
Natural Evolution Strategies for Task Allocation

Emir Besic, Jan Seeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: emir.besic@tum.de, seeger@in.tum.de

Abstract—In this paper we will be taking a look at Natural
Evolution Strategies as a possible solution to the task al-
location problem. Task Allocation appears in many areas
of science, but is still missing a perfect solution. As the
problem is NP-hard, it isn’t possible to find a fast algorithm
that always provides the optimal solution, which is why it is
mostly solved using heuristic approaches. Natural Evolution
Strategies is one such heuristic approach, showing promising
results in the function optimization area. We take a look
at the theory behind using it and compare it to different
approaches, which are currently being used.

Index Terms—task allocation, natural evolution strategies

1. Introduction

Task allocation is a problem which occurs in many
different forms, but the general form can be described as
follows: There are tasks which need to be done, as well
as agents which can do those tasks. For an agent to do a
specific task he needs to pay a specific cost and he gets
a specific profit. Each agent has a limited budget and he
can only do as many tasks as he can pay for. The goal is
to allocate the tasks to the agents, such that the profit is
maximized and every agent stays within their budget.

One example is the factory allocation issue, which
can be defined as follows. You can build a set amount of
factories and need to allocate them to different locations.
Each location has differing costs and profits associated
with it. The factories would be the tasks and the locations
would be the agents in this case. You can only place 1
factory at a location, so the budget of the agents would
be 1 and each location offers a different profit due to a
variety of reasons like tax and surroundings.

It is a very relevant problem lately, due to the rising
popularity of distributed systems and IoT. Task allocation
is a very common problem in these areas, so there is a
need for good solutions.

There are some approaches which are still used and
guarantee an optimal allocation, most prominent of which
being the branch-and-bound algorithm. Jensen et al. in [1]
describes the basics of this approach. They enumerate the
candidate solutions in a special way, which enables them
to search parts of the solution space only implicitly. In
other words, it is possible to eliminate multiple candidate
solutions just by checking one.

Unfortunately, finding the optimal allocation is NP-
hard as proved by Cardellini et al. in [2], which means
that it is not possible to find it in polynomial time. For
this reason the problem is most commonly solved with

heuristics. Heuristics may return sub-optimal solutions,
but they are much faster than traditional approaches like
the branch-and-bound solver.

There are many different heuristics which may be used
for task allocation and we will be describing some of them
in section 2. In this paper, we will be looking at a heuristic
which shows a lot of promise, Natural Evolution Strategies
(NES). NES is a state of the art function optimization
algorithm which was first mentioned by Wiestra et al. in
[3]. We will be describing NES in more detail in section
4. It isn’t possible to directly apply NES for solving Task
Allocation, which is why it needs to be adapted for this
use-case. We will be taking a deeper look at why it is not
suitable and a possible solution in section 5.

Another aspect is that there may be some optimiza-
tion goals, which are specific to that instance of the
problem. These goals tell the algorithm which solutions
to prioritize. One such goal is optimizing energy usage
as Seeger et al. describes in [4], where an allocation is
considered optimal if it minimizes total energy use over
an execution. Another optimization goal is response time
and availability as Cardellini et al. describes in [2]. More
optimization goals would be to minimize network usage,
end-to-end latency, inter-node traffic etc. We will describe
some use-cases in detail in section 2.

2. Background and Related Work

In this section we will be looking at some use-cases
of task allocation.

Cardellini et al. considers the optimal operator place-
ment for distributed stream processing applications in [2].
This is a basic use-case of the Task Allocation Problem.
She has formulated the problem and implemented a solu-
tion which can be used as a benchmark against which to
compare other placement algorithms.

Stanoi et al. looked at the problem of the distribution
of query operators over a network of processors in [5] .
He adapted a hill-climbing heuristics to reduce the search
space of configurations.

Rizou et al. developed a distributed placement al-
gorithm that minimizes bandwith-delay product of data
streams between operators. He used a heuristic that first
calculates the solution in an intermediate continuous
search space and then mapping it to the physical network.
([6])

Gerkey et al. in [7] considers multi-robot task alloca-
tion (MRTA), which is also one of the textbook examples
of our problem. He has formulated MRTA in a formal

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

11 doi: 10.2313/NET-2020-04-1_03

manner and given some commonly-employed and greedy
solutions for the easier problems.

Seeger et al. tackles the problem of a malfunctioning
IoT device, by allocating its tasks to other devices in
the network in [4]. He solves the allocation problem by
removing some constraints to transform it into a linear
problem and using the simplex method [8].

In [9], Lewis et al. tackles the general problem by
re-casting it into the form of an unconstrained quadratic
binary program (UQP), which is then solved by a tabu
search method developed for solving the general UQP
model.

