
Building an OS Image for Deep Learning

Daniel Gunzinger, Benedikt Jaeger∗, Sebastian Gallenmüller∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: daniel.gunzinger@tum.de, jaeger@net.in.tum.de, gallenmu@net.in.tum.de

Abstract—This paper documents the process of creating
an reproducible OS image for deep learning. The target
framework is Tensorflow 2, which is provided in a recent
version in this image, accompanied by support for GPU
acceleration, which can improve performance and thus de-
velopment time significantly. During the creation of this OS
image, a number of problems have been encountered and
solved. Due to the created OS image, it is now possible to
rapidly spin up a server, which can immediately provide a
reproducible environment fit for development and training
of deep learning applications that utilize the Tensorflow 2
framework with GPU acceleration.
Index Terms—operating system, tensorflow, gpu, deep learn-
ing, cuda, cudnn

1. Introduction
In this paper the process of building an OS Image

based on Debian Bullseye in order to provide GPU support
for deep learning applications using Tensorflow 2 with the
new generation of Nvidia RTX Super graphics cards is
discussed.

This aims to provide a reliable and reproducible OS
image for the development and training of deep learning
applications, reducing development time by removing te-
dious setup tasks and improving execution performance
of the developed applications with GPU acceleration.

The OS image also aids the reliability of testing results
of any executed applications as the exact configuration of
the whole OS image can be preserved and tests can be
repeated by loading the OS image again on the same target
network node. Thereby providing the same hardware and
software environment and thus a reproducible platform
that can help in achieving reliable application testing
results for all users of the OS image.

This paper is structured as follows, in Section 2 back-
ground information about the used software and hardware
is provided, including the infrastructure setup which the
OS image is targeted for. In Section 3 the building process
of the OS image is detailed, this contians information
about the testing and building methodology and the prob-
lems that were encountered during this process. Section 4
provides an overview of the performance testing that was
done including benchmark results for the used test scripts
on a target server and its hardware specifications.

1.1. Deep Learning

Deep Learning is a type of machine learning which
can assign a given input to a set of known elements based

on previous training.
Deep Learning is often used to classify images or

recognize known elements in a given input image, but
it is not constrained to only work on images, but can also
work on other input data formats such as text or sound as
DeepL1 or speech recognition software show.

However in this work, the focus is to provide GPU
acceleration of deep learning frameworks primarily con-
cerned with image recognition.

For this purpose it is required to create a model with a
number of different layers which process the input image
and pass their output on into the next layer.

There are different layer types which perform different
computations on the input they recieve and also differ in
their output and output formats.

One layer type which is commonly used in image
recognition models are convolutional layers, this layer
type performs operations on a given range of the input
matrix. In this type of layer each output is the result of a
function over a window of the input.

Another commonly used layer type are fully connected
layers, where each input is connected to each output by a
weight. In this type of layer each output is the result of
an operation involving every single input and its weight.

One more important layer type are pooling layers
which are used to filter the input, perform a specific
operation on a range of inputs and combine them into
one output.

2. Background

In this section the targeted infrastructure setup is
detailed, and choices for software and hardware are ex-
plained.

2.1. Infrastructure Setup

The targeted infrastructure setup consists of a server
network which is managed through the pos software,
which is an abbreviation for plain orchestrating service.

Among many other features out of scope regarding this
paper, it allows for the use of a calendar. In this calendar
multiple users working with the server network can enter
dates, durations and targeted servers in order to reserve
them for their later use, and allows for an overview of the
current reservation status of the available servers. When
a user of this system has a ongoing reservation of one or
multiple servers, it can be used to allocate the specified

1. https://www.deepl.com/press.html

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

21 doi: 10.2313/NET-2020-04-1_05



servers. Once one or multiple servers are allocated by a
user, they can be started, stopped and reset individually.
Available OS images can be chosen for deployment and
an overview of their operational status can be displayed.

For the image building process the mandelstamm soft-
ware is used to create OS images that can be used in the
pos software mentioned above. It consists of a set of build
scripts which are used to specify the contents of the OS
image, such as the base operating system and software that
is supposed to be installed once the image is executed, and
to configure the image for deployment.

The pos and mandelstamm software are projects by
the Chair of Network Architectures and Services and are
not publicly available.

