
TLS Fingerprinting Techniques

Zlatina Gancheva, Patrick Sattler∗, Lars Wüstrich∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ga94vad@tum.de, sattler@net.in.tum.de, wuestrich@net.in.tum.de

Abstract—Internet security has become a key concern to
society in the last couple of decades as more and more
sensitive data are being transferred over the Internet. This
has led to the adoption of cryptographic protocols such as
Secure Sockets Layer protocol (SSL) and Transport Layer
Security protocol (TLS), which serve to protect information
sent across the Internet. However, even though encryption
resolved many security problems, it raised another question
and namely how to inspect network traffic while still com-
plying with privacy restrictions.

TLS Fingerprinting is a method, developed to assist
network monitoring. This paper takes a closer look on how
TLS Fingerprinting works and analyzes the advantages of
it as a client identification method by reviewing different
Fingerprinting implementations.

Index Terms—Transport Layer Security, Secure Socket
Layer, Network monitoring, Client identification, Finger-
printing

1. Introduction

Nowadays, Transport Layer Security protocol (TLS)
is the cryptographic protocol that is used to encrypt the
majority of the internet traffic. It creates a huge visibility
gap, which serves to prevent third parties from observing
user’s communication. This, however, poses a challenge to
network administrators, who are trying to analyze traffic
and who do not necessarily have access to the endpoint
devices. The traditional way of intercepting and decrypt-
ing traffic is no more applicable, since it does not comply
with current privacy standards and causes lower network
performance [1]. Therefore, there is a pressing need for
a method to improve traffic analysis. A possible solution
to this problem is the generation of TLS fingerprints to
identify network clients.

TLS fingerprinting - a non-invasive method - meets
all the following criteria for traffic monitoring. It aims to
provide quick and successful client identification, while
being compatible with existing technologies and preserv-
ing the integrity of the encrypted information [2], [3]. TLS
fingerprinting a is completely passive and payload based
approach, which works by capturing and analyzing the
unencrypted messages exchanged during a TLS session
initialization. In those messages both parties agree on
various parameters such as protocol version and encryp-
tion keys, which will be used to establish the encrypted
connection that follows. This procedure is defined by the
term ’handshake’ and it is subsequent to the TCP 3-
Way Handshake. Most of the handshake parameters are

specific enough for a unique client signature to be built
and recorded into a database.

Figure 1: TLS protocol structure [4]–[7]

1.1. Outline

This paper is divided into 5 Sections. The second
Section aims to explain TLS fingerprinting by making a
detailed observation of the organization of the encryption
it is based on. It provides a brief overview of TLS’s
history, current TLS versions in use and explains in detail
important steps such as the TLS client-server Handshake.
A detailed overview of different fingerprinting techniques
is done in the third Section. The applicability of the results
is discussed in Section four. Lastly, Section five concludes
the paper.

2. Background

Transport Layer Security (TLS) is a cryptographic
protocol, descendant of Secure Socket Layer protocol
(SSL), and was first released in January 1999 [1]. Its most
widespread version now is TLS 1.2 with more than 95
percent of the web servers supporting it as of February
2020 [8]. In 2018 however, a major TLS upgrade was
made and TLSv1.3 was released. It aims to increase
speed by reducing the number of handshake messages and
improve security by not supporting outdated ciphers and
hashing algorithms (e.g. SHA1, MD5, DES) [1]. The 1.3
version is relatively new, but the most popular browsers
such as Chrome, Firefox and Opera already support it in
their latest releases [9].

TLS should provide [10]–[12]:

• Authentication - The server always authenticates
itself to the client.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

15 doi: 10.2313/NET-2020-04-1_04

• Data integrity - After the connection establishment
the data cannot be tampered with by attackers
without detection.

• Confidentiality - After the connection establish-
ment the data is only visible to the endpoints.

