, network time protocol (NTP), precision
time protocol (PTP), synchronization, time, time-sensitive
networking (TSN)

1. Introduction

In real-time systems, the correctness of a task does not
only rely on the logical correctness of its result but also
that the result meets some deadline [1]. A typical example
of a real-time system is a control system in industrial
automation that has to integrate multiple sensor readings
and then initiate an action in response. This requires a
deterministic underlying network.

Time-Sensitive Networking (TSN) is a set of stan-
dards that represent an ongoing effort of the Institute of
Electrical and Electronics Engineers (IEEE) 802.1 TSN
Task Group [2] to extend and adapt existing Ethernet
standards on the data link layer to meet real-time require-
ments of modern test, measurement and control systems.
Advantages over traditional Ethernet include guaranteed
bounded latency for time-critical data while transmitting
time-critical data and best-effort data on the same net-
work [3].

The foundation of TSN is establishing a shared sense
of time in all networked devices in the system. Only then
they are able to perform time-sensitive tasks in unison
at the right point in time. This shared sense of time is
achieved through the use of the Precision Time Protocol
(PTP) [3]. PTP is a message based time transfer protocol
that enables clocks in the nodes of a packet-based network
to synchronize (phase and absolute time) and syntonize
(frequency) with sub-microsecond accuracy to a reference
time source. PTP was first described in the IEEE 1588-
2002 standard. The standard was later revised in IEEE
1588-2008 [4]. The revised protocol is commonly referred
to as PTP Version 2 and is used in TSN together with the
profiles IEEE 802.1AS and IEEE 802.1ASRev [5].

The paper starts with a description of PTP Version 2 in
Chapter 2. The chapter begins with a brief overview of the
two fundamental phases of the protocol: the best master

clock algorithm and message based time synchronization.
Then the various PTP device types and message types are
discussed. The two phases are described in more detail in
the rest of the chapter.

Next, in Chapter 3, PTP Version 2 is compared
to another message based time synchronization protocol
called Network Time Protocol (NTP) Version 4. Various
advantages and disadvantages are discussed.

Finally, Chapter 4 concludes the paper.

2. Precision Time Protocol

An IEEE 1588 system is a distributed network of PTP
enabled devices and possibly non-PTP devices. Non-PTP
devices mainly include conventional switches and routers.
An example PTP network can be seen in Fig. 1.

The operation of PTP can be conceptually divided into
a two-stage process [6]. In the first stage, the PTP devices
self-organize logically into a synchronization hierarchy
tree using the Best Master Clock Algorithm (BMCA). The
devices are continuously exchanging quality properties of
their internal clock with each other. The PTP device with
the highest quality clock in the system eventually assumes
the role of grandmaster (GM) and provides the reference
time for the whole system. The subnet scope in which all
clocks synchronize to the GM is called PTP domain. The
BMCA is explained further in Section 2.3.

In the second stage, time information continuously
flows downstream from the GM between pairs of PTP
ports with one port in the master state serving time
information and the other in the slave state receiving time
information. Eventually, the system reaches an equilibrium
where all clocks are synchronized to the GM of the
system. Time synchronization between master and slave
is initiated by the master port, which periodically sends
synchronization messages to its slave. These messages are
timestamped by the master at transmission and by the
slave at arrival. A slave now has two timestamps, the
sending time according to the clock of the master, and
the receiving time according to its clock. As the message
takes some time to travel through the network, the slave
also needs to know the network delay to calculate the
offset to the master [6].

PTP supports two mechanisms to calculate this de-
lay: End-to-End (E2E) and Peer-to-Peer (P2P). The E2E
mechanism requires the slave to measure the total delay
between itself and the master (thus end-to-end). The P2P
mechanism, on the other hand, requires each device (in-
cluding switches and routers) on the path between master
and slave to measure the delay between itself and its

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

51 doi: 10.2313/NET-2020-04-1_10



direct neighbor (peer). The total network delay between
master and slave is the sum of the peer delays along the
path. Technically, E2E can be used in the same domain
as P2P as long as the two are not mixed along the same
messaging path. Thus, between master and slave, all nodes
must either use E2E or P2P [7]. The two mechanisms are
discussed in more detail in Section 2.5.

