
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET 2020-04-1Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2019/2020 August 2, 2019 – February 23, 2020

Munich, Germany

Georg Carle, Stephan Günther, Benedikt JaegerEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Winter Semester 2019/2020

Munich, August 2, 2019 – February 23, 2020

Editors: Georg Carle, Stephan Günther, Benedikt Jaeger

Network Architectures
and Services
NET 2020-04-1

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Winter Semester 2019/2020

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
Boltzmannstraße 3, 85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Stephan Günther
Chair of Network Architectures and Services (I8)
E-mail: guenther@net.in.tum.de
Internet: https://net.in.tum.de/~guenther/

Benedikt Jaeger
Chair of Network Architectures and Services (I8)
E-mail: jaeger@net.in.tum.de
Internet: https://net.in.tum.de/~jaeger/

Cataloging-in-Publication Data

Seminar IITM WS 19/20
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, August 2, 2019 – February 23, 2020
ISBN: 978-3-937201-69-6

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2020-04-1
Innovative Internet Technologies and Mobile Communications (IITM) NET 2020-04-1
Series Editor: Georg Carle, Technical University of Munich, Germany
c© 2020, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~guenther/
https://net.in.tum.de/~jaeger/

Preface

We are pleased to present you the proceedings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM) during the Winter Semester 2019/2020. Each semester, the seminar takes place
in two different ways: once as a block seminar during the semester break and once in the course of the
semester. Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterwards present the results to the other course participants.
To improve the quality of the papers we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar we award one with the Best Paper Award. For this semester the
arwards where given to Till Müller with the paper File Injection for Virtual Machine Boot Mechanisms
and Stefan Waldhauser with the paper Time Synchronization in Time-Sensitive Networking .

Some of the talks were recorded and published on our media portal https://media.net.in.tum.de.

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, April 2020

Georg Carle Stephan Günther Benedikt Jaeger

III

https://media.net.in.tum.de
https://net.in.tum.de

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Stephan Günther, Technical University of Munich, Germany
Benedikt Jaeger, Technical University of Munich, Germany

Advisors

Sebastian Gallenmüller (gallenmu@net.in.tum.de)
Technical University of Munich

Max Helm (helm@net.in.tum.de)
Technical University of Munich

Benedikt Jaeger (jaeger@net.in.tum.de)
Technical University of Munich

Marton Kajo (kajo@net.in.tum.de)
Technical University of Munich

Holger Kinkelin (kinkelin@net.in.tum.de)
Technical University of Munich

Christian Lübben (luebben@net.in.tum.de)
Technical University of Munich

Johannes Naab (naab@net.in.tum.de)
Technical University of Munich

Cora Perner (clperner@net.in.tum.de)
Technical University of Munich

Patrick Sattler (sattler@net.in.tum.de)
Technical University of Munich

Jan Seeger (seeger@in.tum.de)
Technical University of Munich

Henning Stubbe (stubbe@net.in.tum.de)
Technical University of Munich

Lars Wüstrich (wuestrich@net.in.tum.de)
Technical University of Munich

Johannes Zirngibl (zirngibl@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ws1920/seminars/

V

https://net.in.tum.de/teaching/ws1920/seminars/

Contents

Block Seminar

Deep Learning on the Mobile Edge . 1
Georg Eickelpasch (Advisor: Marton Kajo)

File Injection for Virtual Machine Boot Mechanisms . 5
Till Müller (Advisor: Johannes Naab, Henning Stubbe)

Seminar

Natural Evolution Strategies for Task Allocation . 11
Emir Besic (Advisor: Jan Seeger)

TLS Fingerprinting Techniques . 15
Zlatina Gancheva (Advisor: Patrick Sattler, Lars Wüstrich)

Building an OS Image for Deep Learning . 21
Daniel Gunzinger (Advisor: Benedikt Jaeger, Sebastian Gallenmüller)

Modern Traceroute Variants and Adpatations . 27
Julius Niedworok (Advisor: Johannes Zirngibl, Patrick Sattler)

Smart-M3 vs. VSL for IoT . 33
Ilena Pesheva (Advisor: Christian Lübben)

Clustering with Deep Neural Networks – An Overview of Recent Methods 39
Janik Schnellbach (Advisor: Marton Kajo)

Fault tolerance in SDN . 45
Leander Seidlitz (Advisor: Cora Perner)

Time Synchronization in Time-Sensitive Networking . 51
Stefan Waldhauser (Advisor: Benedikt Jaeger, Max Helm)

An Overview on Vehicular Communication Standards . 57
Kilian Zieglowski (Advisor: Holger Kinkelin)

VII

Deep Learning on the mobile edge

Georg Eickelpasch, Marton Kajo∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email:georg.eickelpasch@tum.de, kajo@net.in.tum.de

Abstract—Applying Deep Learning on mobile devices proves
to be a difficult challenge due to limited resources. However,
it is still very much a required methodology, especially in
the context of IoT devices, and therefore the computation is
offloaded to the cloud or mobile edge. The offloading can be
done dynamically were the device, edge and cloud share the
work depending on different factors.
Index Terms—Deep Learning, mobile edge computing, Inter-
net of Things

1. Introduction

This paper tries to give a comprehensive look at the
questions of what applications benefit from using Deep
Learning in a mobile context and how it can be applied.
Because the data cannot be processed on the device,
it has to be offloaded. This paper will take a look at
different offloading strategies and when to use them.