The TLS protocol enables client - server applications
to communicate over the network in a manner, designed
to prevent interference and eavesdropping. This done by
encapsulating and encrypting data from the application
layer, which ensures end-to-end security [4]. Hence, TLS
is typically implemented on top of TCP with regard to the
TCP/IP model (Figure 1). It is the encryption protocol cur-
rently standardized [13] for securing the most widespread
network protocols, such as HTTP, FTP, SMTP and takes
part in VoIP and VPN protocols [14]. As can be seen
from Figure 1, the TLS protocol consists of two parts:
the Handshake protocol and the Record protocol. The
fist one ensures that the communicating parties authen-
ticate themselves and is responsible for the negotiation of
cryptographic parameters and key establishment [7]. The
second one utilizes the parameters negotiated during the
handshake. The Record protocol splits the transferred data
into records, which are then individually protected [6].
For the purpose of TLS fingerprinting this paper is going
to focus on the Handshake protocol, since as mentioned
in the Introduction section only there the information
exchanged between the client and the server is in plain
format.

However, before going into detail about the handshake
procedure, it must be pointed out that TLS uses a com-
bination of both Symmetric and Asymmetric encryption
[15]. Asymmetric encryption uses a public-private key
pairing, so that data that is encrypted using the public key
can only be decrypted using the private key and the other
way around [16]. Its purpose is to authenticate the identity
of the website’s origin server. This is also known as public
key encryption. Symmetric encryption on the other hand,
uses only one key for encrypting and decrypting data.
During the Handshake information is exchanged using
asymmetric encryption, until the two sides are finished
generating the session keys. Afterwards the session is
encrypted using Symmetric encryption.

The Handshake process for TLSv1.3 is graphically
presented in Fig 2 and explained as follows [17] :

1) The client calculates a few private/public keypairs
for key exchange and requests a TLS Handshake
by sending a ClientHello message that contains
the following cryptographic information:

• Preferred TLS version (TLS 1.3, 1.2, 1.1,
etc.)

• Client random variable, which represents
a 32 byte string, used to prevent valid data
transmission from repetition or delay with
malicious intent.

• Session ID, that has the default value of
null if this is the first time connecting to
this server [10].

• Cipher suites list (e.g. ECDHE, RSA,
PSK), ordered by preference of the client.
A Cipher suite is a collection of encryp-
tion algorithms used to establish a secure
connection [?].

• Compression methods, used to decrease
the bandwidth.

• List of Extensions, which specify ad-
ditional parameters (e.g. server name,
padding). There are about 20 extensions,
but among the most prominent ones are
Signature Algorithms, Key Share, Elliptic
Curves and Elliptic Curve Point Format
[18]. They could also be included in the
ClientHello fingerprint in order to bring
more diversity [19]:

• List of public keys, which contains a list
of public keys that the server might find
suitable for key exchange

2) The server calculates his private/public key-pair
and answers the client with several messages.
First is a ServerHello message that contains the
negotiated protocol version, the chosen cipher
suite, the session ID, another random byte string,
compression method as well as the public key.
The client and the server then both calculate the
the shared session key that will be used to encrypt
the rest of the handshake, using their private keys
and the public key they have received from their
partner.

3) The second message from the server is a Change-
CipherSpec, which serves to inform the client that
from now on the all the messages will be en-
crypted with the shared key. (however in TLSv1.3
this message is sent simply as a middlebox com-
patibility mode [20])

4) A Wrapper message follows, that comprises of
the Server Encrypted Extensions, Server Cerifi-
cate, Server Certificate Verify and Server Fin-
ished messages. The emphasis here falls on the
fact that the rest of the handshake communication
is encrypted, which is new in TLSv1.3 / is a
major upgrade to TLSv1.2.

5) The client also sends a ChangeCipherSpec, which
has the same purpose as the one send from the
servers.

6) Finally the client also sends a Wrapper message
containing the Client Finished message, inform-
ing that the handshake was successful for the
client.

