Smart-M3 vs. VSL for IoT

Ilena Pesheva, Christian Liibben*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: pesheva@in.tum.de, luebben@net.in.tum.de

Abstract—The benefits of autonomous data exchange in
software environments and multi-device communication have
triggered the development of various middleware services to
enhance data exchange in distributed systems. These mid-
dleware solutions have gained great importance in reducing
overall system complexity and enabling interoperability in
the context of information sharing.

This paper takes a closer look at two data exchange mid-
dleware solutions: The Smart-M3 platform and VSL overlay
for Internet of Things. They both solve key challenges in the
environment of device heterogeneity and propose a data-
centric approach to information exchange.

We explain the core differences in their key features and
give an overview of their field of application.

Index Terms—middleware, data-centric, interoperability

1. Introduction

In the era of rapid digitalization and constant emerg-
ing of new technological devices, the idea of seamless
and wireless information exchange between these devices
has evolved to a need. This is referred to as ubiquitous
computing, which is gradually emerging as the dominant
type of computer access [1]. As M. Weiser states in [1],
it is enabling nothing fundamentally new, but by making
everything faster and easier to do, it is transforming the
perception of what is possible. An example is the Internet
of Things (IoT) that quickly gained importance as part
of the Internet mainly because of its immense impact,
remarkable growth and capability. Its main features are
interrelating "computing devices, mechanical and digital
machines, objects, animals or people that are provided
with unique identifiers (UIDs) and the ability to transfer
data over a network without requiring human-to-human or
human-to-computer interaction" [2]. Benefiting from ICN-
principles IoT has a data-centric traffic design rather than
addressing a specific host. This results in improvements in
data latency, scalability, reliability, resilience and is more
energy efficient than typical host-based communication
[3].

The distributed nature of the devices participating in an
IoT system and the heterogeneity of application scenarios
introduce interoperability problems and challenges for
developers. This triggered the introduction of the Virtual
State Layer (VSL). It is, as M.-O. Pahl, S. Liebald, and
C. Liibben specify in [3], "a data-centric middleware that
securely unifies the access to distributed heterogeneous
IoT components.". Its core tasks are to discover, read and

Seminar II'TM WS 19/20,
Network Architectures and Services, April 2020

33

write data that another IoT component has produced and
thus to be able to orchestrate IoT environments.

The idea behind it is Service Oriented Architecture
(SOA). It modularizes the complex IoT applications into
smaller mashups, creating microservices that are simple
and can be later reused. It fully separates logic and data
in IoT services which contributes to major VSL features
such as delivering service data even when a service is
offline or security-by-design, meaning that security is fully
implemented within the VSL [4].

The interest of getting computing devices to interop-
erate and to do so with whatever devices are locally close
at any point in time has also raised the question of dealing
with complexity and interoperability issues. Participating
in different domains means implementing several different
standards, which are often serving specific use cases and
not aiming to create a general interoperability framework
[5]. The semantic web is attempting to defy this issue
by implementing an interoperability framework with the
ultimate goal of making a machine understand the World
Wide Web data. The result would be a "giant global graph"
of linked data that describes the information of the web in
a standard model for data interchange - Resource Descrip-
tion Framework (RDF) [6] and Web Ontology Language
(OWL) [7] that enable the encoding of semantics [8].
Nonetheless, there is a need for a mechanism that enables
sharing of dynamic, rapidly changing information on a
local level about the current state of a device and the
web is not the most suitable environment for that purpose.
Therefore, the interoperability platform Smart-M3 was
created with the goal, as explained in [5], "to (enable
devices) to easily share and access local semantic infor-
mation, while also allowing access to the locally relevant
parts of the ’giant global graph’ to be available". Smart-
M3 acts as a smart space solution that enables devices of
all kinds to engage in interoperability and have a shared
view of data and services. The goal is to provide a better
user experience where users can effortlessly add or remove
devices from the platform and grant every participating
device the same information access.

The similarities between the VSL and Smart-M3 plat-
forms in their main purpose and idea raises the importance
to differentiate them and thus to be able to apply them
accordingly.