Currently, Deep Learning is already used a lot on
mobile devices, for example for speech recognition and
image detection. However, a common approach is to
offload the entire workload to the cloud. This brings
many disadvantages, e.g. a strong dependency on a
good bandwidth which can be a bottleneck. There are
promising approaches, such as shown by Yiping Kang
et al. in [1] to use the mobile edge as well as the
cloud or completely replace the cloud by the edge like
shown by En Li et al. in [2]. These algorithms offer a
great improvement over cloud offloading but are still
improvable. In this paper, we will show the strength and
weaknesses of the algorithms as well as their common
use cases.

Edge Computing is the idea to use locally existing
hardware in the network instead of the cloud which is
thought of a far away, more or less unlimited comput-
ing power. When talking about the edge, there are two
different ways of thinking of the edge.

1) The first one is to think of the edge as the end-
user mobile device with limited computing power
and therefore tries to offload as much as possible
to the cloud.

2) The second idea is that the edge is a powerful
local server that offers the advantage of local
caching and a low round trip time (RTT) for
communication.

Even though, the ideas seem very different they can be
used similarly. In both cases, there is one device with

Figure 1: Different layers of Edge Computing Model [3]

weak computation power and one powerful device, which
can be reached through offloading. Scheduling algorithms
that offload between one computational strong and one
computational weak component can be used in both cases,
however, one has to be aware whether the edge is the
strong component or the weak component.

2. Background

The offloading strategies discussed in this paper are
based on the NeuroSurgeon paper [1] as well as the Edgent
paper [2]. But while these two works focus on the details
of the individual algorithm this work focuses on the high-
level advantages and disadvantages of each. Furthermore,
this paper shows the problems of Deep Learning on the
mobile edge using the specific case of an IoT system as
shown by Hakima Khelif et al. in [4] and He Li et al. in
[5].
The usage of Deep Neural Networks (DNNs) is rapidly
increasing in everyday life. Nowadays not only powerful
computers but even mobile devices, e.g. smartphones use
DNNs for various applications. Until recently, running a
DNN on a mobile device seemed unfeasible. This is be-
cause mobile devices usually face the problem of limited
resources. Restricted processing power and memory, as
well as limited energy availability, meet the high com-
putational effort of a DNN. But since the benefits and
use cases of DNNs are more and more desirable the

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

1 doi: 10.2313/NET-2020-04-1_01

scientific community is working on ways to execute DNNs
on mobile devices. The easiest approach to offload the
actual computing into the cloud, which works well but
is bottlenecked by the data transfer between the mobile
device and the cloud and therefore require high bandwidth
for good performances. To increase this performance a hy-
brid model between the cloud and the mobile device with
strategically and dynamically chosen offloading points
is a viable attempt. But since the processing power on
the device is highly limited it still leaves much room
for improvement. The current state-of-the-art solution is
another processing layer, between the mobile device and
the cloud, called the Mobile Edge. Instead of offloading
all heavy computational tasks to the cloud they are of-
floaded to strong processing devices nearby. This does not
only improve the performance drastically and decreases
the dependency on a strong internet connection, but also
improves security, since personal data is not required to
be offloaded to the cloud.

3. Use cases

In this section, we want to show which mobile appli-
cations require DNNs that run on the device or the edge.

3.1. Speech

The first thing that comes to mind is probably speech
recognition. That means converting language spoken by a
human into a machine-readable format. This problem used
to be incredibly hard to solve and if solved rudimentary,
is only able to detect very clearly spoken words or limited
vocabulary which is not a sufficient solution for everyday
applications like simple dictating tools for speech to text,
since manually correcting errors can be very tedious.
DNNs are suited well for speech recognition because they
are more robust than alternatives and perform comparably
well with noisy data. In combination with speech recogni-
tion, a second major field is often used because converting
the speech to text is not always enough the machine also
needs to understand what the user is speaking. For this
Natural Language Processing (NLP) is required. Due to
the complexity of natural languages, DNNs are a viable
solution approach for NLP. However, NLP applications
like intelligent personal assistants, e.g. Amazon Echo or
Google Home require real-time processing since it is
supposed to feel natural, like speaking to a human.