Now for the duration of the TLS session the server
and client can send each other data that are encrypted
symmetrically with the shared session key.

3. Fingerprinting

Previously a client used to be identified by the browser
User-Agent found in the HTTP header. This is application
layer information, which is now encrypted when the client
uses cryptographic protocol such as TLS. Nevertheless,
careful examination of network traffic has shown that
clients can still be identified by capturing the unique set
of plain text parameters from the Client- and ServerHello
messages. It is important to point out that the elements of
the Client- and ServerHello messages stay static through-
out different sessions, which allows for previously known
clients to be easily recognized. All the client records

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

16 doi: 10.2313/NET-2020-04-1_04

Figure 2: TLS Handhake Steps [1], [17]

are stored in a dictionary database, as this serves to
quickly identify known TLS connections and fingerprint
new unknown ones. In addition to that, clients with odd
behavior can be tracked and discriminated if they are
found to be malware applications. Since malware is known
to use quite unique/custom parameters when they use TLS
communication (normally old or obsolete TLS versions
and/or small number of extensions or cipher suites) [2c03],
a blacklist with their fingerprints can be composed to aid
various TLS fingerprinting implementations.

3.1. Fingerprinting Methodologies

Numerous studies have worked with ClientHello pack-
ets to fingerprint TLS. In 2009 Ristić et al. [21] analyzed
how to fingerprint SSL/TLS clients by evaluating the
Handshake parameters, including the Cipher suites and
Extensions list [21] [19]. In this Section three finger-
printing techniques using TLS implementations will be
described.

Network-based HTTPS Client identification – this
traffic analysis technique achieves proper client identifica-
tion by creating a dictionary, where the Cipher suite list of
the client is paired with their respective User-Agent. The
list of Cipher suites is chosen over other elements from
the TLS handshake, for it is the most diverse amongst
the parameters, supposedly specific enough to identify a
client. Other elements of the Handshake have only a few
different values and are therefore found not suitable.

This method is based on a combination of two ap-
proaches [4]:

• Host-based - based on server monitoring - mea-
sures connections using the decrypted information
from a HTTPS connection, such as the HTTP
header, once it is received on the server side. The
main advantage of this technique is that it pro-
vides results with high accuracy and is applicable
in a controlled environment. It is however, also
dependable on the amount of clients accessing

the monitored server and there is no guarantee
for diverse enough traffic. This could result in an
insufficient amount of produced pairs.
Essentially the accuracy of the data depends on
the attractiveness of the server [4].

• Flow-based - based on network monitoring – this
method works on the precondition that clients use
both HTTP and HTTPS protocols when they com-
municate with the server. Thus it scans the traffic
for connections that share the same IP source
address. Then select a cipher suite list from the
HTTPS connection and pairs it with the User-
Agent from the HTTP connection, which is the
closest in time [4], [14]. As opposed to the host-
based approach, the flow-based one is not limited
to a single server, so it provides more diverse
pairs. Key weakness of the flow-based method
is that is could provide ambiguous/perplexing re-
sults, because there are usually more than one
User-Agent corresponding to a Cipher suite list
[4]. Normally the User-Agents should have only
slight differences, like software version. So the
ones that deviate notably are supposedly connec-
tions, forged by web crawlers, pretending to be a
legitimate clients. Therefore only the most similar
User-Agents sub-strings were taken [14]. There
are some possibilities to improve this method [14].
The first one is to manually inspect the pairs,
which is still an approach prone to errors and
time consuming. The second option is to repeat
the measurement. Yet repeating it in a different
time window or with different network settings
would not necessarily provide complimentary re-
sults. Another way to fixing this shortcoming is to
extend/spread the fingerprint to the TCP/IP layer.