2. Feature comparison
Both VSL and Smart-M3 platforms serve as dis-

tributed systems middleware and share the common pur-
pose of enabling interoperability in heterogeneous envi-

doi: 10.2313/NET-2020-04-1 07

ronments. However, they rely on different architectural
approaches and comprehend data in a different manner.
The following section gives a brief overview of the general
system architecture of Smart-M3 and VSL. Furthermore,
we address their core differences considering the follow-
ing key feature components: data access, data storage, data
discovery, data transport, semantic structure and security.
This step-by-step comparison will allow us to obtain a full
perspective of the functional and semantic divergence of
each system.

2.1. General system architecture

Smart-M3 works on the basis of a blackboard archi-
tectural model and implements the idea of space-based
computing. The architecture it implements consists of
two core components: knowledge processors (KP) and
semantic information brokers (SIB) that may be concrete
or virtual. The core of the system is hosted by a device
which contains the SIB and the physical data base. Then
there are other devices hosting KPs - pieces of software
implemented to read and contribute data to a SIB [9].
One or more SIBs connected to each other define a smart
space that contains information provided by the KPs. An
illustration example of a M3 smart space distribution is
presented in Figure 1 featured in [10] by J. Honkola, H.
Laine, R. Brown and O. Tyrkko.

Knowledge Processors (KP) [1..N]

Y A SSAP
SIB SIB
[1..N] | Ontologies &
v
Smart Space
o -Apps
-Services
-Tasks

Ontology based

Information Exchange Devices [1..N]

Figure 1: Smart-M3: SIB and KP distribution

The VSL overlays key components are the so-called
Knowledge Agents (KA) that manage data for different
services. Every KA serves the purpose of storing relevant
data for a specific node while also enabling inter-service
communication [3]. Figure 2 described in [3] gives a
detailed view of the VSL architecture model, consisting
of a hardware underlay with IoT nodes, VSL Peer-to-
Peer overlay and multiple microservices that register at
a KA. The VSL offers IoT nodes unified access to the
Knowledge Agents, which can also run on the same IoT
node like a service [4].

2.2. Data access

The connection between the SIBs in Smart-M3 is en-
abled by a protocol providing distributed deductive closure

Seminar II'TM WS 19/20,
Network Architectures and Services, April 2020

34

Services

@
o
S
H
]
2
=
=

¥

»
=

VSL
P2P ||
Overlay |

s%r v Actuator Sxar Actuator
Figure 2: VSL general architecture and logical connectiv-
ity

[11]. This allows all KPs to access the same information
in the smart space with no regard of the specific SIB they
are connected to.

[5] A KP can access a SIB by using Smart Space Ac-
cess Protocol (SSAP). This protocol has eight operations:
join, leave, insert, remove, update, query, subscribe and
unsubscribe. Therefore, the KPs are able to interact with
the content in the smart space. The operations enabling
this interaction are not concrete as they depend on the
defined parameters and the actions that SIB and KP should
initiate. They may also be encoded using different formats,
JSON or XML for example.

[5] The protocol uses sessions to establish a connec-
tion between the KP and the SIB components. First, a join
operation is executed by the KP, the SIB then inspects it
and decides whether the KP can join or not. Following
a successful join the KP is allowed to perform other
activities. If the SSAP protocol is successfully supported
by the SIB and KP implementations interoperability will
be ensured.

The VSL, as mentioned in the Introduction, finds its
specific purpose in Internet of Things services. Its working
principle is to fully decouple data from hosts providing
ICN properties [12]. Unlike Smart-M3, it is implemented
as self-organizing Peer-to-Peer overlay, enabling data-
centric communication between and within IoT hosts. It
targets microservice-based architecture in order to run
independent IoT microservices. Access is based on hi-
erarchical data item identifiers and is enabled via get and
set, subscriptions to changes and stream connections [4].
This is to be differentiated from the Smart-M3 data access
method, which is push-based one instead of a publish-
subscribe one as in VSL.