2.1. PTP Device Types

The standard defines five PTP device types: or-
dinary clocks, boundary clocks, end-to-end transparent
clocks, peer-to-peer transparent clocks, and management
nodes [4].

An ordinary clock (OC) is an end-device (as opposed
to a switch or router) with a single PTP capable port and
an internal local clock. It can either assume the role of
slave (leave node) or GM (root node) in the synchroniza-
tion hierarchy.

The main source of error in PTP is asymmetry in
the network delay between master and slave. Asymmetric
network delay means that sending a message from master
to slave takes a different amount of time than the other
way around. The most significant sources of asymmet-
ric network delay are different processing and queueing
delays in ordinary switches and routers, different data
transmission speeds, error differences in the generation of
timestamps, and messages taking different routes through
the network [6].

IEEE 1588-2008 defines two types of PTP enabled
switches and routers to deal with the asymmetry problem:
Boundary clocks (BC) and transparent clocks (TC).

A BC has multiple PTP capable ports and one internal
clock shared by all ports. If the BC is selected as the
GM of the system, then all ports switch to the master
state. Otherwise, the BC selects the best clock seen by
all of its ports. The corresponding port then switches to
the slave state, allowing the internal clock to synchronize.
The other ports switch to the master state, serving time
information based on the now synchronized internal clock.
By terminating and then restarting the time distribution,
each BC creates a branch point (internal node) in the
synchronization tree. This allows the BC to effectively
remove the adverse effects of its processing and queuing
delays.

Like a BC, a TC has multiple PTP capable ports,
and one shared internal clock. Eliminating asymmetry
is achieved by timestamping the entrance and exit of
PTP messages that pass through the device. The time the
message spent inside the device, called residence time,
is calculated by subtracting the entrance timestamp from
the exit timestamp. The TC then adds the residence time
to a correction field in the PTP message before passing it
along. The slave can then remove the accumulated queuing
and processing delays by using the correction field value
in the offset calculation.

Transparent clocks exist in variants supporting either
the P2P delay mechanism or the E2E delay mechanism.
Only a single delay mechanism is allowed in the link
between master and slave. A boundary clock with ports
supporting each of the two mechanisms can be used to
connect regions using the different mechanisms. See 1
for an example.

P2P TC

End To End Delay Measurement Peer to Peer Delay
Measurement

BC

Ordinary Switch

E2E TC

OC

Quality Time Source

Grandmaster

M

OCOC

S S

OC

S

MS

OC

M
S

Figure 1: Example PTP Domain (Adapted from [8])

Management Nodes do not take part in the time syn-
chronization but can be used to read and write various PTP
properties of other nodes via Management messages [6].

2.2. PTP Message Types

IEEE 1588 defines two groups of PTP messages [4]:
(1) Event messages, which require an accurate timestamp
both at sending and receiving because PTP uses these as
timing events. (2) General messages, which are being used
to transmit information. In contrast to event messages,
sending and receiving of general messages does not pro-
duce a timestamp.

The event message are Sync, Delay_Req, Pdelay_Req
and Pdelay_Resp. These are used in the time syn-
chronization process to transfer timestamps and correc-
tion information between master and slave. The gen-
eral messages are Announce, Follow_Up, Delay_Resp,
Pdelay_Resp_Follow_Up, Management and Signaling.
Announce messages are used in the BMCA to exchange
clock quality information. Management messages are used
to configure PTP devices. Signaling messages are used by
PTP clocks to communicate in special settings, such as
unicast environments.

IEEE 1588 clocks can either support the one-step or
two-step messaging mechanism. When sending Sync or
Pdelay_Resp messages, clocks need to tell the receiver the
sending timestamp. They are either capable of including
this timestamp in the Sync and Pdelay_Resp themselves
(one-step-clock), or they need to send a second follow-
up message containing it (two-step-clock). Follow_Up and
Pdelay_Resp_Follow_Up messages are used for this [9].

As mentioned before, any delay asymmetry causes a
loss in accuracy. ‘Artificial’ network delay is created if the
timestamps that are generated on the path from master
to slave have a different error than those generated on
the path from slave to master. This happens for example
if software timestamping is used because the operating
system and protocol stack packet processing delay fluctu-
ates. Therefore it is recommended to use devices with PTP
enabled NICs (Network Interface Cards) in the network.
These specialized NICs have a clock, which is used to
timestamp the received and transmitted PTP messages as
close to the physical layer as possible [10]. Timestamps
generated via hardware support have a constant low error
and therefore improve synchronization accuracy.