2.2. Software

In this section the software components of the OS
image are described.

As we need a reliable operating system, Debian was
chosen since it provides a stable base system with a broad
range of software packages being available for installation
and use through the repositories. In particular Debian
Bullseye (11), the current testing testing release has been
chosen.

As the main focus of this work is to provide an OS
image for GPU accelerated deep learning, deep learning
libraries need to be available too. Thus Tensorflow 2 and
PyTorch are installed through the pip package manager
and included in the OS image.

While Tensorflow 2 provides APIs in multiple differ-
ent programming languages2, we focused on providing
support for a Python workflow, which is also required for
PyTorch.

Python is available in many different versions, with
incompatibilities between the major versions 2 and 3, for
our OS image we aimed to provide a recent version of
Python 3.7, which is available through the Debian reposi-
tories and is also supported for use with the Tensorflow 2
library.

As a major task of this work is to provide GPU
acceleration for Tensorflow and PyTorch, the GPU driver
and multiple libraries from Nvidia also need to be included
into the OS image.

The installed version of the drivers is 430.64, with
CUDA 10.1 being provided by libcuda1 and cuDNN
7.6.5.32 installed through Nvidias generic package for
linux targets. Other important libraries in order to pro-
vide GPU acceleration are libcudart10.1, libcublas,
libcufft, libcurand, libcusolver, libcusparse and
the nvidia-cuda-toolkit.

2.3. Hardware

The decision to work with the Nvidia graphic cards
stems from their hardware acceleration capabilites for
compute and deep learning applications.

The amount of streaming processors present on these
cards is useable through the CUDA API which can provide
impressive speedups for Tensorflow programs over execu-
tion on general purpose CPUs. Another feature which the

2. https://www.tensorflow.org/api_docs

Nvidia RTX series GPUs provide are the Tensor Cores,
which can provide another speedup over common general
purpose hardware for mixed precision matrix multiplica-
tions, commonly used in the network training phase.

3. Building Process

In order to build the images the mandelstamm software
is used to create and package the OS images.

For the first attempt at creating the target OS im-
age Debian Buster was chosen as the operating system,
as it is the latest stable release version. In order to
enable support for the used GPUs the nvidia-driver
and the nvidia-smi (system management interface) were
included into the OS image.

When attempting to test the created image on the
targeted server, it became apparant that the version of the
nvidia-driver package available in Debian Buster is not
recent enough to support the used RTX 2080 Super GPUs,
as elaborated upon in Section 3.2.1.

Thus the built image was tested on a server containing
two Nvidia GTX 1080 Ti GPUs in order to determine if
the approach for driver installation had succeeded. The
installation success could be confirmed by executing the
nvidia-smi utility which reported the two GPUs with
their correct names and further statistics such as current
power consumption and memory usage.

The next step was to install Tensorflow 2, which
instead of building it from source, can be acquired via the
Python pip utility. During the installation of Tensorflow 2
the latest version available through pip was used, at the
time of this testing this was version 2.0.0, which was
released on September 30th of 20193.

This installation led to the discovery of the next prob-
lem due to Tensorflow 2 requiring at least version 19 of
the pip utility, which is not provided in any of the Debian
repositories as described in Section 3.2.2.

This required the pip utility to not be installed through
the apt package manager using the Debian repositories,
but instead through downloading a provided installation
file from the Python Package Authority (PyPA) and exe-
cuting it in order to complete the installation4.

Thereafter the installation of Tensorflow 2 was again
attempted by installing version 2.0.0 through the pip
utility, this time completing successfully and thus enabling
first tests to be run.

Since the goal of this image is to provide GPU ac-
celeration support with the Tensorflow 2 library, the first
test was to see if the GPU is recognized as a processing
device by Tensorflow 2 as described in Section 3.1.1.

This revealed warnings about a number of additional
libraries needed in order to register the GPU successfully,
and libcudnn.

All of these libraries except for libcudnn are available
through the Debian repositories, however installing them
was of no help since the available versions did not match
the required CUDA version, as described in Section 3.2.3.

At this point the upcoming Bullseye release of Debian,
version 11, has been chosen due to the package availability
problems and a lack of driver support for the targeted

3. https://pypi.org/project/tensorflow/#history
4. https://pip.pypa.io/en/stable/installing/

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

22 doi: 10.2313/NET-2020-04-1_05



graphics card series that were encountered with Debian
Buster.