2.3. Data Storage

Smart-M3, as already stated in Section 2.1, has two
key components - the knowledge processor and the seman-
tic information broker. The information is stored in the
smart space, consisting of one or more SIBs, as an RDF
graph. The storage is realized on some defined ontology,
however, there is no obligation for using a specific one.
The KPs, having once successfully accessed the smart

doi: 10.2313/NET-2020-04-1 07

space, are then able to contribute to or to read the stored
in the smart space content. [5]

VSL works on a different principle for storing data
(see Figure 2). Instead of having a distributed shared
memory architecture that contains all the information like
the smart space in the Smart-M3 platform (see Figure
1), it stores data always at the source. This follows as
a consequence of the disconnection between logic and
data [4]. The platform implements data managing agents,
the KAs, which are connected to each other in a Peer-to-
Peer structure. Each of them is responsible for running
a number of microservices and stores data relevant to
them. This results in distributing information to be stored
and retrieved all over the network. Therefore, locality is
an important issue when dealing with VSL, especially
when information exchange happens constantly. However,
due to the full location transparency in the data lookup
process, data can be stored on any KA, not necessarily on
the one that is running on the same IoT node (source) as
the service.

2.4. Data Discovery

The VSL, as already mentioned in Section 2.1, imple-
ments data discovery in a Peer-to-Peer manner between
the KA peers. The KAs are assigned with overlay IDs
and an underlying address that can be IP-Address. The
data node discovery happens via special tags, provided by
the KAs, which return all instance addresses associated
with the given tag. This means that the semantic lookup
happens KA-locally via a search for coupling candidates.
Services do not bind statically, unlike how the Knowledge
Processors in Smart-M3 bind to their services.

In contrast to the encapsulated nature of the VSL
data discovery that is fully integrated and closed to the
concrete IoT network, the Smart-M3 platform is allowed
access to parts of the "giant global graph" that results
from the Semantic Web [8], in addition to sharing and
accessing local semantic information between the engaged
software entities and devices. Thus, it is making use of
both local and global information, represented as an RDF
graph. This allows easy linking of data between different
ontologies, which aims to solve the interoperability issue.
Unlike the Semantic Web, which represents the idea of
a single, centralized web of machine-understandable in-
formation, Smart-M3 sets distinct spots, the Knowledge
Processors, in the Web. These spots may be connected
to many devices of different kinds and gather specific
machine-understandable information that is unique but
non-exclusive for the particular KP and has a concrete
focus and purpose. Overlapping of information between
the KPs is even needed to ensure interoperability [S].

2.5. Data Transport

[5] In the Smart-M3 interoperability platform, the
core component responsible for data interaction is the SIB.
Its internal architecture consists of five layers: Transport
layer, Operation handling layer, Graph operations layer,
Triple operations layer and Persistent storage layer. The
transport layer, being the first access point of the SIB
architecture, must ensure that various domains, service
architectures and networks are able to communicate and

Seminar II'TM WS 19/20,
Network Architectures and Services, April 2020

35

exchange information, regardless of their different com-
munication capabilities. To be able to overcome this issue,
the SIB supports various communication mechanisms,
such as Bluetooth, TCP/IP, HTTP and NoTA. The most
suitable mechanism is being selected depending on the
operating environment. This indicates once more one of
the core principles in Smart-M3 - to be able to operate
regardless of the communication mechanisms restrictions.

[4] As already mentioned in Section 2.3, VSL or-
ganizes its information exchange in a Peer-to-Peer pro-
cess by distributing it between a number of Knowledge
Agents. Thus they must be capable of addressing each
other accordingly. The information exchange is enabled
via IP unicast and multicast connections. Unicast is used
in the case of a single recipient of the data and multicast
- as the core maintenance of the overlay. The Knowledge
Agent has a Transport Manager, which along with the
Connection Manager and the Overlay Manager, manages
the connectivity between the IoT nodes. It uses HTTP
over TCP/IP as a transport protocol, although different
protocols are also applicable.

In contrast to Smart-M3, VSL does not adopt any other
data transport technology, such as Bluetooth for example,
as the communication transport happens within the VSL
overlay. It does not have the need to accommodate to the
different capabilities of other domains or service architec-
tures like Smart-M3 does.

