
File Injection for Virtual Machine Boot Mechanisms

Till Müller, Johannes Naab∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: till.mueller@tum.de, naab@net.in.tum.de

Abstract—Virtual machines are widely used in today’s com-
puting infrastructure. They provide an easy way to isolate
untrusted software and users from each other and the hosts
they run on. This isolation, however, makes it difficult for
administrators to exercise control over the VMs without
compromising security.

We provide a system that allows the admin to inject files
into untrusted VMs in a secure manner. It uses a customized
Linux kernel which is booted using QEMU direct kernel
boot. To inject files safely, they are passed to the virtual
machine via the initramfs, a read-only archive normally
used to provide drivers to the kernel during boot. The file
injector then uses kexec to load a kernel from the guest’s
filesystem, thereby assuming the functionality of a bootloader
like GRUB to minimize user impact.

Index Terms—virtual machines, qemu, kvm, file injection,
Linux kernel boot

1. Motivation

The machines used in this project are untrusted virtual
machines with potentially malicious actors having access
as root. Nevertheless, these VMs need to be administered
(i.e. to grant access or run updates), a non-trivial task to
accomplish while not compromising security since most
administration tools assume they have direct access to
the machine that is being administrated. To protect the
VMs’ host, the file injector should not need to run any
code originating from the VMs and overall enforce strict
isolation.

This project has been motivated by the lecture “Grund-
lagen Rechnernetze und verteilte Systeme” [1] which re-
quires such a tool to provide virtual machines for students
taking the lecture.

For this lecture, every student is given access to a
virtual machine to use for developing and debugging
of homework assignments. The students log in as root
on their respective machines, giving them full control
over their VM. It is therefore paramount to keep these
VMs isolated from the host system. All requirements and
assumptions are based on this scenario.

This paper is structured as follows: In Section 2 we
analyze the background of the technologies we used, as
well as existing boot processes. The 3. Section evaluates
different possible solutions to the issues described here.
In Section 4 we present our bootloader and file injector
and in Section 5 the performance of some boot methods
is highlighted. Section 6 concludes the paper.

Figure 1: Flowchart of boot processes

1.1. Requirements and limitations

For our boot loader and file injection system we
propose the following requirements:

• External data has to be written to the VMs’ filesys-
tem

• The VMs have to be persistent between reboots
• Boot times have to stay reasonable
• The system has to be able to scale to hundreds of

machines
• Users should be able to update their VMs’ kernel

independently from the file injector
• The setup must not require a network connection

to inject the files or boot the VMs
• In case the boot process fails, manual debugging

should be possible

1.2. Assumptions

To make the implementation easier, the file injector is
based on these assumptions:

• Virtual machines are hosted using QEMU/KVM
with libvirt

• The VMs run Debian and are all set up in a similar
way

• Only small configuration files need to be copied
to the guests’ filesystem

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

5 doi: 10.2313/NET-2020-04-1_02



2. Background

In this section we will take a closer look at how a vir-
tual machine boots using different methods. During this,
we will also evaluate and explain how these technologies
might be useful as part of the file injection system.

2.1. GRUB

A conventional boot loader like GRUB [2] or LILO
gets invoked by the BIOS/EFI at the beginning of the
machine’s boot process. It then lets the user choose
which operating system to boot. For this, GRUB reads
the partition table, which contains information about what
partitions are bootable and where on the disk they are
located. Afterwards, GRUB loads the kernel from the
chosen partition and hands over to it. The kernel then
starts its first process, on Linux systems usually init or
Systemd.

2.2. QEMU direct kernel boot

A different way of booting a QEMU-hosted virtual
machine is the so-called direct kernel boot. In normal
use, this enables a VM to skip the bootloader by using a
kernel file from the host system. The virtual machine then
jumps directly to the init or Systemd invocation, thereby
not requiring a kernel to be present on the VMs HDD
and speeding up boot-times. In the case of injecting files
however, the direct kernel boot feature is used to boot up
the file injector without the need to use the VMs’ filesys-
tem as intermediary storage, making the system less error-
prone and resulting in no unwanted side-effects during this
first boot stage (Fig. 1). This is possible because no part
of a direct kernel boot requires the HDD, which is only
mounted at the end of the init process.

2.3. initramfs

When booting a Linux kernel of almost any kind,
two files are involved: The first is the Linux kernel it-
self, which contains the kernel code, the second is the
initial ram filesystem. The initramfs contains all drivers
and software needed to mount the filesystem from the
HDD, e.g. RAID or decryption tools. It is a cpio archive
which the kernel uncompresses into a temporary filesys-
tem (TMPFS) during boot. This filesystem then resides
entirely in the machine’s memory, enabling the kernel to
load modules required to continue booting.