3.2. Computer Vision

Another problem commonly faced by mobile devices
that requires DNNs is object identification on pictures.
This could be a smart fridge checking what groceries need
to be bought or a phone identifying the user via FaceID to
unlock a smartphone. While the smartphone again faces
the challenge of real-time results it has the new problem
of a highly mobile context which leads to inconsistent
bandwidth in some cases, so offloading to the cloud is
unreliable. The smart fridge might not require real-time
results but even though it is expected to be connected to a
wifi network, bandwidth is a limited resource. This is due
to the expected growth of the IoT and connected home

devices. If all of these devices use bandwidth recklessly,
it will lead to congestion in the network. Pairing Edge
Computing with IoT devices can greatly reduce required
bandwidth and therefore is a desirable methodology. A
more advanced field in computer vision that requires
DNNs is Continuous Vision. Tracking objects in a video in
real-time is very useful on the one hand, but on the other
hand, it is very challenging to do. Currently mostly used
in robotics and surveillance it is expected to expand more
into the private sector for example for video games. Being
one of the computationally most expensive subtopics due
to the sheer size of video files offloading everything to the
cloud is not possible for real-time applications. Therefore
preprocessing on the edge is currently the most promising
approach.

3.3. Bioinformatics

Lastly, bioinformatics and especially E-Health is a
fast-growing sector that requires DNNs due to noisy real-
world data. To get good results with noisy data DNNs are
a common approach. Also, E-Health requires very robust
solutions since human lives might depend on it. Therefore,
DNNs are the first choice. In the context of IoT devices
offloading to the edge can also provide the advantage of
anonymizing the data which is also especially important
for human health data.

4. Deep Learning on the mobile Edge in an
IoT context

In the previous section, many use cases for DNNs on
the mobile edge were shown. Many of them were related
to or applicable in IoT devices. In this section, we want
to take an in-depth look at the problems IoT devices face
and why DNNs are a good way to solve them. After that,
we will add in Edge Computing as a solution to apply
DNNs to IoT devices and see what other benefits arise.

4.1. DNNs in IoT

The IoT is a growing phenomenon where more and
more devices are interconnected with each other and the
Internet. Not only smart home solutions for private people
but more importantly in factories are more and more
robots and machines part of the IoT and it is expected to
change, or already changing the way how pipelines work,
in Germany under the synonym Industry 4.0 [6]. All of
these devices use various sensors and communication to
adapt in real-time to changing conditions. However, real-
world data are always noisy or hard to predict. To work
with this data DNNs are a powerful solution due to their
robustness and the availability of a large amount of data.
Of course not every IoT device has powerful computing
capabilities so the actual DNN has to be computed exter-
nally.

4.2. Edge Computing for DNNs in IoT

Offloading the computation process traditionally
means to upload the raw data into the cloud where ev-
erything will be fully computed and the result returned

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

2 doi: 10.2313/NET-2020-04-1_01

Figure 2: Workflow of an IoT-Edge solution [7]

to the IoT device. However, with more and more devices
being part of the IoT uploading all the raw data them-
selves can already be too expensive or not be achieved
within a required timeframe. Upgrading bandwidth and
computational infrastructure are possible, but it also has
limitations and can be very expensive, therefore a method
to relieve the bottleneck which is uploading is very useful.
This method is Edge Computing. Edge Computing can be
done on the IoT device itself or a designated physically
close edge server. The basic idea is to exploit the property
of many DNNs that the input data are bigger than the
intermediate data [2]. This means that the relevant data
are smaller than the raw data, after processing the first
layers. So the beginning of the processing is done on
the edge device even though it computes slower than the
cloud but the lost time is saved later when smaller data are
uploaded to the cloud instead. By doing this the bottleneck
is relieved of some workload. The question remains when
exactly to offload to the cloud service. We will take a
look at this question in the next section. But there are
more benefits in using Edge Computing than just com-
pressing the data by preprocessing them. Another typical
feature of data acquired by IoT devices is the very high
heterogeneity due to many different sensors and different
use cases or environments. If everything is uploaded to the
cloud this heterogeneity requires the cloud to be able to
process many kinds of data. If Edge Computing is used the
edge device can preprocess the data and since each edge
device usually faces the same data from the same sensors
it can be optimized to specifically preprocess this data
and upload a more generalized dataset to the cloud. This
localization of data preprocessing to the edge also enables
strong caching mechanisms since the data of each sensor
are processed locally every time - on the cloud, this would
not be possible due to different sensor environments. By
generalizing the data during the preprocessing on the edge
it is not only faster computable by the cloud but it might
also be very hard to reconstruct the original data because
backtracking the layers of a DNN is a difficult problem.
This is another advantage because it can be used to
protect sensitive user data and the cloud never has access
to the original data. Finally, by distributing the system
onto many edge devices a certain layer of redundancy is

added. In case of failure of an edge device only a small
part of the network will not work properly, which might
even be covered by other edge devices. This makes the
system more resistant to typical attacks like DDoS because
DDoSing an edge device would be useless and the cloud
is less important to the entire system. Strengthening this
single point of failure is especially an important feature
for companies.