2.6. Semantic Structure

[5] The Smart-M3 platform allows storing and query-
ing information on the basis of tuple space mechanisms.
This means that data is exchanged between a consumer
and a producer entity. In the case of Smart-M3 these are
the SIB and the KP respectively. Data is produced in tuple
form and retrieved from the consumer using a specific
pattern. As mentioned in Section 2.5, there are five logical
layers responsible for the access, operations and storage of
data to the SIB. After access has been established, requests
in the form of SSAP operations run in threads to query,
insert or remove information from the RDF store [6].
This is handled by the Graph operations layer where the
operations are being scheduled. In the Triple operations
layer happens the inserting, querying and removing of
triplets from the RDF store. Triplets, connected to form a
graph, represent the architecture or the RDF data format.
The linking of triplets results in a structured data graph,
resembling the World Wide Web. A triple is a statement
in the form subject-predicate-object (e.g the sky /subject/
has the color /predicate/ blue /object/). The RDF syntax
is abstract, meaning that it can be represented by using
a variety of notations in the arrangement order subject-
predicate-object. The semantic is the representation of
the subject, predicate and object roles in the statement.
Due to the RDF format of data its linking under different
ontologies has been made extremely easy, reducing system
complexity and enabling cross-domain interoperability.

[3] Similarly to the Smart-M3 platform, VSL also
implements a tuple-space mechanism in the form of a
structured data item graph to organize its data, although
in a hierarchical manner. Each time a service is being
registered at a Knowledge Agent, an identifier is passed
for the data model representation. An instance of this

doi: 10.2313/NET-2020-04-1 07

model is being created at the KA allowing the connection
and communication of this service to other services via the
KA API The data nodes participating in the structured
graph are in fact the digital data twins of the managed
IoT software and hardware entities. VSL uses tags and
identifiers pinned to the data nodes, offering a modularized
tagging approach. The items in the hierarchical structure
can be accessed transparently from an arbitrary participat-
ing KA.

To summarize, Smart-M3 is using data in the form of
triplets according to the RDF syntax to store and retrieve
information, whereas the VSL uses a hierarchical data
structure in the form of a data node tree and is instantiating
digital twins of data every time a service and a KA
interact.

2.7. Security

[4] The main issue of the IoT data is security because
of the vulnerable nature of private user data. Therefore,
VSL implements security-by-design, which means that
the mechanisms implemented in the VSL middleware
cannot be outmaneuvered. This, as mentioned in Section
2.1, comes as a result of the full separation of service
logic and data and promises a secure throughout com-
munication. In particular, VSL assigns certificates to each
of its components (services and KAs). These certificates
ensure the authentication of software modules, as well
as enabling communication between KAs that is TLS-
secured, including secure exchange of keys for encrypted
stores. Due to access control to IoT nodes and specific
synchronization of type information and access modifiers
between the KAs, VSL ensures secure addressing and
trusted IoT orchestration.

The smart space environment is vulnerable to threats
and security risks as well. In contrast to VSL, Smart-M3
has not been provided a sufficient security mechanism to
this point. In [13], Kirill Yudenok and Ilya Nikolaevskiy
introduce a security solution protecting the data inter-
change between the KPs and the smart space. For robust
authentication they propose the usage of the Host Identity
Protocol (HIP) for key exchange [14]. The HIP protocol
can be integrated in the SIB access module and thus enable
a SIB to restrict access to information in the smart space
that the KPs have provided.

2.8. Comparison summary

In order to retain a clear and structured view of the
information presented in the previous subsections, Table
1 summarizes and highlights the most important aspects
and differences of the Smart-M3 and VSL middlewares.

3. Issues and Reliability

Both the Smart-M3 platform and the VSL overlay aim
to implement simplistic architecture designs for reliability
and robustness reasons. However, issues and challenges
are an inevitable part of every system regardless of its
kind. In the following we highlight some important aspects
to consider when dealing with data-centric issues and
vulnerabilities of each system.