Cano et al. considers the problem of assigning soft-
ware processes to hardware processors in distributed
robotics environments in [10]. They model it as a task
allocation problem and use constraint programming, a
constructive greedy heuristic and a local search meta-
heuristic to solve it.

In [11], Wun-Hwa Chen et al. considers a special form
of task allocation where they attempt to assign tasks to
processors such that the communications cost among the
processors, as well as the fixed costs of the processors are
minimized. To solve this they use a hybrid method that
combines Tabu search, described by Glover et al. in [12],
for finding local optimal solutions and noising methods,
described by Charon et al. in [13], for diversifying the
search scheme.

Using evolution strategies for solving Task Allocation
is not a new Idea, as it has already been discussed by
Gupta et al. in [14]. The key difference is that they only
consider some basic evolution strategies. But they already
get some promising results, which gives us hope that NES
might perform even better.

There have been innumerable other examples of Task
Allocation, all with slightly different solutions. But it
should be apparent now that this is a common problem
without a commonly accepted perfect solution.

3. Modeling the Task Allocation Problem

We will base the model on the approach from
Cardellini et al. in [2]. Let A denote the set of Agents
and T the set of Tasks. Furthermore let P be a matrix
such that the element pi,j represents the profit when agent
i does task j, let C be a matrix such that the element ci,j
represents the cost of agent i doing task j and let B be a
set which contains the budget information of each agent
such that agent i has budget bi. There is another overview
of the described parameters in table 1.

Symbol Description

ai Agent with the index i
ti Task with the index i
pi,j Profit when agent i does task j
ci,j Cost when agent i does task j
bi Budget of agent i
xi,j Represents if agent i was assigned task j

(1)

With these definitions we can now define Solving the
Task Allocation problem for n tasks and m agents as the
process of maximizing

m∑

i=0

n∑

j=0

pi,jxi,j (2)

while also staying withing the budget for each i:
n∑

j=0

ci,jxi,j ≤ bi (3)

Where xi,j = 1 when task j was allocated to agent i and
0 otherwise. Another constraint is that a task can only be
assigned to a single agent which means that

m∑

i=0

xi,j = 1 (4)

for each j. In most instances of this problem there would
be more constraints, but for the sake of simplicity, these
will be the only constraints we will consider as they
appear in every instance of the problem. This is a common
formulation of the problem and it can also be used with
a branch-and-bound solver in order to find the optimal
allocation.

4. Natural Evolution Strategies

Function optimization problems appear in a variety
of different scientific areas. Often these problems are not
feasibly solvable in a short amount of time. Thankfully,
small errors can sometimes be tolerated and the solution
does not need to be optimal. This is where a heuristic
approach like Natural Evolution Strategies (NES) ([3] and
[15]) comes into play. They can find a solution to the prob-
lem in a much shorter time. The solution they come up
with however, may not always be optimal, which is why
it’s important to pick the right heuristic. NES is one such
algorithm which uses an heuristic approach for performing
’black box’ function optimization. The structure of this
function, also known as the fitness function, is unknown,
but some measurements, chosen by the algorithm, are
available.

4.1. How NES Works

To understand how NES functions, we need to first
understand how the basic Evolution Strategies (ES) work.
They are named as such due to their inspiration from
natural Darwinian evolution. The basic idea is to produce
consecutive generations of samples (candidate solutions)
with each generation coming closer to the optimal result.
We initialize the algorithm with a set of samples. They
are then evaluated using the fitness function. The ones
with the best performance are then chosen to create the
next generation by mutating their genes, while the others
are discarded. The Process is continued until a satisfying
result is reached. This approach was proven to be very
powerful, but it does have many problems. The most
prominent being the high sensitivity to local optima (sub-
optimal solutions) and the slow speed of the evolution.

The Covariance Matrix Adaptation (CMA) algorithm
is a much more sophisticated evolution strategy. CMA

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

12 doi: 10.2313/NET-2020-04-1_03

does not discard bad samples, but uses them to gener-
ate correlated mutations, which substantially speeds up
evolution. It uses a multivariate normal distribution to
draw mutations for the next generation. CMA is a major
improvement to the previous algorithm, but it has an
unpredictable nature and is still somewhat sensitive to
local optima.

Natural Evolution Strategies keep the correlated muta-
tions of CMA, but also try to reduce the sensitivity to local
optima. NES estimates a gradient towards better expected
fitness in every generation using a Monte Carlo approx-
imation. This gradient is then used to update both the
parent individual’s parameters and the mutation matrix.
NES uses a natural gradient instead of a regular gradient
to prevent early convergence to local optima, while also
ensuring large update steps. These differences make NES
faster and less sensitive to sub optimal solutions compared
to CMA.

4.2. Canonical NES

Now that we understand the concept of NES, we can
take a look at a basic form of the algorithm.