The old format for this file was initrd, which be-
haved similar to a block device using a filesystem like
ext2. Today, this format is rarely used, although the name
regularly appears in commands, e.g. for QEMU direct
kernel boot, even though an initramfs is used.

2.4. kexec

kexec is a program that emulates the function of a
bootloader from within a running system. When running
kexec, it initiates a normal shutdown, but immediately
restarts the system using the chosen kernel. Therefore, no
shutdown signal is sent to the motherboard and BIOS;

hardware initialization and the bootloader are skipped.
kexec is therefore similar to QEMU direct kernel boot:
Both start the system with the kernel immediately avail-
able. In our implementation, kexec is used to load a user-
provided kernel after the files have been injected.

3. Alternative approaches

Before the final decision on the implementation was
made, other possible approaches to the problem had to be
evaluated as well. We will, therefore, take a look at using
existing systems, such as Virtio’s virt-install or PXE.

3.1. Using direct kernel boot

The original setup we based this work on was similar
to the one that was eventually chosen, with one major
difference: Instead of using kexec to find and boot a
kernel from the machine’s filesystem, the injector would
continue booting normally and therefore be the active
kernel while the machine was running. This enabled a
quick boot process (see benchmarks in Section 5).

The downside to this approach was that updating the
kernel came with a lot of issues. The main one was that
the kernel version installed inside the virtual machine and
the one the machine was booted with had to be kept in
sync.

This was required because the kernel loads version-
specific modules from the machine’s filesystem after it has
been mounted. To load these modules, the kernel expects a
folder named after the kernel version in /lib/modules. If
this folder does not exist, the modules are not loaded. As a
result, updating the kernel the machines were booted with
was not an option since it would have led to all machines
losing the functionality these modules provided (e.g. ACPI
support).

Updating the kernel within the virtual machine did
not have any effect due to the kernel being loaded during
boot still being the same one originating from the host
system. This could lead to user frustration, especially
when building kernel modules, and while the manual
usage of kexec could circumvent this limitation, a system
is preferred that does not require such a workaround from
the users.

3.2. virt-install

Virtio’s virt-install is a tool to set up new virtual
machines using a predefined image. When given a kick-
start file, virt-install can make configuration changes
and copy data to the machine.

While virt-install can import existing images, we
were unable to find a way to for virt-install to alter
the contents of the VMs disk image during this process.
virt-install can edit a virtual machine’s virsh config-
uration file, but this only allows it to change, for example,
the connected devices or allocated resources to the VM. It
was therefore ruled out after some initial testing in favor
of the other ideas described here.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

6 doi: 10.2313/NET-2020-04-1_02



3.3. Mounting the guest’s filesystem on the host

This approach was deemed too slow and insecure to
use for untrusted VMs. While there should be no way for
a mounted filesystem to execute any code, keeping the
filesystems separated is the best way of ensuring isolation.
Modern filesystem like ext4 trust the images they mount,
so a filesystem image crafted with malicious intentions
could cause major security issues [3]. One solution here
is using libguestfs [4], which mounts the guest’s filesys-
tem inside a minimal VM and therefore enables the host
to securely alter the guest’s HDD contents. This method,
however, is unsuitable for our purpose, since the pro-
cess would increase boot times significantly. Additionally,
mounting and unmounting a filesystem with this method
every time a VM boots can put additional load on the
host, especially if multiple virtual machines are booted at
the same time.

3.4. Network boot / PXE

The Preboot Execution Environment (PXE) is a stan-
dardized process of booting a physical or virtual machine
over the network using a TFTP (trivial file transfer pro-
tocol) server. The PXE implementation by Syslinux [5]
can transfer a kernel and initramfs file to the booting
machine. Unfortunately, PXE requires a network con-
nection and DHCP to connect to a server. Additionally,
the pxelinux implementation does not provide tools for
running scripts on boot.

After considering these issues, PXE was ruled out as
a solution as well. While it might be possible to achieve
the desired outcome using it, the infrastructure defined in
the requirements does not provide DHCP, making PXE
impossible to use.

3.5. Ansible

Another tool often used for applying configurations
on multiple machines is Ansible [6]. It can automatically
provision and set up physical and virtual machines, all
configured using YAML files as so-called Playbooks. Like
PXE however, Ansible needs a connection to its server
to download these Playbooks, which makes it unsuitable
for the requirements described in Section 1. Ansible also
runs as an agent on the machines it manages, which would
enable users to disable it, rendering it useless.

