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Abstract—Traceroute is a widely used tool to perform mea-
surements on the network path from a source to a destina-
tion. However, there are some issues when applying it to the
recent structure of the Internet. Load balancing techniques
are very common to encounter on today’s Internet paths.
This article describes a few approaches that can be used
to adapt the original concept of traceroute to the current
structure of the Internet. When looking at network topology
discovery, the Multipath Detection Algorithm (MDA) and its
lightweight version MDA-Lite come in place. For broader
discovery Yelling at Random Routers Progressively (Yarrp)
can help to speed up the process, which is advantageous for
measurement of short living network topologies. However,
when tracing a single application flow, Service traceroute
provides more precise results. Choosing the right approach
for a given use case is crucial in order to obtain appropriate
results.

Index Terms—Active Internet Measurements, Traceroute,
Network Topology Analysis

1. Introduction

Over the years traceroute became a well-known tool
for network administrators to perform network diagnosis
tasks. The original approach introduced by V. Jacobson
in 1989 [1] is implemented in the standard Linux tool
traceroute. The idea of traceroute is to provide the user
insights on the path, which is taken through a network to
a given destination. It creates active measurement probes
for each hop along the path. This is done iteratively by
increasing the probe’s Time To Live (TTL) and inspect
the ICMP response message of the host where the TTL
expired [2]. The probe packets can be of different protocol
types depending on the use case and on the network
infrastructure. Although traceroute is widely used today,
it does not fit the needs of the present structure of the
Internet. Traditional traceroute is based on the assumption
that there is a single forward path to the destination host.
As shown in Figure 1, this can be problematic in load bal-
anced networks. Traceroute would send a probe to node A
with TTL n. When increasing the TTL to n+1, the probe
could either traverse the upper or the lower path. In case
of Figure 1 the probe reaches node B. Traceroute again
increases the TTL to n+2. However, this time the probe
traverses the lower path, through node C, and discovers
node F. Given that the previous probe discovered node B,
traceroute would assume that there exists a path between
node B and F. The ICMP response message contains only
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Figure 1: Problems using Traditional traceroute

the address of the node where the TTL expired. Therefore,
traditional traceroute cannot detect, if the probe traversed
through a different path than previous probes. Moreover,
nodes C and D remain hidden.

The utilization of load balancing techniques has in-
creased excessively over the last years [3]. In general
there are different ways of performing load balancing on
network traffic [4], [5]:

• Per-destination load balancing depends on the
destination specified in the packet.

• Per-flow load balancing derives its decision from
the packets flow identifier.

• Per-packet load balancing concentrates on keep-
ing the load as equal as possible. No effort is made
to keep packets of a single flow on the same path.

Per-destination load balancing does not create a problem
when tracing the forward path to a single destination
host. Traditional traceroute changes the header to be able
to match an ICMP response packet to its corresponding
probe packet [2]. This is done by varying the destination
port field for UDP probes and the sequence number for
ICMP Echo probes. In case of per-flow load balancing
such behavior leads to potential different paths for each
probe packet. As described by Augustin et al. [6], this
can be mitigated using Paris traceroute. Paris traceroute
explicitly controls the packet header to direct the packet
through a certain path. An ICMP response packet contains
the discarded header of the probe, as well as the first eight
octets of the payload. Instead of changin the flow identi-
fier, Paris traceroute makes use of these eight octets for
matching probes to the responses. In consequence, Paris
traceroute can deal much better with topologies such as the
one shown in Figure 1. Paris traceroute cannot get around
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the problems created by per-packet load balancing due to
its randomness. However, in those cases where there is
per-packet load balancing employed Paris traceroute can
detect it.

These days traceroute is not only used for what it
was initially intended. It is applied to a broader range
of problems, i.e., detection of all load balanced paths or
tracing specific services. Some approaches even separate
from the idea of tracing towards a single destination host
and rather try to get a bigger picture of the network
topology [7], [8]. The following sections will look at
recent traceroute-based approaches that deal with these
additional use cases.

2. Network Discovery

This section describes approaches to discover the net-
work in a broader sense. First, it explains an approach
to discover all paths from a single source to a single
destination. Afterwards, it diverges from the traditional
scenario of tracing towards a single destination. A recent
approach to discover the network topology is presented.