PTP usually is implemented using multicast communi-
cation, but it can also be configured for unicast messaging.
The PTP standard does not require any specific transport
protocol, but most commonly, UDP is used. The well
known UDP ports for PTP traffic are 319 (Event Message)
and 320 (General Message) [11].

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

52 doi: 10.2313/NET-2020-04-1_10



Power Up

Listen

do/ listen for Announce

Master
do/ transmit Announce 
do/ listen for Announce 

Slave

do/ listen for Announce 

Announce from better Clock

No Announce from better Clock

 Announce
 from better Clock

No Announce 
from better Clock

Figure 2: Simplified PTP State Machine of an Ordinary
Clock (Adapted from [12])

2.3. Best Master Clock Algorithm

IEEE 1588 is an administration-free system that can
deal with events like system restarts, failure of a clock,
or changes in network topology automatically. This is
achieved via the BMCA, which runs continuously in OCs
and BCs in a domain [4].

The basics of the BMCA can be explained using the
simplified state diagram of an OC in Fig. 2. All OCs listen
for defined intervals to Announce messages, which are sent
in a specific frequency by ports in the master state to the
PTP multicast address. These messages contain attributes
about the sending clock. At the end of each listening
interval, an OC has either received an Announce message
from a better clock or not.

The attribute comparison algorithm uses the following
criteria in order of precedence to determine if an Announce
message from a better clock has been received [12] [4]:

1) priority1: This is a user configurable field. It is
the first parameter to be considered by the BMCA.
Therefore an administrator can manually set up a
clock quality hierarchy.

2) clockClass: This field generally described the quality
of a clock. A clock connected to a GPS receiver has
a higher class than a free-running clock.

3) clockAccuracy: This field describes the accuracy of
the clock. The value is picked from defined accuracy
levels in the standard, for example, 25 ns to 100 ns.

4) offsetScaledLogVariance: This field describes the sta-
bility of the clocks oscillator.

5) priority2: This is a user configurable field. It can be
used to manually rank clocks of equal quality.

6) clockIdentity: This field is usually set to the Ethernet
MAC address. It is a unique number that is used to
break ties.

If a message from a better clock has been received, a
master OC switches to the slave state. If no such message
has been received, a slave OC switches to the master
state and starts transmitting Announce messages. Freshly
rebooted OCs are in a special listening state and can either
switch to the master or slave state [12].

The process in BCs is similar, but these devices have
to compare all of the Announce messages received on all
the ports, to determine if they become a GM (all ports in
master state) or just a branching point (one port in slave
state and the others in master state) [12].

Eventually, only a single clock assumes the role of
GM in the domain.

M E2E
TC

t1 = 5μs
 

tm = 0 ts = 5μs

Path delay M⭢S: 10μs

t3 =  25μs
Delay_Req (corr=0)

   t4=30μs
corrsm= 2μs

{t1,t2,t3,t4, 
corrms, 
corrsm} 

t2 = 21μs
corrms = 1μs

Delay_Resp (t4, corr= 2μs)

1μsSync(corr=0, t1)

Path delay M⭠S: 8μs

S

Sync(corr=1μs, t1)

2μs

Delay_Req (corr=2μs)

Delay_Resp (t4, corr= 2μs)

Figure 3: E2E Synchronization (One-Step-Clocks)
(Adapted from [4])

It is important to note that the BMCA never stops
running. This allows the system to react to certain events
by dynamically changing the synchronization hierarchy.
For example, if the current GM gets disconnected from
the network, a new GM is determined automatically.

2.4. Syntonization

Syntonization in this context means frequency locking
two clocks by agreeing on the length of a second. Syn-
tonized clocks, therefore, are running at the same rate.
This paper does not discuss the details of syntonization
using PTP, but it is important to note that any port in the
slave state and any TC syntonizes to the GM [4].

2.5. Synchronization

Time synchronization implies phase-locking two
clocks and making them agree on the same time of day.
Phase locking means that incrementing the time does not
only happen at the same rate in both clocks but also
at the same time. Agreeing on the time of day means
synchronizing the ‘wristwatch time’ – year, month, day,
hour, minute, seconds and so on in a given timezone. Any
OC or BC with a port in the slave state synchronizes to
its respective master in the hierarchy [4].