As the Bullseye release of Debian is still in devel-
opment, neither the official release date nor the end of
life date is known yet, however extrapolating from the
Debian version history5 a release date in 2021 and an end
of life date around 2024 would match the current pace of
releases.

By changing the target OS to Debian Bullseye a
problem with the mandelstamm build scripts became ap-
parent, as the URL format for the security repositories
had changed for Debian Bullseye as elaborated upon in
Section 3.2.4. Thus the mandelstamm build scripts had to
be adapted in order to successfully build the OS image.

After this problem was addressed, the build script for
Debian Bullseye was modified by adding calls to the apt
package manager in order to install the Nvidia GPU driver
and system management interface from the Debian repos-
itories. Another call to the package manager was added
in order to install the aforementioned additional GPU
libraries which are fortunately available in the required
and matching version in the Debian Bullseye repositories.

Afterwards the built Debian Bullseye image was de-
ployed to the test server with the Nvidia RTX 2080
Super GPU, and the nvidia-smi command was called in
order to determine correct installation of the GPU drivers.
This could be confirmed as the nvidia-smi utility did
now provide the correct name of the card in the output
alongside the other statistics, it also reported both the
nvidia-smi and driver version as 430.64, which officially
supports the targeted card as listed in the release notes for
this driver6.

After all necessary tools and libraries have been suc-
cessfully installed Tensorflow 2 can be installed via pip,
however the version that is going to be installed has to
match the installed CUDA and cuDNN version. In our
case the chosen version was version 2.1.0rc0, which is
the first release candidate of Tensorflow version 2.1 and
requires CUDA 10.1 and cuDNN >=7.47.

After the first confirmation of driver support for the
installed card the next testing stage was executed by listing
available devices in Tensorflow as described in more detail
in Section 3.1.1. This returned the expected result of a
processing device list with one CPU and one GPU device
being available.

By running the test script in order to verify the avail-
ability of GPU acceleration a problem with Tensorflows
memory allocation behaviour on GPUs became apparent,
which is described in greater detail in Section 3.2.6.

After solving the GPU memory allocation issue, all
parts of the test script could be executed successfully on
both CPU and GPU, demonstrating full functionality of
the OS image.

3.1. Testing and Deployment

This section explains the methods used for testing the
functionality of the produced OS images.

5. https://wiki.debian.org/DebianReleases
6. https://www.nvidia.com/Download/driverResults.aspx/153714/en-

us
7. https://www.tensorflow.org/install/source#gpu

3.1.1. Initial testing by listing devices. For initial
testing the following two lines of code were used to list
the available processing devices, such as the CPU and
GPU.
from tensorflow.python.client import device_lib
device_lib.list_local_devices()

3.1.2. Deep learning test script. In order to test the
functionality of the Tensorflow installation and to ensure
that the installed CUDA and cuDNN versions work with
the chosen version of Tensorflow a custom test script has
been created.

It trains a neural network for image classification using
the CIFAR10 dataset8, and is structurally similar to a
Tensorflow tutorial example for CNNs9.

The script has two major sections, in the first section
convolutional layers are used, this section can be disabled
and thus skipped. This first section contains two Conv2D
layers10 with a Max-Pooling layer in between the two
Conv2D layers.

The second section of the script uses fully connected
layers, thus the input is first flattened. After the input has
been flattened two fully connected layers are added as
Dense layers11, with the first layer using a ReLU activation
function and the second (final) layer using the softmax
activation function.

Using these layers as described above, the model is
then trained for ten epochs over all images contained in
the CIFAR10 dataset.

3.2. Encountered Problems

This section elaborates on the problems that were
encountered during the creation and testing of the OS
images and their solutions.

3.2.1. Target GPU not supported in Debian Buster.
Due to the first build targeting Debian Buster, the latest
version of the driver available in the Buster-specific repos-
itories was installed, which was version 418.74.

However as we need to support an Nvidia RTX 2080
Super GPU this is not recent enough, as it does not support
any of the Super-series cards, which were released in July
of 201912.

This was noticed due to the nvidia-smi utility output
not reporting the name of the installed GPU correctly.