2.1. Detecting all Paths

After introducing Paris traceroute, the authors ex-
plored a way of getting a broader view of the network
topology [9]. In 2009 Darryl Veitch et al. [7] present their
final version of the Multipath Detection Algorithm (MDA).
MDA extends Paris traceroute to reveal all possible load
balanced paths to a given destination. It runs iteratively
through the paths and elicits all interfaces at each hop.
In order to enumerate the paths from a node at hop
h, it generates a number of probes with random flow
identifiers and selects the ones which reach that node.
Subsequently, it sends these probes to hop h+1 to discover
all successors. It sends these probes under the assumption
that hop h is a load balancer that evenly allocates traffic to
k paths. MDA is using a statistical approach to compute
the number of probes nk which need to be sent over the
node at hop h in order to enumerate all of its successors
at a given level of confidence. If it is not possible to
find more than k successors after sending nk probes,
MDA stops and assumes to have enumerated all possible
successors. However, in case k + 1 successors have been
found, MDA continues with the assumption that there are
at most k+1 successors. Correspondingly, it will generate
and send nk+1 probes. With this approach MDA claims
to find all load balanced paths between a source and a
destination host.

There are different constructs that can be encountered
when discovering the network topology. As soon as load
balancing comes in place, so-called, diamonds will be
exposed. According to the definition of Augustin et al.
“a diamond is a subgraph delimited by a divergence
point followed, two or more hops later, by a convergence
point, with the requirement that all flows from source
to destination flow through both points” [10]. Figure 2
shows two examples of diamonds. The upper diamond is
an example of an unmeshed diamond and the lower one an
example of a meshed diamond. Vermeulen et al. [3] define
meshing between two hops to meet one of the following
criteria:
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Figure 2: MDA on Meshed and Unmeshed Diamonds

• If the two hops h and h+1 have the same number
of nodes, then the out-degree of at least one node
of hop h must be two or more. Consequently, at
least one node at hop h+1 will have an in-degree
of two or more.

• If hop h has fewer nodes than hop h+1, then the
in-degree of at least one node at hop h + 1 must
be two or more.

• If hop h has more nodes than hop h+1, then the
out-degree of at least one node at hop h must be
two or more.

A diamond is considered to be meshed as soon as one
hop is meshed. In the example of Figure 2 MDA would
execute the following steps in order to detect the diamond
topology [7]:

1) To discover hop 1, MDA sends n1 probes with
the assumption that there is only one node. As it
cannot discover a second node, it will stop after
n1 probes.

2) In order to discover hop 2, MDA will send n1
probes again. However, this time it will discover
another node before it stops. Therefore, it will
continue with the assumption that there are two
nodes. While sending n2, probes it will discover
a third node and, after adjusting the number of
probes, a fourth one. As it cannot discover a fifth
node, it will stop after sending n4 probes.

3) When discovering hop 3, MDA starts with the
assumption that each of the four nodes has one
successor. A number of n1 probes need to be
sent over each of the four nodes. As the set
of n4 probes that revealed these four nodes at
hop 2 does not contain a number of n1 probes
per hop 2 node, MDA needs to generate more
probe packets. When generating new probes, it
is unlikely that the new probes are evenly spread
over all four nodes. Therefore, an overhead of a
few additional probes, denoted as δ will occur.
In the case of the unmeshed diamond, MDA
will stop after sending these probes as only one
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successor node is discovered for each node at
hop 2. For a meshed diamond, however, MDA
will detect a second node. It needs to send n2
probes over each node at hop 2. Therefore, MDA
generates another set of additional probes with a
potential overhead of δ′. As no third node will
be discovered, MDA will stop after sending these
probes.

4) In the last step MDA will discover the node at
hop 4 by sending a number of n1 probes per node
at hop 3. As there are already n1 probes available
per hop 3 node, there is no need to generate
new probes. MDA will stop after sending a total
number of 2n1 probes.