5. Scheduling of Offloading

In this section, we want to take a look at two re-
cent scheduling strategies for edge assisted computing
of DNNs. We want to clarify what variables exist in
the offloading process and how they affect the offloading
decision.

5.1. Preprocessing Strategy

The general idea of this strategy is that the interme-
diate data will be smaller than the raw data. Therefore
the data are first processed on the edge device and at a
strategically chosen point uploaded to the cloud which
does all the remaining computation. The offloading point
is chosen based on the following factors. The first variable
to consider is the architecture of the DNN. There is an in-
depth analysis of layers in state-of-the-art DNNs that sets
computational effort and size of output data into relation
[1]. For the offloading decision, it is important that as
much computational effort as possible is after the offload-
ing as well as offloading after a layer where the output data
is small. The next variable is the edge hardware. To accu-
rately predict when to offload it is important to know how
much computing power is available on the edge device. If
an edge server is used this power may vary too based on
current workload. The more computing power is available
on the edge, the faster the edge device can compute deeper
layers of the DNN where a smaller data output size might
reduce uploading time and save bandwidth workload. The
next variable is the network bandwidth. Especially on
mobile devices like smartphones, the available network
can vary strongly between wifi or mobile data. The slower
the upload speed of the edge device is the more priority

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

3 doi: 10.2313/NET-2020-04-1_01

has to be put on uploading at a point where the data
are small, while a fast upload might upload at a bigger
point but therefore has to execute less computation on the
edge device. Finally, the computational power of the cloud
also impacts the decision. While the cloud is expected
to have a much faster computation speed than the edge
device, the speed of the cloud might be limited due to
workload at peak times. After considering all these factors
the decision when to offload can be made quite accurately
and improve the execution speed of DNNs on mobile
devices drastically. Furthermore, the same algorithm can
be used to optimize the energy usage of the phone by
adding consumed energy as a variable that can be traded
for speed. If multiple devices run this scheduler are in-
terconnected they could also balance the workload of the
cloud intelligently.

5.2. Deadline Strategy

This general idea of this strategy is to trade off
accuracy for time. While the previous strategy tried to
optimize the time needed for the execution, this strategy
expects to have a deadline until when it has to be finished.
This can be useful in real-time contexts where the results
have to be delivered on time, e.g. for autonomous driving
danger has to be spotted at a time when the car is still
able to react. If the calculation would be completed later,
the result would be of no use. Therefore accuracy is a
new variable. To have a variable accuracy a DNN with
multiple exit points is used. Unlike the first strategy, the
deadline strategy always uploads the raw data but it does
not receive the final result instead receives an intermediate
value and will finish the computation on the device. By
early-exiting the DNN it can be guaranteed that a deadline
can be met while the accuracy is as high as possible for
the given timeframe. However, to be able to accurately
predict deadlines other variables have to be more stable
or even fixed. The Edgent algorithm [2]] assumes a model
where the data is not processed on the cloud but instead
on a very powerful edge device. That offers the benefit of
strong and consistent bandwidth. While DNN architecture
and the used hardware are still variable for the application
they are fixed after the first setup, leaving as little variables
as possible to guarantee performance.

6. Conclusion and future work

Deep Learning is an important state-of-the-art method-
ology with many use cases. Especially with the growth
and integration of IoT into everyday life, it is expected to
stay very relevant in the future. To make this methodol-
ogy available for all devices and real-time applications it
has to be offloaded since processing DNNs on small or
weak devices would take too long or trades off accuracy
[8]. Instead of loading everything into the cloud, using
Edge Computing offers great advantages. Optimizing the
offloading process is important due to the expensiveness
of DNNs and there is a lot of potential for research in
that area. Future works could be about optimizing Edgent
with the NeuroSurgeon baseline since Edgent currently is
not optimized in that regard. In the context of IoT, a new
algorithm with two offloading stages could be considered,
where one stage is computed on the IoT device, one stage

(a) Neurosurgeon’s basic workflow

(b) Edgents basic workflow

Figure 3: Comparison of the two workflows

on an edge server and one stage in the cloud. This would
offer very dynamic computing capabilities, high speed for
regular workload due to a strong edge server and strong
robustness in case of peak workload due to the cloud.

References

[1] Y. Kang, “Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge,” 2017.

[2] E. Li, “Edge Intelligence: On-Demand Deep Learning Model Co-
Inference with Device-Edge Synergy,” 2018.

[3] “Edge Computing Model,” https://upload.wikimedia.org/wikipedia/
commons/b/bf/Edge_computing_infrastructure.png, [Online;
accessed 29-September-2019].