Combined, the host- and flow- based approaches were
proven to be sufficient for the creation of a usable dic-
tionary. Such dictionaries must contain about 300 cipher
suit lists with their assigned User-Agents in order to be
reliable [14]. After careful examination of the results
provided both methods show that the top 10 cipher suite
lists covered more that 68 percent of the network traffic
and the top 31 cipher suite lists are enough to represent
about 90 percent of the traffic. This shows that using both
method it is feasible to identify clients with high accuracy.

JA3/JA3S fingerprinting - this technique is a project
from Salesforce [1], which utilizes both the ClientHello
and the ServerHello to fingerprint the negotiation between
client and server, using MD5 hash to produce an 32
character fingerprint, that is easy to digest. [22], [23].

Initially there was JA3, where only the client side of
the TLS session establishing messages where exploited.
It composes a client fingerprint by collects the decimal
values of the bytes for the following fields in the Clien-
tHello packet: Protocol version, Accepted Ciphers, List
of Extensions, Elliptic Curves, and Elliptic Curve Formats
[24]. It then joins those values together in a string, ordered
as listed above, using commas to separate the field and a
dash to part each value in each field. If there are no TLS
Extensions in the ClientHello, the fields are left empty
[23]. Those values are captured at the earliest possible
stage, even before the server responds. This results in a

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

17 doi: 10.2313/NET-2020-04-1_04

very large fingerprint, which is why the strings are hashed
using MD5 hash.

Alone JA3 is not always enough to create an unique
fingerprint, because when client applications use the same
OS sockets or common libraries their JA3 fingerprints
will be identical. A resolution to this shortcoming is the
extension of JA3 - JA3S [1].

JA3S essentially does the same thing JA3 does, but
with the server response – it uses the ServerHello packet
to gather information from the following fields: Version,
Accepted Ciphers, and List of Extensions [22], [23]. Then
it concatenates them. This is useful, since servers reply to
different clients differently, but to one client the same way
in every session. JA3/JA3S provides additional benefits to
the detection of malware. For example, if the JA3 finger-
print of the malicious application looks indistinguishable
from a JA3 fingerprint of a legitimate application, so it
can only be recognized from the server’s response. Hence,
the combined usage of JA3+JA3S contributes to a highly
trustworthy identification / results in a more accurate
malware detection [1], [22], [23].

Lastly, JA3/JA3S also has some disadvantages. The
first one is that the MD5 hash has become obsolete [1]. It
is important to clarify that back in 2017-2018 developers
chose this hash type, because then it was supported by
current technologies. However, as mentioned in the Back-
ground section, this is no longer the case, for MD5 is
no longer supported in TLSv1.3, which urges the hash
type of the JA3/JA3S to be changed. Additionally the
JA3/JA3S technology is blacklist-based, which implies
that its trustworthiness depends on how often the blacklist
is updated.

Markov Chain Fingerprinting – this traffic classi-
fications technique is conducted on the server side and
is designed based on the message type sequence that
emerges in a single-direction flow form the server to the
client. It can use first-order or second-order homogeneous
Markov chains to model statistical TLS fingerprint of
different applications [25].

Fundamentally, Markov chains are utilized when com-
puting the probabilities of certain events by viewing them
as states transitioning into new or past states [26]. At
the beginning of the method development, researchers
used first-order homogeneous Markov chain model for
computational simplicity [25]. This technique operates
under the assumption that the parameters of each TLS
session differ considerably and therefore the fingerprint
of each application is distinctive enough. However, due
to the limited amount of states during a TLS session, it
could happen, that many applications contain alike transi-
tions in their fingerprints, which could cause them to be
misclassified. This problem could be avoided if the tech-
nique is upgraded to second-order Markov chains that are
able to capture more diverse application features, which
further balances the relationship between complexity and
truthfulness [25].

There are a couple limitations to this method. The
first one being, that applications change their TLS ses-
sion initialization parameters over time, which means that
for higher accuracy levels, it is advised that application
fingerprints must to be updated periodically [27]. The
second one being, that the technique struggles to recognize
applications that have not taken part in the training stage.