2.5.1. E2E Synchronization. Fig. 3 shows the message
exchange to synchronize a one-step slave clock and a one-
step master clock with an E2E transparent clock between
them. In the example, there exist two sources of delay
asymmetry: (1) A difference of 1 µs in the TC processing
time. The negative effects of this asymmetry can be au-
tomatically removed. (2) A difference of 2 µs that has its
origin in transmission speed or path length differences.
PTP can not automatically remove the influence of this
asymmetry. However, if measured manually, PTP can be
configured to account for it [6].

As seen in the example, the slave collects four times-
tamps and two correction values during the message ex-
change:

• t1: Sync sending timestamp in master time. In a two-
step clock this timestamp is contained in a separate
Follow_Up message and not in the Sync message
itself.

• corrms, corrsm: Each TC on the path adds the
residence time to the correction field in the Sync or
Delay_Req message

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

53 doi: 10.2313/NET-2020-04-1_10



• t2: Sync receiving timestamp in slave time
• t3: Delay_Req sending timestamp in slave time
• t4: Delay_Req receiving timestamp in master time

The fundamental assumption of all synchronization
protocols that are based on the exchange of timing infor-
mation via networks with unknown propagation delays is
a symmetric network delay between master and slave [6].

Under this assumption the slave is able to calculate the
network delay d between itself and the master by dividing
the corrected round-trip delay by two:

d =
[(t4 − t1)− (t3 − t2)]− corrms − corrsm

2
(1)

This assumption is critical since it is not possible to
determine one-way delays with an unknown clock offset.

In the example:

d =
(30 µs− 5 µs)− (25 µs− 21 µs)− 1 µs− 2 µs

2
= 9 µs

The slave can now calculate the offset o from the
master by subtracting from t2 (slave time): t1 (master
time), the network delay, and the TC correction factor.
The result represents the part of the timestamp difference
that originates from the slave and master clock divergence.

o = t2−t1−d−corrms = 21 µs−5 µs−9 µs−1 µs = 6 µs (2)

The actual offset is 5 µs, so there is an error of 1 µs. This
error occurs because the above assumption was wrong:
There is uncorrected asymmetry in the delay between
master and slave of 2 µs. However, the example demon-
strated that PTP is successfully able to remove the amount
of asymmetry stemming from queue effects in ordinary
switches and routers by replacing them with TCs.

In general for the error e:

e =
NDms −NDsm

2
=

10 µs− 8 µs
2

= 1 µs (3)

The maximum possible error due to asymmetry in the
network is, therefore, half of the round-trip delay.

A

t1 = 5μs
 

tA = 0 tB = 5μs

Path delay A⭢B: 5μs

t3 =  20μs
   t4=25μs

{t1,(t3-t2),t4} 

t2 = 15μsPdelay_Req 

Path delay A⭠B: 10μs

B

Pdelay_Resp (t3-t2 )

Figure 4: P2P Delay Measurement (One-Step-Clocks)
(Adapted from [4])

M P2P
TC

t1 = 5μs
 

tm = 0 ts = 5μs

Path delay M⭢TC: 5μs

{t1,t2, 
corrms}    

t2 = 21μs
corrms =  1μs 
+ 4.5μs + 4.5 μs
 

1μsSync(corr=0, t1)

Path delay TC⭢S: 5μs
Path delay TC⭠S: 4μs

P2P Delay = 4.5μs
Error = 0.5 μs

P2P Delay = 4.5μs
Error = 0.5 μs

Path delay M⭠TC: 4μs
S

Sync(corr=1μs + 4.5μs, t1)

Figure 5: P2P Synchronization (Adapted from [4])

2.5.2. P2P Synchronization. A link between master and
slave that is set up to use P2P synchronization calculates
the network delay differently. Periodically two directly
connected clocks independent of their state perform a
message exchange to measure the network delay between
them. An example is shown in Fig. 4.

Four timestamps are generated that are used to calcu-
late the network delay:

d =
[(t4 − t1)− (t3 − t2)]

2
(4)

=
(25 µs− 5 µs)− (20 µs− 15 µs)

2
= 7.5 µs

The error is again half of the network delay asymmetry
between clock A and clock B. This peer delay is measured
for both directions. This is important because during the
lifetime of the system, the master-slave states of A and B
can change.