[4] H. Khelifi, “Bringing Deep Learning at the Edge of Information-
Centric Internet of Things,” 2019.

[5] H. Li, “Learning IoT in Edge: Deep Learning for the Internet of
Things with Edge Computing,” 2018.

[6] C. Towers-Clark, “Big Data, AI & IoT Part Two: Driving Industry
4.0 One Step At A Time,” 2019, [Online; accessed 29-September-
2019].

[7] E. Signorini, “HPE and IoT Compute at the Edge,” 2016.

[8] Y. Li and T. Strohmer, “What Happens on the Edge, Stays on the
Edge: Toward Compressive Deep Learning,” 2019.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

4 doi: 10.2313/NET-2020-04-1_01

File Injection for Virtual Machine Boot Mechanisms

Till Müller, Johannes Naab∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: till.mueller@tum.de, naab@net.in.tum.de

Abstract—Virtual machines are widely used in today’s com-
puting infrastructure. They provide an easy way to isolate
untrusted software and users from each other and the hosts
they run on. This isolation, however, makes it difficult for
administrators to exercise control over the VMs without
compromising security.

We provide a system that allows the admin to inject files
into untrusted VMs in a secure manner. It uses a customized
Linux kernel which is booted using QEMU direct kernel
boot. To inject files safely, they are passed to the virtual
machine via the initramfs, a read-only archive normally
used to provide drivers to the kernel during boot. The file
injector then uses kexec to load a kernel from the guest’s
filesystem, thereby assuming the functionality of a bootloader
like GRUB to minimize user impact.

Index Terms—virtual machines, qemu, kvm, file injection,
Linux kernel boot

1. Motivation

The machines used in this project are untrusted virtual
machines with potentially malicious actors having access
as root. Nevertheless, these VMs need to be administered
(i.e. to grant access or run updates), a non-trivial task to
accomplish while not compromising security since most
administration tools assume they have direct access to
the machine that is being administrated. To protect the
VMs’ host, the file injector should not need to run any
code originating from the VMs and overall enforce strict
isolation.

This project has been motivated by the lecture “Grund-
lagen Rechnernetze und verteilte Systeme” [1] which re-
quires such a tool to provide virtual machines for students
taking the lecture.

For this lecture, every student is given access to a
virtual machine to use for developing and debugging
of homework assignments. The students log in as root
on their respective machines, giving them full control
over their VM. It is therefore paramount to keep these
VMs isolated from the host system. All requirements and
assumptions are based on this scenario.

This paper is structured as follows: In Section 2 we
analyze the background of the technologies we used, as
well as existing boot processes. The 3. Section evaluates
different possible solutions to the issues described here.
In Section 4 we present our bootloader and file injector
and in Section 5 the performance of some boot methods
is highlighted. Section 6 concludes the paper.

Figure 1: Flowchart of boot processes

1.1. Requirements and limitations

For our boot loader and file injection system we
propose the following requirements:

• External data has to be written to the VMs’ filesys-
tem

• The VMs have to be persistent between reboots
• Boot times have to stay reasonable
• The system has to be able to scale to hundreds of

machines
• Users should be able to update their VMs’ kernel

independently from the file injector
• The setup must not require a network connection

to inject the files or boot the VMs
• In case the boot process fails, manual debugging

should be possible

1.2. Assumptions

To make the implementation easier, the file injector is
based on these assumptions:

• Virtual machines are hosted using QEMU/KVM
with libvirt

• The VMs run Debian and are all set up in a similar
way

• Only small configuration files need to be copied
to the guests’ filesystem

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

5 doi: 10.2313/NET-2020-04-1_02

2. Background

In this section we will take a closer look at how a vir-
tual machine boots using different methods. During this,
we will also evaluate and explain how these technologies
might be useful as part of the file injection system.

2.1. GRUB

A conventional boot loader like GRUB [2] or LILO
gets invoked by the BIOS/EFI at the beginning of the
machine’s boot process. It then lets the user choose
which operating system to boot. For this, GRUB reads
the partition table, which contains information about what
partitions are bootable and where on the disk they are
located. Afterwards, GRUB loads the kernel from the
chosen partition and hands over to it. The kernel then
starts its first process, on Linux systems usually init or
Systemd.

2.2. QEMU direct kernel boot

A different way of booting a QEMU-hosted virtual
machine is the so-called direct kernel boot. In normal
use, this enables a VM to skip the bootloader by using a
kernel file from the host system. The virtual machine then
jumps directly to the init or Systemd invocation, thereby
not requiring a kernel to be present on the VMs HDD
and speeding up boot-times. In the case of injecting files
however, the direct kernel boot feature is used to boot up
the file injector without the need to use the VMs’ filesys-
tem as intermediary storage, making the system less error-
prone and resulting in no unwanted side-effects during this
first boot stage (Fig. 1). This is possible because no part
of a direct kernel boot requires the HDD, which is only
mounted at the end of the init process.