3.2.2. Tensorflow software requirements. There are also
problems with the availability of recent Python3 pip
versions on several Debian versions including Buster and
Bullseye, as the repositories only provide pip version
18.1, yet at least version 19 is required for our target
application Tensorflow 2.

8. https://www.tensorflow.org/datasets/catalog/cifar10
9. https://www.tensorflow.org/tutorials/images/cnn
10. https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
11. https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
12. https://www.anandtech.com/show/14663/the-nvidia-geforce-rtx-

2080-super-review

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

23 doi: 10.2313/NET-2020-04-1_05



3.2.3. Mismatched GPU library versions in Debian
Buster. While the repositories for Debian Buster do
contain libraries for CUDA 10.1 support, none of the
other important libraries for GPU acceleration support
are available in version 10, instead only in version 9.2,
which could not be used successfully in combination with
Tensorflow 2. The problematic libraries are libcudart,
libcublas, libcufft, libcurand, libcusolver and
libcusparse.

3.2.4. Missing support for Debian Bullseye in mandel-
stamm. As mandelstamm does not have a specific build
script for Debian Bullseye, an image creation was first
attempted by copying the build script for Debian Buster
and changing the release name from Buster to Bullseye.

This however did not result in a successful image
creation as the security repositories could not be found.
After closer inspection of the build scripts and Debian
documentation, an adjustment had to be made to the
generic Debian build script as the URL of the security
repository had its format changed13, thereby creating a
special case in the build script.

3.2.5. Installation of the cuDNN Package. An impor-
tant library regarding GPU acceleration for deep neural
networks is Nvidias cuDNN package. It is only available
through a repository for Ubuntu, installations on other
distributions require a more generic package available for
download on Nvidias website through the Nvidia Devel-
oper Program14, which however requires a membership in
the mentioned developer program.

Thus it is necessary to install the package manually
according to Nvidias documentation15.

3.2.6. Issues with cuDNN and Tensorflows default
settings. When executing the test script on a GPU device,
an error about not being able to allocate memory was
returned. This turned out to be a configuration issue
instead of a driver or library issue and has been solved
by adding a small loop which iterates over the available
GPU devices and calls the following function for each
GPU device:
tf.config.experimental.set_memory_growth(device,
True)
After setting this flag for each GPU device the
convolutional network part of the test script could be run
without issues on the GPU device, which as described
in Chapter 4 allowed for a significant speedup over
executing it on the CPU.

3.2.7. Default build options of available Tensorflow
packages. During the execution of the test scripts on
the CPU using the Tensorflow 2.1.0rc0 build obtained
via the pip package manager the following warning was
logged:
Your CPU supports instructions that this
TensorFlow binary was not compiled to use:
AVX2 AVX512F FMA
Which implies that the execution times observed using

13. https://www.debian.org/releases/bullseye/errata#security
14. https://developer.nvidia.com/rdp/cudnn-download
15. https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html

when the CPU for the test script could be significantly
lowered by building Tensorflow from source with
enabled support for the advanced AVX instruction sets
and the fused multiply-add instuction set, which both
can accelerate a common operations of deep learning
applications significantly.

This is a problematic default build setting as a majority
of recent CPU architectures, starting with Intels Haswell
microarchitecture in June 201316 include support for the
AVX2 and FMA instruction sets.

If support for using these instruction sets is added in
future builds a meaningful speedup could be observed
when running deep learning applications without GPU
acceleration, as the SIMD instruction sets AVX2 and
AVX512 can improve the throughput of matrix multipli-
cations and other common operations in multiple neural
network types.

4. Performance Evaluation

In this section we compare the performance of the test
script when running on the CPU and the GPU.

The performance testing was conducted on a server
with the relevant specifications listed in Table 1.

TABLE 1: Testing server specifications

Part Equipped

Processor Intel Xeon Silver 4214 (12c24t, up to 3.20GHz)
Memory 8x32GiB DDR4 2400MHz in hexa-channel
Mainboard Supermicro X11SPi-TF
Graphics card Nvidia RTX 2080 Super

The test script (see Section 3.1.2) was used and the
complete execution time for each configuration was ob-
tained with the time command.

