
Fault tolerance in SDN

Leander Seidlitz, Cora Perner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: leander.seidlitz@tum.de, clperner@net.in.tum.de

Abstract—Software Defined Networking (SDN) is based on
decoupling the data and control plane of network devices.
Switches handle packet forwarding in the data plane. A
centralized controller offers a global network view to net-
work applications and enables configuration through a single
point. Paths through the network may be configured end-to-
end, the centralized controller takes care of configuring the
switches.

While SDN offers high flexibility, fault-tolerance becomes
an issue. The global view of the controller allows for fast
failover in the data plane. Fault-tolerance in the control
plane is a more complex problem. In order to correctly
process incoming packets a controller must be available at
any time. The fault-tolerance of the control layer is vital for
the function of the network

This paper gives an overview of current approaches to
fault-tolerance in the data as well as control plane.

Index Terms—software-defined networking, fault-tolerance

1. Introduction

Software Defined Networking (SDN) offers greater
flexibility than traditional network architectures. In tra-
ditional network topologies, control and data plane are
distributed over the network. Routing protocols such as
OSPF (Open Shortest Path First) [1] are used by the
distributed entities in order to establish routes through a
network. Network applications have to communicate with
multiple devices in order to configurate the network.

In contrast, SDN splits up the data, control and ap-
plication plane of a network, as depicted by Figure 1.
While the data plane is responsible for packet filtering
and forwarding, the control plane enforces policies and
handles tasks as load balancing and multipath routing. A
central controller configures the data plane by sending
commands to the respective switches. It offers an ab-
stracted view of the network topology and flows to the
network applications in the application plane, enabling
network configuration through a single controller. While
the data and control plane take care of handling flows
in the network, the application plane manages network
policies using the global network view presented by the
control layer.

The switches in the data plane rely on a Network
Information Base (NIB) in order to handle packets. Pack-
ets arriving at the ingress port of a switch are matched
to flows. The NIB specifies how to handle the packet,
and whether to forward or drop it. Packets belonging to

Network Applications

Northbound API/Protocol

Southbound API/Protocol

Application Plane

Control Plane

Data Plane

Figure 1: Structure of a SDN network.

an unknown flow are forwarded to the controller. The
controller decides how to handle the packet, for example
by configuring a flow through commands to the respective
switches. The flow configuration received by the switches
through controller commands is saved in the NIB. Future
packets of the established flow can be handled without
consulting the controller.

Communication between the control plane and appli-
cation plane is done through a northbound Application
programming interface (API) or protocol. As of December
2019, there are no standarized APIs or protocols for
the northbound interface, although Representational State
Transfer (REST) APIs are widely used.

The control plane communicates with the switches
through a southbound API or protocol. OpenFlow [2] is a
common protocol for the communication between control
and data plane.

While the separation of data and control plane offers
flexibility, the centralized control plane creates a single
point of failure. To ensure correct network function, the
control plane must be available at any time.

The Fault Tolerance Problem. Networks are expected to
operate without disruption, even in the presence of link or
device failures. Faults in the network should be handled
quickly and transparently, causing only minimal service
interruption. The strict separation of data and control
plane forces us to handle fault-tolerance for both planes
separately. SDNs require approaches to fault-tolerance in

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

45 doi: 10.2313/NET-2020-04-1_09



two domains: The data plane, where switches or links can
fail as well as the control plane, where controllers or the
link between controller and switch may fail.

We will focus on fault-tolerance in the control plane.
Section 2 gives an overview of fault-tolerance in the
data plane. Approaches to fault-tolerance in the control
plane are discussed in Section 3. Fault-tolerance in the
application plane is not in the scope of this paper.

2. Fault Tolerance in the Data Plane

The data plane takes care of handling packet flows
in the network. Flows are established by the controller
through configuration of the individual switches. For re-
liable network operation the data plane must be resilent
against link and switch failures. Failures have to be de-
tected quickly and resolved by rerouting affected traffic
on alternative links, restoring the networks functionality.

Still, basic network policies must not be violated. For
example, traffic rerouted on a different path through the
network should not be able to bypass a firewall. Fault-
tolerance mechanisms therefore do not only have to regard
the network topology but also its policies configured by
the application layer.

The controller possesses global knowledge of the
network topology and can therefore run centralized al-
gorithms. These are potentially more efficient than dis-
tributed algorithms, such as the rapid spanning tree pro-
tocol [3], which only have limited information about the
network.

Approaches to focusing on data plane fault tolerance,
such as FatTire [4], the approach of Paris et al. [5] or
CORONET [6], have to ensure resilence of the data plane
against failures without introducing large overhead.