2.3. initramfs

When booting a Linux kernel of almost any kind,
two files are involved: The first is the Linux kernel it-
self, which contains the kernel code, the second is the
initial ram filesystem. The initramfs contains all drivers
and software needed to mount the filesystem from the
HDD, e.g. RAID or decryption tools. It is a cpio archive
which the kernel uncompresses into a temporary filesys-
tem (TMPFS) during boot. This filesystem then resides
entirely in the machine’s memory, enabling the kernel to
load modules required to continue booting.

The old format for this file was initrd, which be-
haved similar to a block device using a filesystem like
ext2. Today, this format is rarely used, although the name
regularly appears in commands, e.g. for QEMU direct
kernel boot, even though an initramfs is used.

2.4. kexec

kexec is a program that emulates the function of a
bootloader from within a running system. When running
kexec, it initiates a normal shutdown, but immediately
restarts the system using the chosen kernel. Therefore, no
shutdown signal is sent to the motherboard and BIOS;

hardware initialization and the bootloader are skipped.
kexec is therefore similar to QEMU direct kernel boot:
Both start the system with the kernel immediately avail-
able. In our implementation, kexec is used to load a user-
provided kernel after the files have been injected.

3. Alternative approaches

Before the final decision on the implementation was
made, other possible approaches to the problem had to be
evaluated as well. We will, therefore, take a look at using
existing systems, such as Virtio’s virt-install or PXE.

3.1. Using direct kernel boot

The original setup we based this work on was similar
to the one that was eventually chosen, with one major
difference: Instead of using kexec to find and boot a
kernel from the machine’s filesystem, the injector would
continue booting normally and therefore be the active
kernel while the machine was running. This enabled a
quick boot process (see benchmarks in Section 5).

The downside to this approach was that updating the
kernel came with a lot of issues. The main one was that
the kernel version installed inside the virtual machine and
the one the machine was booted with had to be kept in
sync.

This was required because the kernel loads version-
specific modules from the machine’s filesystem after it has
been mounted. To load these modules, the kernel expects a
folder named after the kernel version in /lib/modules. If
this folder does not exist, the modules are not loaded. As a
result, updating the kernel the machines were booted with
was not an option since it would have led to all machines
losing the functionality these modules provided (e.g. ACPI
support).

Updating the kernel within the virtual machine did
not have any effect due to the kernel being loaded during
boot still being the same one originating from the host
system. This could lead to user frustration, especially
when building kernel modules, and while the manual
usage of kexec could circumvent this limitation, a system
is preferred that does not require such a workaround from
the users.

3.2. virt-install

Virtio’s virt-install is a tool to set up new virtual
machines using a predefined image. When given a kick-
start file, virt-install can make configuration changes
and copy data to the machine.

While virt-install can import existing images, we
were unable to find a way to for virt-install to alter
the contents of the VMs disk image during this process.
virt-install can edit a virtual machine’s virsh config-
uration file, but this only allows it to change, for example,
the connected devices or allocated resources to the VM. It
was therefore ruled out after some initial testing in favor
of the other ideas described here.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

6 doi: 10.2313/NET-2020-04-1_02

3.3. Mounting the guest’s filesystem on the host

This approach was deemed too slow and insecure to
use for untrusted VMs. While there should be no way for
a mounted filesystem to execute any code, keeping the
filesystems separated is the best way of ensuring isolation.
Modern filesystem like ext4 trust the images they mount,
so a filesystem image crafted with malicious intentions
could cause major security issues [3]. One solution here
is using libguestfs [4], which mounts the guest’s filesys-
tem inside a minimal VM and therefore enables the host
to securely alter the guest’s HDD contents. This method,
however, is unsuitable for our purpose, since the pro-
cess would increase boot times significantly. Additionally,
mounting and unmounting a filesystem with this method
every time a VM boots can put additional load on the
host, especially if multiple virtual machines are booted at
the same time.

3.4. Network boot / PXE

The Preboot Execution Environment (PXE) is a stan-
dardized process of booting a physical or virtual machine
over the network using a TFTP (trivial file transfer pro-
tocol) server. The PXE implementation by Syslinux [5]
can transfer a kernel and initramfs file to the booting
machine. Unfortunately, PXE requires a network con-
nection and DHCP to connect to a server. Additionally,
the pxelinux implementation does not provide tools for
running scripts on boot.

After considering these issues, PXE was ruled out as
a solution as well. While it might be possible to achieve
the desired outcome using it, the infrastructure defined in
the requirements does not provide DHCP, making PXE
impossible to use.

3.5. Ansible

Another tool often used for applying configurations
on multiple machines is Ansible [6]. It can automatically
provision and set up physical and virtual machines, all
configured using YAML files as so-called Playbooks. Like
PXE however, Ansible needs a connection to its server
to download these Playbooks, which makes it unsuitable
for the requirements described in Section 1. Ansible also
runs as an agent on the machines it manages, which would
enable users to disable it, rendering it useless.