In order to show the speedup of different operations,
two different configurations were used for the test script
execution. First, the complete script including all opera-
tions was executed. For the second configuration the test
script was modified to skip the execution of convolutional
operations.

Both of these configurations were executed three times
with and without GPU acceleration and the execution time
for these tests was then averaged in order to alleviate the
effects of run-to-run variance.

TABLE 2: Performance testing results

Test CPU execution time GPU execution time

Complete 763.65 (14945.69) 90.73 (156.78)

Fully
connected
network 107.00 (1439.07) 63.49 (126.29)

Results format: real time (user time) in seconds

The results listed in Table 2 show that GPU accel-
eration provides a significant speedup, especially when
working with convolutional networks, which can be ex-
plained by inspecting the functionality of the layers and
the capabilities of the used hardware.

16. https://en.wikichip.org/wiki/intel/microarchitectures/
haswell_(client)#New_instructions

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

24 doi: 10.2313/NET-2020-04-1_05



Some of the operations in the script described in
Section 3.1.2 are rather compute bound, while other types
of operations, such as pooling or the processing of activa-
tion functions is rather memory bandwidth bound17. The
parallelizability of the layers is an important aspect of the
observed performance scaling, as the amount of compute
cores differs greatly between the used CPU, where 12
cores with 24 threads are available, and the used GPU,
where 3072 shader processors and 384 tensor cores are
ready to compute.

In memory bound operations the GPU will also have
an advantage as it features a 256bit wide memory bus
operating at 15500MT/s resulting in a theoretical peak
bandwidth of 496GB/s to the GDDR6 chips. In compar-
ison the CPU can access six channels of DDR4 memory
with a width of 64bits each, resulting in a 384bit wide
memory bus operating at 2400MT/s resulting in a theo-
retical peak bandwidth of 115.2GB/s.

With a complete execution of the test script we can
observe a speedup of 88.1% when enabling the GPU
acceleration over a CPU only execution. By disabling
the execution of the convolutional layers, the difference
in execution time shrinks significantly, however enabling
GPU acceleration still yields a 40.7% decrease in runtime.

With these numbers we can also see that the execution
of convolutional networks profits much more from GPU
acceleration, as the execution time compared to the re-
duced test configuration increases by 42.9% while the time
taken when executing on the CPU increases by 613.7%.

However, it is important to note that the chosen release
for Tensorflow 2 (2.1.0rc0), seems to lack support for
CPU instruction sets that could improve the execution time
when running on the CPU significantly, as described in
Section 3.2.7.

5. Conclusion and Future Work

The created OS image supports the use of GPU ac-
celeration with Tensorflow 2, which provides a significant
reduction in runtime for deep learning applications, espe-
cially in applications which include convolutional neural
networks.

Currently the OS image is based on Debian Bullseye
for the operating system, featuring the Nvidia drivers in
version 430.64 for support of their latest series of graphics
cards, as well as a number of accompanying libraries.

Other installed software includes Python 3.7, a recent
version of the pip package manager and most importantly
recent versions of Tensorflow 2 and PyTorch.

With the OS image ready for deployment, time is
saved in the development workflow as tedious setup tasks
can be skipped by deploying the OS image to an available
server and using it for the development tasks.

The building process did also show that in order to
create an environment featuring recent versions of the Ten-
sorflow and PyTorch frameworks with GPU acceleration
support, special attention needs to be brought to the used
graphics cards and the GPU driver version, as well as the
available libraries regarding GPU acceleration, as these
libraries have dependencies on specific CUDA versions.

17. https://docs.nvidia.com/deeplearning/sdk/dl-performance-
guide/index.html

For the future the OS image can be extended to include
more available deep learning frameworks as well as more
software tools that ease the development workflow.

Additional images using other operating systems, e.g.
Ubuntu as a basis could also be created in order to expand
the available software support through more repositories,
thus allowing for more use cases and letting developers
choose an environment with which they are already fa-
miliar.

If a version of this image is to be created for CPU
only execution of Tensorflow 2 applications, it would
be beneficial to check the target CPU for its supported
instruction sets, compile Tensorflow from the source code.
By including all instruction sets that the target CPU can
support in the compilation settings a performance advan-
tage over the precompiled binaries available through pip
can be achieved.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

25 doi: 10.2313/NET-2020-04-1_05