2.1. Reacting to Topology Changes

The structure of SDN based networks is not static.
Links in the network are removed and established, con-
stantly changing the networks topology. While traffic
should usually take a near optimal path through the net-
work, this path may fail. An optimal failover algorithm
would choose the next optimal path, but calculating this
path can be expensive and therefore time-consuming for
large networks. Restoring the network function by apply-
ing a suboptimal path outweighs path optimization and
is acceptable. A suboptimal path can be optimized after
network function is restored.

Traffic traversing the network on an suboptimal path
causes overhead. While rerouting the traffic to a lower-
overhead path may lower the costs of traversing the
network by finding a better path. Reconfiguring the net-
work introduces overhead as well. Approaches to fault-
tolerance should only change existing paths if the benefit
of rerouting traffic is larger than the overhead caused by
reconfiguring.

2.2. Minimizing Overhead

Paris et al. [5] present an approach that finds a balance
between optimal paths and the frequency of reconfigura-
tion. They divide their approach into two sub-mechanisms:

Firstly, rapid handling of failures by rerouting to alterna-
tive paths and secondly a mechanism for path optimiza-
tion.

Restoring Paths. After a link or device failure backup
paths are calculated on demand. The priority is to quickly
find an alternative path, which is allowed to be sub-
optimal. The path is calculated based on a shortest-path
algorithm. Restoring the path is vital for the networks
function, the path optimization is taken care of by another
mechanism.

Optimizing Paths. Optimization of network paths is done
by a mechanism Paris et al. call Garbage Collection of
network resources. Periodically flow allocations in the net-
work are analyzed and optimized. An iterative algorithm
converging to the optimal solution is used. As new links
become available and failed links are repaired, the garbage
collection may reroute traffic, should network changes
open up shorter paths. Rerouting is only done in case that
the optimization is larger than the overhead caused by the
necessary network reconfiguration.

In a static network the paths would converge to the
optimal solution. Failed links and devices introduce sub-
optimal paths and therefore overhead, moving further
away from the optimal solution.

2.3. OpenFlow Action Buckets

OpenFlow 1.3 [7] introduced the concept of action
buckets. An action bucket groups a number of rules, the
bucket itself is bound to conditions based on switch state,
such as the status of a link.

Action buckets allow creating conditional forwards
such as deactivating a set of rules as a link fails. The
buckets are prioritized. Packets are matched with the rules
in the highest bucket which conditions are met. This
allows specifying precomputed backup paths that become
instantly active when a link fails. FatTire [4] makes use
of OpenFlow action buckets.

The FatTire Language allows the definition of network
paths as regex-like expressions. Paths in the network are
specified end-to-end, the necessary degree of fault toler-
ance can be specified for each path. The FatTire compiler
then calculates the hops through the network for path
realization as well as possible backup paths. The result
is an OpenFlow configuration that can be applied to the
individual switches. As links fail the precomputed backup
paths become active. Repaired links are instantly reused.

2.4. Fault-Tolerant Controllers

The solutions presented above depend on the con-
troller being available at any point. Nevertheless, con-
troller failures are possible and must be handled. A failed
control plane leaves the network in a headless state. Events
such as incoming packets belonging to unknown flows
cannot be handled without a controller. Therefore, a fault-
tolerant control plane is vital. In the following section we
will present approaches to a fault-tolerant control plane.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

46 doi: 10.2313/NET-2020-04-1_09



(a) Centralized (b) Distributed

Figure 2: SDN Control Plane Topologies.

3. Fault-Tolerance in the Control Plane

While fault-tolerance in the data plane is essential,
the data plane is dependent on the controller. The control
plane is vital for the operation of the network as it handles
tasks such as deciding how to handle unknown flows
as well as the communication with the application layer.
The controller must be operational at all times to ensure
correct network operation. SDN builds on a centralized
controller. This controller presents a single point of failure.
Introducing redundancy to the control plane allows for a
fast failover in case of a controller fault. In the following
we present approaches to fault-tolerant controllers.

3.1. Control Plane Topology

SDN control planes either have a single logically
centralized controller (Figure 2a) or are constructed in a
distributed topology (Figure 2b). A distributed topology
has multiple controllers, each handling a separate domain
of a network. Distributed typologies are mostly found in
large networks in which a single controller cannot handle
the load. Multiple parallel operating controllers offer the
possibility of one controller taking over another part of a
network as its controller fails.

The solution to fault-tolerance in a distributed con-
troller scheme can be found in approaches such as Hyper-
Flow [8] or ECFT [9]. In the following we will focus on
more traditional SDN based networks with a centralized
controller.

Logically Centralized Control Planes. In a logically
centralized control plane only one controller is active at
any time. This controller takes charge of all decisions
in the network such as configuring the switches. Fault-
tolerance in a logically centralized scheme is commonly
achieved through a master-slave approach.