This procedure requires a lot of active measurement
traffic to be generated. For this reason, Vermeulen et al. [3]
came up with a lightweight version of the algorithm,
called MDA-Lite. It makes use of the benefit that nearly
half of all diamonds, which are found in the Internet, only
have a single hop with multiple nodes [3]. In consequence,
meshed diamonds are very uncommon. This allows MDA-
Lite to minimize the situations where it needs to generate
new probes for already discovered nodes, as seen in Step 3
of full MDA. Figure 3 illustrates the process of MDA-Lite
on the same unmeshed diamond as in Figure 2. Discovery
of hop 1 and 2 works the same way as for MDA. When
revealing hop 3, the benefit of MDA-Lite comes into
effect. Instead of generating and sending 4n1 + δ probes,
MDA-Lite will consider the set of nodes at hop 2 as one
node and proceed as usual. As two nodes are discovered,
n2 probes need to be sent. These probes can be taken from
the set of n4 probes, which were sent before. Similar to
the third step, MDA-Lite will consider all nodes at hop 3
as one and send a total number of n1 probes to discover
hop 4. MDA-Lite will therefore send 2n1 + n2 + n4
probes in total. In contrast, full MDA will send 11n1 + δ
probes for the unmeshed and 8n2 + 3n1 + δ′ probes
for the meshed diamond. Keeping in mind that for most
confidence levels, including the ones used by Vermeulen
et al., n2 < 2n1 holds, this clearly shows the amount of
probes saved by MDA-Lite. In their paper Vermeulen et
al. compare the savings in more detail based on actual
numbers by defining example values for all parameters of
MDA-Lite [3].

The above steps of MDA-Lite do not reveal all edges
of the graph even in unmeshed diamonds. However, the
task to obtain the rest of the edges is deterministic rather
than stochastic. It will therefore most likely require less
probes for high levels of confidence. The three possible
situations are handled as follows [3]:

• In case there are more nodes at hop h than at hop
h + 1, additional probes are generated for each
node at hop h and sent to hop h + 1. This will
find all successors for the nodes at hop h and thus
find the missing edges.

• If there are more nodes at hop h+1 than at hop h,
the probes that have discovered the nodes at hop
h+1 will be sent to hop h. This will unmask the
missing edges.

• Given that both hops have the same amount of
edges, both of the above procedures are applied.
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Figure 3: MDA-Lite on Unmeshed Diamond

Assuming there is no meshing, MDA-Lite will perform
with much less probes than full MDA. In order to de-
tect meshing MDA-Lite, applies stochastic probing for
potential meshing. This includes the need for the costly
generation of additional probes. The amount of these
additional probes can be set by the user as a parameter
introduced by MDA-Lite. For all meaningful values used
by Vermeulen et al. the amount of additional generated
probes is less than with full MDA [3]. In case meshing is
detected, MDA-Lite will switch to full MDA.

2.2. Large Network Topology Discovery

Augustin et al. [10] already came up with the idea
of getting a broader view on the network topology. They
started using MDA to trace traffic to a network prefix
rather than an address. However, the problem of exten-
sive active measurement network traffic gets even more
significant when tracing towards a network prefix. When
requiring a lot of time to complete the measurement of
a network topology, one can encounter changes of the
topology, which will bias the result of the measurement.
Due to that problem, Beverly introduced an implemen-
tation called Yelling at Random Routers Progressively
(Yarrp) [8]. He determined that the problems of most
traceroute implementations, when it comes to larger net-
work topology discovery, to reside in the following:

• Maintenance of State for each probe that has not
yet received a response: this state usually consists
of timing information as well as the probes iden-
tifier.

• Sequential Probing of the path: this can lead to
a significant execution time for large networks.
Moreover, sending probes sequentially, hop by hop
and node by node, can lead to intrusion detection
mechanisms to identify the probe traffic as a se-
curity risk.

Yarrp deals with the sequential probing problem by adjust-
ing the order of the probes by randomizing the destination
and TTLs of the probes. To achieve pseudo randomness,
the target IP addresses, as well as the TTLs, are encrypted
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by a keyed block cipher. This projects the input of IP
addresses and TTLs onto a new pseudo random order. To
eliminate the need to maintain state for each probe, Yarrp
encodes all state information into the probe packet. This
is done by overloading the TCP header of the probe. For
example, the TTL of the original probe gets encoded in the
IP identification field [11] and the elapsed time resides in
the TCP sequence number. The approach of Yarrp can be
beneficial, especially in situations when the measurement
time is important [8]. It allows measurement and analysis
of short living topologies.