4. Architecture

All approaches listed in the previous section either do
not fulfill some of the requirements or are not compatible
with the limitations. The system described below was built
upon some of them to achieve all desired results within
the limits set in Section 1.

In summary, the file injector runs on the virtual ma-
chine before its real kernel is booted from the HDD,
enabling full access while being controlled by the admin-
istrator.

4.1. Replacing the bootloader

Since the code to inject files needs to run before
handing over control to the untrusted guest system, the
injection process takes the place of the bootloader. QEMU
direct kernel boot loads the injector and runs it inside the
virtual machine. This behavior is not possible when using
GRUB, since the injector and the files to inject are not
located on the VM, but on the host’s filesystem.

4.2. Injecting files

The file injector works in two stages:
1) Mount the machine’s filesystem and inject the

files
2) Find the correct kernel to switch to and execute

it using kexec
During the first stage, the injector needs to find the

root filesystem and mount it. Like a kernel during normal
boot procedures, mount needs to know the label, UUID
or path to the block device containing that filesystem.
The type of the filesystem used is also required, although
mount is sometimes able to get it from blkid or the
volume_id library. Normally, mount would also try to read
/etc/filesystems and /proc/filesystems, but these
are not available in the initramfs environment [7]. The
default values for both the block device’s location and its
filesystem type are set in a way that makes them com-
patible to most virtual machine setups. Additionally, it is
important here that the guest’s filesystem is mounted with
read/write options. While initramfs normally mounts the
filesystem as read-only, this would not be sufficient for file
injection.

To enable injection, initramfs delivers the files the
injector needs to copy to the guest’s filesystem. While
this limits the size of the files the system can inject, using
initramfs is a fast, reliable and secure way to move files
from the host’s filesystem to the guest’s.

4.3. Booting the correct kernel

After the first stage, the injector needs to load the right
kernel to properly boot the system. During the second
stage, the injector looks for a suitable kernel/initramfs
combination to switch to. There are two possible locations
for these files: They are either linked from /vmlinuz and
/initrd.img or are located in /boot. The administrator
can also set both manually using the boot parameters, as
shown in Figure 2.

After the injector has found the kernel and
initrd.img, it loads them using kexec, unmounts the
filesystem and kexec switches to that kernel which con-
tinues the boot process.

If the system is unable to find a working
kernel/initrd.img combination or kexec fails, it drops
to a shell and automatically tries to start an SSH server
so the issue can be debugged and resolved manually.

4.4. Implementation

Implementing the system as described above has pro-
duced several challenges that needed to be solved. Some
of them are described below, along with possible solu-
tions.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

7 doi: 10.2313/NET-2020-04-1_02



Figure 2: Flowchart of how the kernel / initrd.img are chosen

4.4.1. Passing files to the injector. The main issue re-
sulted from a combination of the requirements and limita-
tions imposed by QEMU and its direct kernel boot-feature.
To pass files to the injector and therefore the guest without
a network connection or shared filesystem, they must be
included in the initramfs. Creating a cpio archive and
setting it as the initramfs for the QEMU direct kernel
boot, however, is not sufficient. This is caused by the issue
mentioned before (see Section 2.3) that the kernel itself
does not contain all drivers to boot the system and requires
an initramfs with additional modules.

This means that a customized cpio archive needs to be
available for each virtual machine during the boot process.
cpio archives can be concatenated, so simply combining
the archives containing the files and drivers would result in
one which contains all required files. This however creates
another issue: The newly created archive would not only
contain the files the injector needs to inject, but also about
27MB of static data required by the kernel.

Generating these archives on every boot for hundreds
of machines is wasting time and space, so we focused on
finding a way to circumvent this issue.

4.4.2. Including the static initramfs in the kernel file.
Since most of the initramfs file is static, a possible
solution is to include it with the other static file used
during boot, namely the kernel. This solution proved to
be the best one because it enables the initramfs given
to QEMU to just include the files the system injects.
When compiling the Linux kernel, one available option
is CONFIG_INITRAMFS_SOURCE. The kernels shipped by
Debian do not use this option, resulting in the kernel
containing an empty cpio archive. Being able to include
the static initramfs in the kernel though allows the
injector to be one self-contained kernel file which includes
everything needed to boot the system. The only downside
to this approach is the added complexity from having to
recompile the kernel to make changes to the file injector.