To resolve this issue, new application fingerprints must be
incorporated in the existing database accordingly regularly
[25].

Overall, the Markov chain fingerprinting technique
results in proper applications discrimination, which can
come from one of the following reasons [27]:

• incorrect and diverse implementation practices
• the misuse of TLS protocol
• various server configurations
• the application nature.

This leads us to the conclusion that proper classifica-
tion could possibly be avoided by omitting implementation
mistakes or creating the secure layer on a limited set [27].

4. Discussion

TLS Fingerprinting amongst other ways of client fin-
gerprinting is a reliable method for traffic analysis and
client identification [28]. It is passive, payload based and
requires no endpoint agent data [29]. Nevertheless there
could occur some inconveniences, such as collisions.

Fingerprint collision is the event of two fingerprints,
belonging to different applications, overlapping [29]. The
solution to collision avoidance is to take as many param-
eters from the ClientHello message as possible. Suitable
candidates for that are extensions, such as Signature al-
gorithms, Elliptic curves and Elliptic curve point format
[29]. This offers greater variety in comparison to assessing
cipher suites alone.

A different kind of inconvenience is the fact that TLS
Fingerprinting implementations can be avoided or redi-
rected. Based on the researches of Husak et al. [14] and
Frolov et al. [19], a client can prevent TLS Fingerprinting
in the following ways: by using a proxy, by manual change
in the Cipher suite list or by mimicking popular TLS
implementations.

• Usage of proxy redirects the TLS fingerprinting
technology to fingerprint the cipher suite of the
proxy instead of the one of the client [14]. How-
ever, the cipher suite list of a proxy could already
exist in the fingerprint database and thus be rec-
ognized and associated accordingly.

• Manual changes in the client Cipher suite list
are usually done by forced reducing of the list
[14]. The client continues to communicate with
a reduced Cipher suite list and is therefore not
recognized as an existing record. So the Finger-
printing technique fails to find the corresponding
User-Agent. But reducing it so much as to forge
another client’s cipher suite list is a quite difficult.

• Mimicking TLS implementations such as
browsers. Mimicking also has its challenges - it
is difficult to keep up with the rapidly-changing
TLS browser implementations and their many
features. It is also difficult to know what types of
fingerprints to mimic.

Generally fingerprint collisions and TLS fingerprinting
avoidance techniques are not a obstacle for the major-
ity of fingerprinting tools. The biggest concern of TLS
fingerprinting remains the database that the tools use,
because TLS fingerprinting is only as good as the database

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

18 doi: 10.2313/NET-2020-04-1_04

supporting it. Dictionaries may turn into disadvantage,
if they are hard to maintain and update. Currently the
process of the creation of data set collection was manual,
but there are ongoing researches, attempting to automatize
it in the future. [30].

Classification tools usually require to be trained on a
particular data set consisting of benign traffic, which must
be updated regularly to ensure novelty data. Especially
hard to maintain and update is the collection of malware
samples [2c03].

5. Conclusion

Encryption of data is crucial when aiming to protect
the privacy of users. In modern networks, the TLS proto-
col is the current encryption standard for data transferred
over the Internet. Although it is used to mask the plain text
information from the application layer, TLS also provides
a set of unique observable parameters that allow many
conclusions to be made about both the client and the server
[1].

In this paper we have reviewed the three most widely
spread/diverse techniques used for TLS fingerprinting,
starting with the simplest one – Network-based HTTPS
Client identification – essentially divided into two ap-
proaches, which are both based on the extraction of the the
most varied components from the TLS session initializa-
tion messages and writing them down in a database. The
second one being the JA3/JA3S that is partially based on
the Network-based identification as it upgrades it through
memory optimization, hashing the values into 32-character
unique fingerprint, making it quicker for malware software
to be recognized. The last and most complicated method
is the creation of a fingerprint using homogeneous Markov
chains (either first or second order) so as to simulate
the time-varying message sequence that occurs during the
TLS session initialization. Vital characteristic trait of this
method is that conducted on the server side and focuses
mainly on detecting abnormal TLS sessions and improv-
ing discrimination practices. All of these techniques can
identify clients with high accuracy while sustaining their
privacy. A comparison based on the statistical accuracy
of these techniques is hard to derive, because experiments
with each one of them has been done individually, over
different amounts of time, using different traffic samples.