Fig. 5 shows an example of time synchronization
between master and slave using the P2P mechanism with
the same delay values as in the E2E case. The timestamps
t1 and t2 are still created by sending a Sync message
from master to slave, but the network delay is calculated
differently.

Each clock on the link that receives the Sync message
adds the peer delay value to the correction field. In addi-
tion, the TCs add the residence time to the correction field
as usual. The correction field, therefore, always represents
the network delay from the master until the current node.

The slave adds the final peer delay to the correction
field and can now calculate the offset to the master:

o = (t2 − t1)− corrms (5)
= (21 µs− 5 µs)− 10 µs = 6 µs

The error is the same as in the E2E example because
the total error is just the sum of all errors made during
the peer network delay calculation.

Even though no higher precision can be achieved using
the P2P mechanism, there are several other factors to
consider [7]:

• Ordinary switches and routers do not respond cor-
rectly to Pdelay_Req messages, in case such devices
are used in the network, the E2E mechanism has to
be used.

• As the master does only need to respond to
Pdelay_Req messages from its direct neighbors and
not to Delay_Req messages from all the slaves that
sync to it, a P2P system scales much better. The load
on a master that a lot of slaves sync to is dramatically
reduced.

• As no Delay_Req messages are used, there is no risk
of the Sync and Delay_Req message taking different
paths in the network. Thus the risk for delay asym-
metry is reduced.

3. Related Work

PTP was designed for usage in local industrial automa-
tion and measurement networks where specialized devices
like BCs and TCs can be used as switches and routers.
Another protocol called Network Time Protocol (NTP), on
the other hand, is the workhorse for synchronizing system
clocks of devices over the Internet to a common timebase

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

54 doi: 10.2313/NET-2020-04-1_10



Stratum 1

Stratum 2

. . . 

Stratum 0

Figure 6: Example NTP Hierarchy

(usually UTC). NTP time synchronization is used, for
example, in general-purpose workstations and servers. It
is one of the oldest (the first version was released in 1985)
protocols still in use today and is currently in its fourth
major version. NTP uses UDP on port 123 [13].

Similar to PTP, an NTP network (for example, the
global Internet) is hierarchically organized into primary
servers, which are directly connected to a reference clock,
secondary servers, and clients. In NTP, there also exists the
concept of a stratum which represents the logical distance
of a server/client to a reference clock. Primary servers
have a stratum value of 1 and secondary servers values
between 2 and 15. If a server has a stratum value of 16, it
means that it is not yet synchronized. A server in stratum
n is a synchronization client to a server in stratum n− 1.
In real-world configurations, stratum levels above 4 are
rare [14]. Fig. 6 illustrates the hierarchical strata model of
NTP. To increase robustness, two NTP servers in the same
stratum can also synchronize with each other as peers. If
a server loses connectivity to its upstream NTP server, it
can receive time information from its peers.

Time synchronization of an NTP client is established
through periodic request/reply exchange with one or more
NTP servers they are authorized to access. As in PTP, the
offset of the client clock to the server clock is calculated
from the four timestamps generated during the exchange.
The critical source of error is again the delay asymmetry
between the two messaging directions.

A key advantage of NTP over PTP is that in NTP,
a client polls typically many servers for time synchro-
nization. In case of disagreements between the sources,
the most extensive collection of agreeing servers is used
to produce a combined reference time, thereby declar-
ing other servers as faulty or not trustworthy [15]. PTP
slaves, on the other hand, are trusting a single time source
blindly [16]. Slaves can only assume that the calculated
offset to the master is correct, as they are not capable
of comparing it to some value from other sources. This
means that if the GM has some error that causes it so
send the wrong time information in Sync messages but that
does not affect the clock quality presented in Announce
messages, slaves change their clock to the wrong time.
Several researchers have proposed protocol modifications
to increase PTP robustness [17], including giving slaves
the ability to check the calculated offset against time
information from multiple NTP servers [18].