4. Architecture

All approaches listed in the previous section either do
not fulfill some of the requirements or are not compatible
with the limitations. The system described below was built
upon some of them to achieve all desired results within
the limits set in Section 1.

In summary, the file injector runs on the virtual ma-
chine before its real kernel is booted from the HDD,
enabling full access while being controlled by the admin-
istrator.

4.1. Replacing the bootloader

Since the code to inject files needs to run before
handing over control to the untrusted guest system, the
injection process takes the place of the bootloader. QEMU
direct kernel boot loads the injector and runs it inside the
virtual machine. This behavior is not possible when using
GRUB, since the injector and the files to inject are not
located on the VM, but on the host’s filesystem.

4.2. Injecting files

The file injector works in two stages:
1) Mount the machine’s filesystem and inject the

files
2) Find the correct kernel to switch to and execute

it using kexec
During the first stage, the injector needs to find the

root filesystem and mount it. Like a kernel during normal
boot procedures, mount needs to know the label, UUID
or path to the block device containing that filesystem.
The type of the filesystem used is also required, although
mount is sometimes able to get it from blkid or the
volume_id library. Normally, mount would also try to read
/etc/filesystems and /proc/filesystems, but these
are not available in the initramfs environment [7]. The
default values for both the block device’s location and its
filesystem type are set in a way that makes them com-
patible to most virtual machine setups. Additionally, it is
important here that the guest’s filesystem is mounted with
read/write options. While initramfs normally mounts the
filesystem as read-only, this would not be sufficient for file
injection.

To enable injection, initramfs delivers the files the
injector needs to copy to the guest’s filesystem. While
this limits the size of the files the system can inject, using
initramfs is a fast, reliable and secure way to move files
from the host’s filesystem to the guest’s.

4.3. Booting the correct kernel

After the first stage, the injector needs to load the right
kernel to properly boot the system. During the second
stage, the injector looks for a suitable kernel/initramfs
combination to switch to. There are two possible locations
for these files: They are either linked from /vmlinuz and
/initrd.img or are located in /boot. The administrator
can also set both manually using the boot parameters, as
shown in Figure 2.

After the injector has found the kernel and
initrd.img, it loads them using kexec, unmounts the
filesystem and kexec switches to that kernel which con-
tinues the boot process.

If the system is unable to find a working
kernel/initrd.img combination or kexec fails, it drops
to a shell and automatically tries to start an SSH server
so the issue can be debugged and resolved manually.

4.4. Implementation

Implementing the system as described above has pro-
duced several challenges that needed to be solved. Some
of them are described below, along with possible solu-
tions.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

7 doi: 10.2313/NET-2020-04-1_02

Figure 2: Flowchart of how the kernel / initrd.img are chosen

4.4.1. Passing files to the injector. The main issue re-
sulted from a combination of the requirements and limita-
tions imposed by QEMU and its direct kernel boot-feature.
To pass files to the injector and therefore the guest without
a network connection or shared filesystem, they must be
included in the initramfs. Creating a cpio archive and
setting it as the initramfs for the QEMU direct kernel
boot, however, is not sufficient. This is caused by the issue
mentioned before (see Section 2.3) that the kernel itself
does not contain all drivers to boot the system and requires
an initramfs with additional modules.

This means that a customized cpio archive needs to be
available for each virtual machine during the boot process.
cpio archives can be concatenated, so simply combining
the archives containing the files and drivers would result in
one which contains all required files. This however creates
another issue: The newly created archive would not only
contain the files the injector needs to inject, but also about
27MB of static data required by the kernel.

Generating these archives on every boot for hundreds
of machines is wasting time and space, so we focused on
finding a way to circumvent this issue.

4.4.2. Including the static initramfs in the kernel file.
Since most of the initramfs file is static, a possible
solution is to include it with the other static file used
during boot, namely the kernel. This solution proved to
be the best one because it enables the initramfs given
to QEMU to just include the files the system injects.
When compiling the Linux kernel, one available option
is CONFIG_INITRAMFS_SOURCE. The kernels shipped by
Debian do not use this option, resulting in the kernel
containing an empty cpio archive. Being able to include
the static initramfs in the kernel though allows the
injector to be one self-contained kernel file which includes
everything needed to boot the system. The only downside
to this approach is the added complexity from having to
recompile the kernel to make changes to the file injector.

4.4.3. Adding the initramfs to a precompiled kernel.
In theory, it is also possible to achieve the results from the
previous section without having to recompile the kernel
by editing the Linux kernel file (vmlinuz) to include a
different initramfs from the one it was compiled with.
However, making this work requires changes to multiple
values within the kernel file [8] [9]. This means that not
only the data has to be in the right place, but offsets and
some pointers have to be updated as well. Therefore, this
process was deemed too fragile to achieve the desired
result.