Input: f, θinit
repeat

for k = 1..λ do
draw sample zk ∼ π(·|θ)
evaluate the fitness f(zk)
calculate log-derivatives ∇θlogπ(zk|θ)

end
∇θJ ← 1

λ

∑λ
k=1 ∇θlogπ(zk|θ) · f(zk|θ)

F ← 1
λ

∑λ
k=1 ∇θlogπ(zk|θ) ∇θlogπ(zk|θ)T

θ ← θ + η · F-1∇θJ
until stopping criterion is met;

Algorithm 1: Canonical Natural Evolution Strategies

Algorithm 1 was taken from [15] and depicts a pseudo
code for the canonical NES algorithm.

The goal is to compute a gradient over the fitness
function with regards to the search distribution θ and use
it to update the distribution parameters, which are then
used to draw the next generation of samples.

First of all, the inputs are the fitness function (f) and
the initial parameters for the distribution (θ). Since NES
usually uses the normal distribution, the parameters will
be the mean (µ) and the standard deviation (σ).

The first step in the algorithm is to draw all the sam-
ples from the normal distribution. In order to do that, we
need to evaluate the fitness of each sample and calculate
their log-derivatives.

Once we have drawn and evaluated the desired amount
of samples (λ) as well as calculated their log-derivatives,
we can use that information to calculate the gradient
and update the distribution parameters accordingly. These
parameters will be used to create the next generation.

Now the only thing that is left is to repeat all the steps
until a stopping criterion is met, or in other words, until
we have a satisfying solution. This is the basic idea behind
NES. In order to use it for task allocation, we will need
to make some adjustments.

5. Solving Task Allocation with NES

As described in section 3, solving the Task Allocation
Problem, is equivalent to optimizing a function, while
staying within specific constraints. This is why using a
state of the art function optimization algorithm like NES
is a good approach. Unfortunately there is a problem
with using the regular NES. It uses a multivariate nor-
mal distribution to draw samples, which is a continuous
distribution and as such makes the algorithm incompatible
with discrete variables. As our formulation from section
3 accepts only discrete solutions, we will need to adjust
the algorithm accordingly.

In order to solve this problem, we will use the ap-
proach by Benhamou et al. in [16]. They found a way to
make CMA compatible with discrete variables. They show
in great detail that it is possible to extend the method
for drawing samples to multivariate binomial correlated
distributions, which are shown to share similar features
to the multivariate normal used by CMA and NES. In
other words, they show that the multivariate binomial
distribution is the discrete counterpart of the multivariate
normal distribution.

As described in section 4.1, NES is very similar to
CMA. In particular, both use a multivariate normal dis-
tribution. The other differences like the natural gradient
don’t affect this method. So all we have to do is change
our algorithm such that mutations are not drawn from a
normal distribution, but a multivariate binomial one:

µ+ B(σ2C) (5)

With µ as the mean, σ as the standard deviation and
C as the covariance matrix in the case of CMA-ES, which
we will translate to NES.

Now that we have all the puzzle pieces we can put
them together and define a basic algorithm. The algorithm
itself is very similar to Algorithm 1, but there are some
key differences.

Input: f, c, µinit, σinit
repeat

for k = 1..λ do
draw sample zk ∼ µ+ B(σ2F)
evaluate the fitness
check constraints c
calculate log-derivatives

end
compute gradients
update F
update distribution parameters (µ, σ)

until stopping criterion is met;
Algorithm 2: Task Allocation with NES

Algorithm 2 shows a pseudo code for solving task
allocation with NES. As it can be seen, the major differ-
ences to Algorithm 1 are first of all the inputs. To solve
Task Allocation we need to pass our fitness function (2),
but also the constraints (3) and (4). This is necessary as
not all valid solutions may satisfy the constraints set by
our model. This is also the reason why we need to check
the constraints for each sample that we test. Another big
difference is the distribution, from which we draw our

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

13 doi: 10.2313/NET-2020-04-1_03

samples. We are using the binomial distribution for the
reasons mentioned before. The other difference is that we
left out the exact calculations. They can be taken over
from the original algorithm for the most part, but may
need some small tweaks, since we are using a binomial
distribution and there may be some room for improvement
in the algorithm. In the original paper [15] there are
already some mentions of the algorithm being tailored to
specific use-cases (see sNES in section 3.5). To recognize
whether there is room for improvement in our use-case
it is necessary to implement and test the algorithm in a
common task allocation scenario.