Seminar II'TM WS 19/20,
Network Architectures and Services, April 2020

36

TABLE 1: Key feature differences

| Smart-M3 | VSL
Data access SSAP get/set
Data storage smart space at the source

use of local or

tag or address

Data discovery based

HTTP over TCP/IP

global information
Bluetooth, TCP/IP
HTTP and NoTA

Data transport

Data structure RDF graph hierarchical graph
. not implemented . .
Security internally security-by-design
. C, C++, Python,
Implementation C#. Java Java

3.1. Smart-M3

Arguably the main issue in the Smart-M3 system is
security, as mentioned in Section 2.7. There we elaborated
the main causes of this issue and mentioned a resolution
method presented by K. Yudenok and I. Nikolaevskiy in
their work [13]. In [15] written by Matti Eteldperi et al.
a test of two smart space information broker implementa-
tions is presented: Smart-M3 and RIBS (RDF Information
Based System), the second being an M3 tool for devices
with restricted computational capabilities. Based on their
measurement analysis the authors conclude that neither
system is satisfactory enough for wide-spread usage. The
authors state that "Smart-M3 performance and usability
leave a lot to be desired, as even a simple single triple
insert operation has a latency of 86-176 milliseconds in
our tests. The performance of Smart-M3 is not suitable
for use cases needing fast response times."

3.2. VSL

The Virtual State Layer decouples data not only from
hosts (ICN principle), but even from services on hosts,
as already mentioned in the Introduction. This presents a
significant advantage in the case of a service failure, as de-
coupled data is then managed only within the middleware.
Energy efficiency also follows as a consequence, because
not needed services can be interrupted while their data
still remains attainable. Nevertheless, the advantages that
follow from the ICN principle have challenges on their
own. In [16] the authors A. Lindgren, F. B. Abdesslem,
et al. address the aspects of naming, caching, actuation,
decoupling between publisher and consumer, etc. They
suggest that naming can become a size-problem when
e.g. the size of the name can become larger that the
size of the data; Caching reduces latency but can also
be useless when using At Most Once object requesting
strategy; Actuation may conflict with the ICN address-
ing design and further reduce caching advantages and
impose latency requirements; Although having multiple
advantages, decoupling publisher/consumer has trouble in
resolving publisher mobility when deducing the name of
the data for consumers.

4. Field of application
In [5] the authors present several smart space appli-

cation scenarios. They involve different applications, var-
ious services and multiple types of devices (e.g. phones,

doi: 10.2313/NET-2020-04-1 07

laptops, sensors). All domains have M3 software agents
installed on them. An example described in [17] shows a
scenario that involves an application for sports tracking,
a music streaming service, a gaming domain and a phone
call observer application. The results show improved user
experience due to seamless component cooperation be-
tween the participating devices and services. An ongoing
call can trigger information exchange in the smart space
resulting in pausing the music and the game. Furthermore,
one example demonstrates a mash-up between two differ-
ent scenarios, proving the ease of their mixing. [5]

An example for the VSL overlay in use is shown in
[3] by Marc-Oliver Pahl, Stefan Liebald and Christian
Liibben. In their work they present a VSL demo consist-
ing of a smartphone based controller and a light sensor
based game whereby they "demonstrate the data-based
coupling and the service-orientation of the VSL" [3]. Each
participating service implements a VSL interface, several
microservices and local data items (figure 2). Users make
interactive data queries via the smartphone controller and
thus switch lights found by type or address.
This demo illustrates the benefits of VSL in environments
where decoupling specific services is needed, whereas
the Smart-M3 platform, while also demonstrating inter-
service communication, points out the ease of creating
scenario mashups.

5. Conclusion

This paper reviews the similarities and differences
between the Smart-M3 platform and the VSL IoT overlay.
Both systems aim to solve the interoperability problem
and thus present data-centric solutions for reducing system
complexity in heterogeneous environments. However, they
employ contrasting approaches and architectural styles,
which makes their distinction of great importance. Smart-
M3 is a space-based system that enables interoperability
through the use of the Semantic Web. It targets multi-
device implementation and enables sharing of local infor-
mation between hosts. VSL follows ICN principles and
has its main focus on Internet-of-Things environments
where it manages the entire inter-service communica-
tion between IoT devices. It implements a Peer-to-Peer
architecture for routing and unlike Smart-M3, VSL is
making use of the network connectivity between devices
to enable communication and data exchange. It imple-
ments security-by-design, whereas Smart-M3 has not im-
plemented a specific security mechanism. Thus we have
shown that Smart-M3 can be used easily in an environ-
ment of different domains; it handles usage and mixing
of various scenario instances. The VSL overlay has its
specific focus on the IoT environment where it manages
each aspect of the communication services.