3. Service Oriented Approach

Tracing the path of a specific application’s network
traffic can be hard using (Paris) traceroute. The application
can have multiple flows to different destination hosts. In
order to solve this task with Paris traceroute, one would
have to create probe packets with flow identifiers that
match the flow identifiers of the applications network
traffic [12]. But even if the flow identifier matches the
applications flow identifier, for TCP connections many
routers discard packets that do not belong to an already
known open connection [13]. The idea that many ser-
vice oriented tracing tools apply is that they place their
probe packets into an existing flow. There are different
implementations available for TCP connections [13]–[15].
However, they all work under the assumption that there is
a single connection that is established for each application.
A lot of applications fetch their content from multiple
sources over different connections. This makes it hard
to observe the paths, which the network traffic of an
application is taking through the Internet.

For this reason, Morandi et al. [16] proposed an im-
plementation called Service traceroute. This tool uses the
idea of previous service oriented implementations, but it
provides a feature to automatically select all flows to trace
based on high level user input and provides the capability
to trace them simultaneously. For example, the user can
specify to trace all flows related to traffic of the streaming
service Youtube by using its name as a service specifier.
Moreover, the tool also works with UDP.

The execution of Service traceroute is split into two
phases:

• The observation phase identifies the flows to be
traced by observing the specified network inter-
face. The flows are identified by the high level
search terms of the user. To achieve this kind of
functionality, a database of services signatures was
created and is used to identify the services.

• The path tracing phase executes the probing on
each identified flow. It stops probing as soon as
the application closes the TCP connection or after
a given timeout for UDP.

The probe packets are constructed from the observed
packets of the actual application flow. For TCP packets,
Service traceroute uses empty TCP Acknowledgements
with the same flow identifier and sequence number as
probe packets. In order to match the ICMP response
messages to the probes, it uses the IP Identification
field [11]. For UDP packets, Service traceroute constructs

UDP packets with an empty payload using the same flow
identifier as in the original packets.

Service traceroute can be a useful tool, especially
when tracing short living flows, such as small web down-
loads [16]. On the one hand, the probe traffic will result
in a higher overhead in these situations. On the other
hand, other Tracing tools could be hard to launch in
these situations, as they do not provide any reasonable
fast way of identifying which flows to trace. As part of
their work, Morandi et al. compared Service traceroute to
Paris traceroute with and without MDA [16]. For Paris
traceroute they used the same flow identifier as the flow
identifier of the application traffic. The results show that
7% of the discovered paths by Service traceroute could not
be discovered by Paris traceroute. When using MDA to
discover all paths, more than 40% of the paths reported
by Service traceroute are not found within all paths re-
ported by MDA. The authors explain the reason for Paris
traceroute performing worse than Service traceroute with
the possibility that some routers drop packets that do not
belong to an active flow. This proves the need for tools
that inject their probes into active flows.

Morandi et al. also inspected potential interference
with the application of the observed flows. They did
not find any conflict with the packets being sent by the
application.

4. Conclusion and Outlook

As the use cases of traceroute slowly expanded to a
broad range of problems, the choice of the right imple-
mentation is important. When finding all possible exist-
ing paths towards a single destination, no matter what
the packet’s payload will look like, then MDA and its
lightweight version MDA-Lite will be the right choice [3].
As a tool for large network topology discovery Yarrp tries
to speed up the execution time. This makes it particularly
useful to discover short living network topologies [8]. In
case of tracing down a single application, the user might
not necessarily be interested in parts of the network that
are not taken by the applications network traffic. In this
case the use of service oriented approaches provides the
best results [16].

Besides the approaches discussed in this article, there
exist many more solutions. Most traceroute-based solu-
tions do not investigate the use of the Record Route field
of the IP header [17]. This field is actually meant to
allow tracing the paths of network traffic. Each router
along the path will include its address in a list inside
the IP header. Tcpsidecar is a tool integrating the Record
Route field [14]. Unfortunately, the amount of hops being
captured by the Record Route field is limited and most
routers do not adhere to its specification. Moreover, some
firewalls even block packets that have the record route
option specified.

Instead of actually improving the core behavior of
traceroute, there are tools available which try to focus on
filtering out the wrong paths reported by traceroute [18],
[19].

There are also a few attempts to deploy active mea-
surement infrastructure to deal with the problem of mea-
suring the Internet. One of the most famous ones is RIPE
Atlas [20]. Relying on global infrastructure brings some
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benefits as well as some other challenges, which are not
discussed as part of this paper.

All in all, traceroute remains a useful tool for ad-hoc
measurements. There are a few issues with the traditional
approach that can be mitigated by choosing the right
improvement.
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