Another area where NTP has an advantage over PTP
is security. NTP supports authentication with symmetric
keys or public/private certificate pairs to allow clients to
verify the authenticity and integrity of received messages.
The standard IEEE 1588-2008, on the other hand, does
not include any fully defined security model [19]. Security

was not a priority in the development of PTP due to the
typical use case under consideration at the time, i.e. time
synchronization in closed local area networks (LANs)
[20]. This means that in PTP, it is not possible to verify
the authenticity and integrity of the critical Announce and
Sync messages. This allows a malicious actor to influence
the BMCA or time synchronization. Security researchers
have shown that it is possible to cause a major disturbance
in PTP synchronization via an Announce message Denial
of Service attack on a slave. They were even capable
of taking control of the whole PTP domain by creating
an evil grandmaster, that claims better quality than other
alternatives [21].

What PTP lacks in terms of robustness and security, it
makes up for in accuracy. Typical accuracy expectations
of PTP are in the order of 100 ns [22] while the typical
values for NTP accuracy over the Internet range from 5 ms
to 100 ms [23] if there is considerable delay asymmetry,
such as when one direction is via satellite and the other
via broadband.

One might ask why PTP accuracy and NTP accuracy
differ so much when the protocols use an almost identical
message exchange to calculate the clock offset. The dif-
ference in typically achieved synchronization accuracy has
its origin in the vastly different networking environments
the two protocols are used in.

PTP is primarily used in lightly loaded high-speed
LANs. In these networks, overhead is of little concern,
and update intervals of a few seconds or less can be
used. Clocks lose their synchronicity over time because
of changes in the physical environment (primarily tem-
perature and barometric pressure) that affect the oscilla-
tor [24]. High-frequency update intervals allow clocks to
re-synchronize faster. NTP requires long update intervals
of one minute to several hours to minimize load on
the typically heavily used network [22] [24]. NTP also
operates in wide area networks (WAN), where differences
in network speeds and routing paths are common sources
of delay asymmetry. Furthermore, a significant amount of
delay asymmetry can be removed from a PTP network
by using only clocks that support hardware timestamping
and connecting them exclusively via TCs or BCs. While
hardware timestamping in clients and servers is rare but
possible, NTP supports no mechanism for removing vari-
ations in queuing time in switches and routers [25].

Theoretically, a new version of NTP that uses the same
delay asymmetry reduction strategies as PTP could be
developed. If this were done, NTP could reach the same
levels of accuracy and precision as PTP [22]. However, the
current research focus is on improving PTP, rather than
developing a more precise NTP.

IEEE 1588-2019 (PTP Version 2.1) is currently in the
works. This new version addresses some of the robustness
and security issues of PTP by enabling message and
source integrity checking [26]. The next protocol version
also allows sub-nanosecond accuracy and picoseconds
precision of synchronization by incorporating the White
Rabbit extension [27], which was developed at CERN,
into the standard as a new configuration profile [28].
IEEE 1588-2019 is likely going to be released in early
2020 [29].

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

55 doi: 10.2313/NET-2020-04-1_10



4. Conclusion

Choosing PTP as the time synchronization protocol
for the important TSN effort, established PTP as the most
important protocol for synchronizing clocks in real-time
networks. PTP achieves high accuracy not by a novel way
of calculating the offset of a clock, but through hardware
timestamping and the usage of specialized network in-
frastructure devices. PTP currently lags behind NTP in the
areas of robustness and security. Substantial changes to the
protocol are needed to improve the protocol in these areas.
It will be interesting to see if the next version IEEE 1588-
2019 makes it possible to get both accuracy and security
at the same time.

References

[1] K. G. Shin and P. Ramanathan, “Real-Time Computing: A New
Discipline of Computer Science and Engineering,” Proceedings of
the IEEE, vol. 82, no. 1, pp. 6–24, Jan 1994.

[2] IEEE 802.1 TSN Task Group. [Online]. Available: https:
//1.ieee802.org/tsn/

[3] A. Weder, “Whitepaper: Time Sensitive Net-
working,” Tech. Rep. [Online]. Available: https:
//www.ipms.fraunhofer.de/de/press-media/whitepaper-download/
TIME-SENSITIVE-NETWORKING-An-Introduction-to-TSN.
html

[4] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-
2008 (Revision of IEEE Std 1588-2002), pp. 1–300, July 2008.

[5] “Whitepaper: Time Sensitive Networking,” Tech. Rep. [Online].
Available: https://www.cisco.com/c/dam/en/us/solutions/collateral/
industry-solutions/white-paper-c11-738950.pdf

[6] J. Eidson, Measurement, Control, and Communication Using IEEE
1588, ser. Advances in Industrial Control. Springer London, 2006.