4.4.3. Adding the initramfs to a precompiled kernel.
In theory, it is also possible to achieve the results from the
previous section without having to recompile the kernel
by editing the Linux kernel file (vmlinuz) to include a
different initramfs from the one it was compiled with.
However, making this work requires changes to multiple
values within the kernel file [8] [9]. This means that not
only the data has to be in the right place, but offsets and
some pointers have to be updated as well. Therefore, this
process was deemed too fragile to achieve the desired
result.

GRUB Direct kernel boot PXE
0

5

10

15

20

25

30

13.4

6.5

21.9

11.1

26.7

se
co

n
d

s

Kernel version: 4.9.0-11

default kernel
file injector

Figure 3: Boot times using an unaltered Debian kernel and
the file injector

4.5. Executing the injector script

The initramfs that includes the file injector is based
on a Debian initramfs, therefore requiring changes
to adapt it for the injector. For example, some effort
was needed to find the best way of getting the init
process to execute the file injector script at the right
time. Since init normally executes all scripts in the
/scripts/init-{premount,top,bottom} folders as de-
fined in the ORDER files placed in them, the init process was
still executing the mounting mechanism normally required
during boot. This could break the mount attempted by the
injector, so the behavior had to be changed.

To accomplish this and to have more control over the
init process, the init script was altered in the filesystem
overlay to switch to the injector as soon as possible,
effectively stopping at that point and making sure that
it does not interfere with the file injection.

5. Benchmarks

A quick overall boot process was one of the goals
while implementing this system. Therefore, we now take
a look at how much longer booting takes while using the
file injector. These tests were conducted using the same
VM and the times were measured from sending the start
command via virsh until the login screen was displayed.
The results are shown in Figure 3.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

8 doi: 10.2313/NET-2020-04-1_02



Having GRUB boot an external file is outside its
scope, so only the unchanged Debian kernel from the
filesystem image was tested. Furthermore, the GRUB
configuration was not altered, which resulted in the default
five seconds delay during which the user can choose
another operating system. Since this delay would exist
on newly installed VMs as well, it was left in.

Even though the Preboot Execution environment was
already ruled out in Section 3, we have included it here
for comparison. It is immediately obvious that booting
with pxelinux takes longer due to the need for a network
connection. In this case, the DHCP- and PXE servers were
located on the same host, so network latency or bandwidth
limits are unlikely to have influenced these results.

The file injector increases boot times by about five
seconds. The tests have been performed without any files
to inject, so if the injector needs to copy large files, this
would increase the boot time further. Copying large files,
however, is not the intended use case for this implemen-
tation, we mainly focused on small configuration files.
Booting a kernel directly is the fastest, but with the file
injector using direct kernel boot being similar in boot time
to using GRUB without file injection, the impact on users
is negligible.

6. Conclusion

We developed a kexec-based boot loader for virtual
machines. It is based on a modified Debian initramfs,
which is directly embedded into a rebuilt kernel image.
It allows to manage VMs by injecting configuration files
and does not require mounting the guest’s filesystem on

the host. The file injector works reliably and will enable
administrators to easily configure the untrusted systems
hosted on their infrastructure.

Future work includes making the system more compat-
ible to non-Debian distributions and adding functionality
like deleting files in addition to injecting them, as well as
passing arbitrary parameters to the user-kernel’s command
line.

References

[1] “Lecture ’Grundlagen Rechnernetze und verteilte Systeme’,” https:
//www.net.in.tum.de/teaching/ss19/grnvs.html, [Online, accessed 19-
September-2019].

[2] “GNU GRUB,” https://www.gnu.org/software/grub/, [Online, ac-
cessed 26-September-2019].

[3] “On-disk format robustness requirements for new filesystems,” https:
//lwn.net/Articles/796687/, [Online, accessed 25-September-2019].

[4] “libguestfs,” http://libguestfs.org/, [Online, accessed 25-September-
2019].

[5] “PXELINUX, official site,” https://wiki.syslinux.org/wiki/index.
php?title=PXELINUX, [Online, accessed 19-September-2019].

[6] “Ansible,” https://www.ansible.com/, [Online, accessed 27-
September-2019].

[7] “mount(8) - Linux man page,” https://linux.die.net/man/8/mount,
[Online, accessed 19-September-2019].

[8] “Stackexchange: Replacing section inside elf file,”
https://reverseengineering.stackexchange.com/questions/14607/
replace-section-inside-elf-file, [Online, accessed 19-September-
2019].

[9] “Gentoo forums: Linking existing kernel with new initramfs,” https:
//forums.gentoo.org/viewtopic-t-1087792-start-0.html, [Online, ac-
cessed 19-September-2019].

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

9 doi: 10.2313/NET-2020-04-1_02