In the future it would be interesting to conduct an
experiment to test how these three techniques would per-
form under the same set of conditions (e.g. time window,
network and servers).

Overall, TLS fingerprinting is a subsection of passive
client identification and traffic. There are other methods
for client fingerprinting, that may partially incorporate
the TLS technology (for example OS fingerprinting [31],
web browser fingerprinting, website fingerprinting, signal
fingerprinting, cookies [32]) that are efficient as well.

References

[1] B. Anderson, S. Paul, and D. McGrew, “Deciphering malware’s
use of TLS (without decryption).” [Online]. Available: http:
//arxiv.org/abs/1607.01639

[2] L. Brotherston, “synackpse/tls-fingerprinting,” accessed: 2020-
01-23. [Online]. Available: https://github.com/synackpse/
tls-fingerprinting

[3] The generation and use of TLS fingerprints. Accessed: 2020-
01-23. [Online]. Available: https://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=539893

[4] M. Husak, M. Cermak, T. Jirsik, and P. Celeda, “Network-based
HTTPS client identification using SSL/TLS fingerprinting,” in
2015 10th International Conference on Availability, Reliability
and Security. IEEE, pp. 389–396. [Online]. Available: http:
//ieeexplore.ieee.org/document/7299941/

[5] Transport layer security protocol | microsoft
docs. Accessed: 2020-01-18. [Online]. Avail-
able: https://docs.microsoft.com/en-us/previous-versions/windows/
it-pro/windows-server-2012-r2-and-2012/dn786441(v\%3Dws.11)

[6] M. D. Center. TLS record protocol - win32 apps. Accessed:
2020-01-23. [Online]. Available: https://docs.microsoft.com/en-us/
windows/win32/secauthn/tls-record-protocol

[7] ——. TLS handshake protocol - win32 apps. Accessed: 2020-01-
23. [Online]. Available: https://docs.microsoft.com/en-us/windows/
win32/secauthn/tls-handshake-protocol

[8] Qualys SSL labs - SSL pulse. Accessed: 2020-02-23. [Online].
Available: https://www.ssllabs.com/ssl-pulse/

[9] Can i use... support tables for HTML5, CSS3, etc. Accessed:
2020-02-23. [Online]. Available: https://caniuse.com/#feat=tls1-3

[10] RFC 8446 - the transport layer security (TLS) protocol
version 1.3. Accessed: 2019-12-13. [Online]. Available: https:
//tools.ietf.org/html/rfc8446#section-4.1.2

[11] RFC 5246 - the transport layer security (TLS) protocol
version 1.2. Accessed: 2019-12-13. [Online]. Available: https:
//tools.ietf.org/html/rfc5246

[12] L. Brotherston, “Lee brotherston’s work,” accessed: 2019-12-13.
[Online]. Available: https://github.com/synackpse/tls-fingerprinting

[13] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson,
N. Vallina-Rodriguez, and J. Caballero, “Coming of age: A
longitudinal study of TLS deployment,” in Proceedings of the
Internet Measurement Conference 2018 on - IMC ’18. ACM
Press, pp. 415–428, accessed: 2019-11-18. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3278532.3278568

[14] M. Husák, M. Čermák, T. Jirsík, and P. Čeleda, “HTTPS
traffic analysis and client identification using passive SSL/TLS
fingerprinting,” vol. 2016, no. 1, p. 6. [Online]. Available:
https://doi.org/10.1186/s13635-016-0030-7