6. Conclusion

We have seen that Task Allocation is a widespread
problem. There have been many different approaches to
solving it, but due to it being NP-hard, it is very hard
to find a suitable one. Most instances of the problem are
solved either by the branch-and-bound approach, if the
optimal solution is needed, or by heuristics, if smaller de-
viations from the optimal solution can be tolerated. These
heuristics are often tailored to the specific instance of the
problem and do not translate well into other instances. In
other words, there still does not exist a perfect solution,
which solves every instance of the problem optimally.
Although we did not test our method, we can take a look
at the results in the original NES paper [3]. They have
tested NES on many different optimization problems and
concluded that, NES can go toe to toe with most other
function optimization algorithms. This and the fact that
it has a polynomial complexity leads us to believe that it
can be as good as, if not better than, currently used algo-
rithms for some instances of the task allocation problem.
Naturally, it is necessary to implement the algorithm first,
before coming to any further conclusions, but what we
can say, is that it is certainly an approach which is worth
considering.

7. Future Work

The plan for the future is to first implement the
algorithm and test how well it performs. It will almost
certainly be necessary to tweak the calculations com-
pared to Algorithm 1, in order to truly optimize it for
task allocation. Once the algorithm is implemented and
optimized for task allocation, we are confident that it
will be a solution which offers both quality and speed.
If NES turns out to be as good as we hope, it may be
possible to find even more areas where NES could bring
an improvement. Task Allocation isn’t the only problem,
which can be boiled down to a function optimization
problem and is usually solved with heuristics. There are
innumerable others, which is why the need for quality
heuristic approaches is staggeringly big. So the next step
after testing NES with Task Allocation is to find other
similar problems in need of a better heuristic solution.

References

[1] J. Clausen, “Branch and bound algorithms – principles and exam-
ples,” 1999.

[2] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator placement for distributed stream processing applications,”
in Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, ser. DEBS ’16. New
York, NY, USA: ACM, 2016, pp. 69–80. [Online]. Available:
http://doi.acm.org/10.1145/2933267.2933312

[3] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber, “Natural
evolution strategies,” in 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelli-
gence), June 2008, pp. 3381–3387.

[4] J. Seeger, A. Bröring, and G. Carle, “Optimally self-healing iot
choreographies,” 2019.

[5] I. Stanoi, G. Mihaila, C. Lang, and T. Palpanas, “Whitewater:
Distributed processing of fast streams,” Knowledge and Data Engi-
neering, IEEE Transactions on, vol. 19, pp. 1214–1226, 10 2007.

[6] S. Rizou, F. Dürr, and K. Rothermel, “Solving the multi-operator
placement problem in large-scale operator networks,” 2010 Pro-
ceedings of 19th International Conference on Computer Commu-
nications and Networks, pp. 1–6, 2010.

[7] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” The International
Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.
[Online]. Available: https://doi.org/10.1177/0278364904045564

[8] J. A. Nelder and R. Mead, “A simplex method for function
minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–313,
01 1965. [Online]. Available: https://doi.org/10.1093/comjnl/7.4.
308

[9] M. Lewis, B. Alidaee, and G. Kochenberger, “Modeling and
solving the task allocation problem as an unconstrained quadratic
binary program,” 04 2004.

[10] J. Cano, D. R. White, A. Bordallo, C. McCreesh, A. L.
Michala, J. Singer, and V. Nagarajan, “Solving the task variant
allocation problem in distributed robotics,” Autonomous Robots,
vol. 42, no. 7, pp. 1477–1495, Oct 2018. [Online]. Available:
https://doi.org/10.1007/s10514-018-9742-5

[11] W.-H. Chen and C.-S. Lin, “A hybrid heuristic to solve a
task allocation problem,” Computers & Operations Research,
vol. 27, no. 3, pp. 287 – 303, 2000. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0305054899000453

[12] F. Glover, “Tabu search—part i,” ORSA Journal on Computing,
vol. 1, no. 3, pp. 190–206, 1989. [Online]. Available: https:
//doi.org/10.1287/ijoc.1.3.190

[13] I. Charon and O. Hudry, “The noising method: a new method
for combinatorial optimization,” Operations Research Letters,
vol. 14, no. 3, pp. 133 – 137, 1993. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/016763779390023A

[14] A. K. Gupta and G. W. Greenwood, “Static task allocation
using (µ, λ) evolutionary strategies,” Information Sciences,
vol. 94, no. 1, pp. 141 – 150, 1996. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0020025596000126

[15] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters,
and J. Schmidhuber, “Natural evolution strategies,” Journal of
Machine Learning Research, vol. 15, pp. 949–980, 2014. [Online].
Available: http://jmlr.org/papers/v15/wierstra14a.html

[16] E. Benhamou, J. Atif, R. Laraki, and A. Auger, “A discrete
version of CMA-ES,” CoRR, vol. abs/1812.11859, 2018. [Online].
Available: http://arxiv.org/abs/1812.11859

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

14 doi: 10.2313/NET-2020-04-1_03