A master controller operates the control plane, slave
controllers passively mirror the master controllers state.
As the master controller fails, one of the slave controllers
becomes master and takes over.

The failover time is critical. The network is inpoerable
as long as the controller is not available.

3.2. Ravana: A Master-Slave Approach

In the following we discuss master-slave approaches to
fault-tolerance in the control plane on the example Ravana

[10]. In a master-slave topology, multiple controllers are
present. One controller serves as master controller, con-
trolling the network. Slave controllers mirror the master,
and take over if the master fails.

Ravana [10] is an approach ensuring fault-tolerance
for the controller, the communication between controller
and backup controllers as well as for the communication
between switches and the controller. It was proposed by
Katta et al. A solution to fault-tolerance must fulfill the
following requirements:
A) Total event ordering
B) Exactly-once event processing
C) Exactly-once execution of commands
D) Consistency under switch and controller failures

In the following we analyze Ravana in regard to these
requirements.

A) Total event ordering. In a master-slave approach
the slaves must have the same view of the network as
the master. Each replica of the master builds its state
independently, based on the stream of events received. In
order to keep the state equal over all replicas the order
of events processed must be the same for all controllers.
Inconsistent event ordering may be caused by different
latencies between switches and controllers.

There are two approaches to keeping the master and
its replicas in sync:

1) Let the switch broadcast events to all controllers
2) Replicate the event at the master controller before

processing it
Regarding to the first approach, ensuring the same order
of events at each controller is challenging. A total order
would require the controllers to synchronize the events
received, posing a large overhead.

Replicating the event at the master controller before
processing ensures the order of events received. It is the
same for all controller replicas as the master controller
defines the order. In Ravana switches send events to
only the current master controller. The switches use an
event buffer to prevent lost messages in case of a master
controller failure.

By performing event replication at the master con-
troller Ravana ensures a total event order at all replicas.

B) Exactly-once event processing. An approach to fault-
tolerance must ensure that every event sent by a switch
is processed exactly once. Events must not be lost nor

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

47 doi: 10.2313/NET-2020-04-1_09



processed repeatedly. The delivery of messages can be
ensured by sender-side buffers, repeating the transmit if
the receiver has not acknowledged the message.

If a packet causes an event the switch sends the event
to the current master controller and additionally saves the
event in a local buffer. Events received by the master
are replicated to the slave controllers before the master
processes them. The slaves hold back the event from
their application layer until the master has successfully
processed the event. After successful processing of the
event, a confirmation message is sent to the switches and
slaves. The switch clears the event from its buffer, the
slaves can now safely release the event to the application.
If the master fails during event processing, the switch
can retransmit the event from its event buffer to the new
master.

Unique messages IDs and receiver side filtering guar-
antee that messages are processed at most once.

C) Exactly-once Execution of Commands. As com-
mands from the controller may not be idempotent, we
must ensure that they are executed exactly once by a
switch. A command buffer at the controller and acknowl-
edgments by the switches, analogous to the switch-side
event buffer, ensure that a switch receives and successfully
executes a command.

The controller buffers commands sent to the switch,
and deletes them from the buffer when the switch ac-
knowledges execution of the command. The replicas of
the controller are informed about the command buffer and
the status of the commands sent. In case of the master
controller crashing after sending a command but before
processing the acknowledgment by the switch, the new
master controller will find an incomplete command exe-
cution in the command buffer. It will resend the command.
As commands have unique IDs, the switch will filter the
command (ensuring at-most-once execution) but resend
the acknowledge to the new master. The master controller
will mark the command as successfully executed and
replicas are informed.

D) Consistency under Switch and Controller Failures.
Switches retransmit events and acknowledge commands.
As long as the controller does not fail, we can handle
switch failures the same way as single-controller SDN
do: Relay the decision to the control application in the
application layer. The network application will then decide
how to reroute traffic and send appropriate commands to
the controller.

Combined switch and controller failures pose a more
complex problem. Should the master controller fail before
finishing the processing of an event, a slave controller will
take over. A switch that has sent an event has therefore not
received an acknowledge yet. If this switch fails during
this failover, it cannot retransmit the event to the new
master. Still, the new master controller has received a copy
of the event from the old master as events are replicated
before processing. It sees the unfinished event in his buffer
and can process it, even without the switch retransmitting.
After this, we handle the switch failure as regular switch
failure.

We conclude that Ravana solves the requirements
needed for reliable fault-tolerance in the control plane.

We now discuss how the failed controller is replaced in
distributed and centralized topologies.