[15] An overview of the SSL or TLS handshake. Accessed: 2019-12-
14. [Online]. Available: www.ibm.com/support/knowledgecenter/
en/ssfksj_7.1.0/com.ibm.mq.doc/sy10660_.htm

[16] Comparative study of symmetric and asymmetric cryptography
techniques | semantic scholar. Accessed: 2019-12-13.
[Online]. Available: https://www.semanticscholar.org/paper/
Comparative-Study-of-Symmetric-and-Asymmetric-Tripathi-Agrawal/
e0e4810c5276f9c05cc82425fcf911f206c52bef

[17] The illustrated TLS 1.3 connection: Every byte explained.
Accessed: 2020-01-18. [Online]. Available: https://tls13.ulfheim.
net/

[18] TLSfingerprint.io - extensions. Accessed: 2019-12-13. [Online].
Available: https://tlsfingerprint.io/top/extensions

[19] S. Frolov and E. Wustrow, “The use of TLS in censorship
circumvention,” in Proceedings 2019 Network and Distributed
System Security Symposium. Internet Society. [Online].
Available: https://www.ndss-symposium.org/wp-content/uploads/
2019/02/ndss2019_03B-2-1_Frolov_paper.pdf

[20] Middlebox compatibility mode. Accessed: 2020-01-18. [Online].
Available: https://www.ibm.com/support/knowledgecenter/en/ssw_
ibm_i_74/rzain/rzainmiddlebox.htm

[21] Ivan ristić: HTTP client fingerprinting us-
ing SSL handshake analysis. Accessed: 2019-12-
11. [Online]. Available: https://blog.ivanristic.com/2009/06/
http-client-fingerprinting-using-ssl-handshake-analysis.html

[22] Open sourcing JA3 - salesforce engineering. Accessed: 2019-
12-13. [Online]. Available: https://engineering.salesforce.com/
open-sourcing-ja3-92c9e53c3c41

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

19 doi: 10.2313/NET-2020-04-1_04

[23] TLS fingerprinting with JA3 and JA3s
- salesforce engineering. Accessed: 2019-12-
13. [Online]. Available: https://engineering.salesforce.com/
tls-fingerprinting-with-ja3-and-ja3s-247362855967

[24] B. Vasudevan, “Elliptic curves in transport layer security (TLS) -
a presentation tutorial,” p. 4.

[25] M. Shen, M. Wei, L. Zhu, and M. Wang, “Classification of en-
crypted traffic with second-order markov chains and application
attribute bigrams,” vol. 12, no. 8, pp. 1830–1843.

[26] K. Chan, C. Lenard, and T. Mills, “An introduction to markov
chains.”

[27] M. Korczynski and A. Duda, “Markov chain fingerprinting to
classify encrypted traffic,” in IEEE INFOCOM 2014 - IEEE
Conference on Computer Communications. IEEE, pp. 781–789.
[Online]. Available: http://ieeexplore.ieee.org/document/6848005/

[28] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros,
“Web tracking: Mechanisms, implications, and defenses.” [Online].
Available: http://arxiv.org/abs/1507.07872

[29] SquareLemon. Accessed: 2019-11-17. [Online]. Available: https:
//blog.squarelemon.com/tls-fingerprinting/

[30] TLS fingerprinting in the real world. Accessed: 2019-
12-13. [Online]. Available: https://blogs.cisco.com/security/
tls-fingerprinting-in-the-real-world

[31] [1706.08003] OS fingerprinting: New techniques and a study of
information gain and obfuscation. Accessed: 2019-12-13. [Online].
Available: https://arxiv.org/abs/1706.08003

[32] R. Upathilake, Y. Li, and A. Matrawy, “A classification of web
browser fingerprinting techniques,” in 2015 7th International Con-
ference on New Technologies, Mobility and Security (NTMS), pp.
1–5, ISSN: 2157-4960.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

20 doi: 10.2313/NET-2020-04-1_04