References

[1] M. Weiser, “The computer for the 21st century,” vol. 3, no. 3, pp.

3-11. [Online]. Available: https://doi.org/10.1145/329124.329126

Seminar II'TM WS 19/20,
Network Architectures and Services, April 2020

37

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

What is internet of things (IoT)? - definition
from Whatls.com. (Date accessed: 30.11.2019). [Online].
Available: https://internetofthingsagenda.techtarget.com/definition/
Internet-of-Things-IoT

M.-O. Pahl, S. Liebald, and C. Liibben, “VSL: A data-centric

internet of things overlay,” in 2019 International Conference on
Networked Systems (NetSys), pp. 1-3.

M.-O. Pahl and S. Liebald, “Information-centric IoT middleware
overlay: VSL,” in 2019 International Conference on Networked
Systems (NetSys). 1EEE, pp. 1-8. [Online]. Available: https:
/lieeexplore.ieee.org/document/8854515/

J. Honkola, H. Laine, R. Brown, and O. Tyrkko, “Smart-m3 infor-
mation sharing platform,” in The IEEE symposium on Computers
and Communications, pp. 1041-1046, ISSN: 1530-1346.

RDF - semantic web standards. (Date accessed: 12.01.2019).
[Online]. Available: https://www.w3.org/RDF/

“OWL web ontology language overview,” p. 22, (Date
accessed: 19.02.2020). [Online]. Available: https://www.w3.org/
TR/owl-features/

T. Berners-Lee, J. Hendler, and O. Lassila, “Scientific
american: Feature article: The semantic web: May
2001, p. 4, (Date accessed: 23.02.2020). [Online].
Available: https://www-sop.inria.fr/acacia/cours/essi2006/

Scientific\%20American_\%20Feature\%20Article_\%20The\
%20Semantic\%20Web_\%20May\%202001.pdf

L Oliver, “M3 information SmartSpaces tech-
nology overview,” (Date accessed: 05.12.2019).
[Online]. Available: https://www.slideshare.net/ianoliver79/

m3-information-smartspaces-technology-overview

SOFIA - smart m3 information-sharing platform. NOKIA. (Date
accessed: 29.01.2020). [Online]. Available: https://www.slideshare.
net/sofiaproject/sofia- smart-m3-informationsharing- platform

“A mechanism for managing and distributing information
and queries in a smart space environment:,” in Proceedings
of the Joint Workshop on Advanced Technologies and
Techniques for Enterprise Information Systems. SciTePress
- Science and and Technology Publications, pp. 145-153.
[Online]. Available: http://www.scitepress.org/DigitalLibrary/Link.
aspx?doi=10.5220/0002193101450153

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,” vol. 50,
no. 7, pp. 26-36. [Online]. Available: http://ieeexplore.ieee.org/
document/6231276/

K. Yudenok and I. Nikolaevskiy, “Smart-m3 security: Authentifi-
cation anc authorization mechanisms,” in 2013 13th Conference
of Open Innovations Association (FRUCT), pp. 153-162, ISSN:
2343-0737.

A. Gurtov, M. Komu, and R. Moskowitz, “Host identity protocol:
Identifier/locator split for host mobility and multihoming,”
(Date accessed: 15.02.2020). [Online]. Available: https://www.
researchgate.net/publication/233893326_Host_identity_protocol _
Identifierlocator_split_for_host_mobility_and_multihoming

M. Etelapera, J. Kiljander, and K. Keinanen, “Feasibility evaluation
of m3 smart space broker implementations,” in 2011 IEEE/IPSJ
International Symposium on Applications and the Internet, pp.
292-296.

A. Lindgren, F. B. Abdesslem, B. Ahlgren, O. Schelén, and A. M.
Malik, “Design choices for the IoT in information-centric net-
works,” in 2016 13th IEEE Annual Consumer Communications
Networking Conference (CCNC), pp. 882-888, ISSN: 2331-9860.

J. Honkola, H. Laine, R. Brown, and I. Oliver, “Crossdomain
interoperability: A case study,” in In Smart spaces and, pp. 22—
31.

doi: 10.2313/NET-2020-04-1 07