[7] End-to-End Versus Peer-to-Peer. [Online]. Available: https:
//blog.meinbergglobal.com/2013/09/19/end-end-versus-peer-peer/

[8] The IEEE 1588 Default Profile. [Online]. Available: https:
//blog.meinbergglobal.com/2014/01/09/ieee-1588-default-profile/

[9] One-step or Two-step? [Online]. Available: https://blog.
meinbergglobal.com/2013/10/28/one-step-two-step/

[10] PTP’s Secret Weapon: Hardware Timestamp-
ing. [Online]. Available: https://www.corvil.com/blog/2016/
ptp-s-secret-weapon-hardware-timestamping

[11] Protocols/ptp - The Wireshark Wiki. [Online]. Available: https:
//wiki.wireshark.org/Protocols/ptp

[12] What Makes a Master the Best? [Online]. Available: https:
//blog.meinbergglobal.com/2013/11/14/makes-master-best/

[13] NTP - The Wireshark Wiki. [Online]. Available: https://wiki.
wireshark.org/NTP

[14] Sun Blueprint: Using NTP to Control and Synchronize
System Clocks - Part I: Introduction to NTP. [Online].
Available: http://www-it.desy.de/common/documentation/cd-docs/
sun/blueprints/0701/NTP.pdf

[15] Combining PTP with NTP to Get the Best of Both
Worlds. [Online]. Available: https://www.redhat.com/en/blog/
combining-ptp-ntp-get-best-both-worlds

[16] P. V. Estrela and L. Bonebakker, “Challenges deploying PTPv2 in a
global financial company,” in 2012 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication Proceedings, Sep. 2012, pp. 1–6.

[17] M. Dalmas, H. Rachadel, G. Silvano, and C. Dutra, “Improving
PTP robustness to the byzantine failure,” in 2015 IEEE Interna-
tional Symposium on Precision Clock Synchronization for Mea-
surement, Control, and Communication (ISPCS), Oct 2015, pp.
111–114.

[18] P. V. Estrela, S. Neusüß, and W. Owczarek, “Using a multi-source
NTP watchdog to increase the robustness of PTPv2 in financial
industry networks,” in 2014 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS), Sep. 2014, pp. 87–92.

[19] RFC 7384 - Security Requirements of Time Protocols in Packet
Switched Networks. [Online]. Available: https://tools.ietf.org/html/
rfc7384

[20] K. O’Donoghue, D. Sibold, and S. Fries, “New security mecha-
nisms for network time synchronization protocols,” in 2017 IEEE
International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS), Aug 2017,
pp. 1–6.

[21] C. DeCusatis, R. M. Lynch, W. Kluge, J. Houston, P. Wojciak, and
S. Guendert, “Impact of Cyberattacks on Precision Time Protocol,”
IEEE Transactions on Instrumentation and Measurement, pp. 1–1,
2019.

[22] IEEE 1588 Precision Time Protocol (PTP). [Online]. Available:
https://www.eecis.udel.edu/~mills/ptp.html

[23] How does it work? [Online]. Available: http://www.ntp.org/ntpfaq/
NTP-s-algo.htm

[24] D. Mills, Computer Network Time Synchronization: The Network
Time Protocol on Earth and in Space, Second Edition. CRC Press,
2017.

[25] NTP vs PTP: Network Timing Smackdown! [On-
line]. Available: https://blog.meinbergglobal.com/2013/11/22/
ntp-vs-ptp-network-timing-smackdown/

[26] What’s coming In the Next Edition of IEEE 1588?
[Online]. Available: https://blog.meinbergglobal.com/2017/09/24/
whats-coming-next-edition-ieee-1588/

[27] M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White
rabbit: a PTP application for robust sub-nanosecond synchroniza-
tion,” in 2011 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication,
Sep. 2011, pp. 25–30.

[28] White Rabbit Official CERN website. [Online]. Available:
http://white-rabbit.web.cern.ch/Default.htm

[29] iMeet Central. [Online]. Available: https://ieee-sa.imeetcentral.
com/1588public/

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

56 doi: 10.2313/NET-2020-04-1_10