3.3. Controller Failover

In a distributed control plane topology a controller
is responsible for a set of switches. HyperFlow [8] or
ECFT [9] are approaches to fault-tolerance in distributed
schemes. Both approaches use a similar approach to
replacing the failed controller. The switches the failed
controller was responsible for are split up and assigned
to other controllers. This is done based on metrics such
as the delay between the respective switch and controller
as well as the controller load. In order to prevent cascading
failures controllers must not be overloaded.

In a master-slave topology the slave controllers have
to decide on who becomes the new master. Ravana [10]
solves this problem by letting the switches contend for
a distributed Zookeeper [11] lock. The controller that
obtains the lock becomes the new master. The new master
then informs the switches of the change in master con-
troller.

3.4. Interfacing with the Application Layer

In a traditional SDN topology, the application layer in-
terfaces with a single controller. A fault-tolerant approach
should be observational indistinguishable from a single
controller SDN: the system should behave in the same
way as a fault-free single controller system would.

Additionally, controller redundancy and failover
should be transparent for the application layer. This en-
ables network applications to interface with fault-tolerant
control layers without the need of rewriting.

4. Conclusion and Future Work

While fault-tolerance in the data plane seems mostly to
be an optimization problem, fault-tolerance in the control
plane is a more difficult problem to solve. Concerning
the data plane, the global knowledge of the controller
allows fast re-routing of traffic in case of failed links and
switches. In the control plane, failures are more difficult
to handle.

We presented requirements, solutions to fault-
tolerance in the control plane must meet, and how ap-
proaches can fullfil them. Ravana [10] is a promising
master-slave approach to fault-tolerance in the control
plane. It offers transparent fault-tolerance and fast failover
between controllers. Ravana does require extension of the
OpenFlow protocol, which may hinder its acceptance.

Future extensions to master-slave schemes for fault-
tolerance in the control plane may base on Ravana and
extend it. Current protocols fail at state-replicating multi-
threaded control applications as well as handling byzan-
tine faults. These are tasks to be solved by future ap-
proaches to fault-tolerance in SDNs.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

48 doi: 10.2313/NET-2020-04-1_09



References

[1] J. Moy, “OSPF Version 2,” RFC Editor, RFC 2328, Apr. 1998.
[Online]. Available: https://tools.ietf.org/html/rfc2328

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, p. 69, Mar.
2008. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1355734.1355746

[3] IEEE Standards Association, “IEEE Standard for Local and
metropolitan area networks–Bridges and Bridged Networks,”
IEEE, Tech. Rep., May 2018. [Online]. Available: http://
ieeexplore.ieee.org/document/6991462/

[4] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire:
declarative fault tolerance for software-defined networks,” in
Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking - HotSDN ’13. Hong
Kong, China: ACM Press, 2013, p. 109. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2491185.2491187

[5] S. Paris, G. S. Paschos, and J. Leguay, “Dynamic control for
failure recovery and flow reconfiguration in SDN,” in 2016 12th
International Conference on the Design of Reliable Communication
Networks (DRCN). Paris: IEEE, Mar. 2016, pp. 152–159. [Online].
Available: http://ieeexplore.ieee.org/document/7470850/

[6] Hyojoon Kim, M. Schlansker, J. R. Santos, J. Tourrilhes,
Y. Turner, and N. Feamster, “CORONET: Fault tolerance for

Software Defined Networks,” in 2012 20th IEEE International
Conference on Network Protocols (ICNP). Austin, TX, USA:
IEEE, Oct. 2012, pp. 1–2. [Online]. Available: http://ieeexplore.
ieee.org/document/6459938/

[7] Open Networking Foundation, “OpenFlow Switch Specification,”
Open Networking Foundation, Tech. Rep. Version 1.3, Jun. 2012.
[Online]. Available: https://www.opennetworking.org/wp-content/
uploads/2014/10/openflow-spec-v1.3.0.pdf

[8] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Con-
trol Plane for OpenFlow,” in INM/WREN’10 Proceedings of the
2010 internet network management conference on Research on
enterprise networking, Apr. 2010, p. 6.

[9] W. H. F. Aly and A. M. A. Al-anazi, “Enhanced Controller Fault
Tolerant (ECFT) model for Software Defined Networking,” in
2018 Fifth International Conference on Software Defined Systems
(SDS). Barcelona: IEEE, Apr. 2018, pp. 217–222. [Online].
Available: https://ieeexplore.ieee.org/document/8370446/

[10] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana:
controller fault-tolerance in software-defined networking,” in
Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research - SOSR ’15. Santa Clara,
California: ACM Press, 2015, pp. 1–12. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2774993.2774996

[11] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper:
Wait-free coordination for Internet-scale systems,” Proceedings of
the 2010 USENIX Annual Technical Conference, p. 14, Jun. 2010.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

49 doi: 10.2313/NET-2020-04-1_09