GRUB Direct kernel boot PXE
0

5

10

15

20

25

30

13.4

6.5

21.9

11.1

26.7

se
co

n
d

s

Kernel version: 4.9.0-11

default kernel
file injector

Figure 3: Boot times using an unaltered Debian kernel and
the file injector

4.5. Executing the injector script

The initramfs that includes the file injector is based
on a Debian initramfs, therefore requiring changes
to adapt it for the injector. For example, some effort
was needed to find the best way of getting the init
process to execute the file injector script at the right
time. Since init normally executes all scripts in the
/scripts/init-{premount,top,bottom} folders as de-
fined in the ORDER files placed in them, the init process was
still executing the mounting mechanism normally required
during boot. This could break the mount attempted by the
injector, so the behavior had to be changed.

To accomplish this and to have more control over the
init process, the init script was altered in the filesystem
overlay to switch to the injector as soon as possible,
effectively stopping at that point and making sure that
it does not interfere with the file injection.

5. Benchmarks

A quick overall boot process was one of the goals
while implementing this system. Therefore, we now take
a look at how much longer booting takes while using the
file injector. These tests were conducted using the same
VM and the times were measured from sending the start
command via virsh until the login screen was displayed.
The results are shown in Figure 3.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

8 doi: 10.2313/NET-2020-04-1_02

Having GRUB boot an external file is outside its
scope, so only the unchanged Debian kernel from the
filesystem image was tested. Furthermore, the GRUB
configuration was not altered, which resulted in the default
five seconds delay during which the user can choose
another operating system. Since this delay would exist
on newly installed VMs as well, it was left in.

Even though the Preboot Execution environment was
already ruled out in Section 3, we have included it here
for comparison. It is immediately obvious that booting
with pxelinux takes longer due to the need for a network
connection. In this case, the DHCP- and PXE servers were
located on the same host, so network latency or bandwidth
limits are unlikely to have influenced these results.

The file injector increases boot times by about five
seconds. The tests have been performed without any files
to inject, so if the injector needs to copy large files, this
would increase the boot time further. Copying large files,
however, is not the intended use case for this implemen-
tation, we mainly focused on small configuration files.
Booting a kernel directly is the fastest, but with the file
injector using direct kernel boot being similar in boot time
to using GRUB without file injection, the impact on users
is negligible.

6. Conclusion

We developed a kexec-based boot loader for virtual
machines. It is based on a modified Debian initramfs,
which is directly embedded into a rebuilt kernel image.
It allows to manage VMs by injecting configuration files
and does not require mounting the guest’s filesystem on

the host. The file injector works reliably and will enable
administrators to easily configure the untrusted systems
hosted on their infrastructure.

Future work includes making the system more compat-
ible to non-Debian distributions and adding functionality
like deleting files in addition to injecting them, as well as
passing arbitrary parameters to the user-kernel’s command
line.

References

[1] “Lecture ’Grundlagen Rechnernetze und verteilte Systeme’,” https:
//www.net.in.tum.de/teaching/ss19/grnvs.html, [Online, accessed 19-
September-2019].

[2] “GNU GRUB,” https://www.gnu.org/software/grub/, [Online, ac-
cessed 26-September-2019].

[3] “On-disk format robustness requirements for new filesystems,” https:
//lwn.net/Articles/796687/, [Online, accessed 25-September-2019].

[4] “libguestfs,” http://libguestfs.org/, [Online, accessed 25-September-
2019].

[5] “PXELINUX, official site,” https://wiki.syslinux.org/wiki/index.
php?title=PXELINUX, [Online, accessed 19-September-2019].

[6] “Ansible,” https://www.ansible.com/, [Online, accessed 27-
September-2019].

[7] “mount(8) - Linux man page,” https://linux.die.net/man/8/mount,
[Online, accessed 19-September-2019].

[8] “Stackexchange: Replacing section inside elf file,”
https://reverseengineering.stackexchange.com/questions/14607/
replace-section-inside-elf-file, [Online, accessed 19-September-
2019].

[9] “Gentoo forums: Linking existing kernel with new initramfs,” https:
//forums.gentoo.org/viewtopic-t-1087792-start-0.html, [Online, ac-
cessed 19-September-2019].

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

9 doi: 10.2313/NET-2020-04-1_02

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

10

Natural Evolution Strategies for Task Allocation

Emir Besic, Jan Seeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: emir.besic@tum.de, seeger@in.tum.de

Abstract—In this paper we will be taking a look at Natural
Evolution Strategies as a possible solution to the task al-
location problem. Task Allocation appears in many areas
of science, but is still missing a perfect solution. As the
problem is NP-hard, it isn’t possible to find a fast algorithm
that always provides the optimal solution, which is why it is
mostly solved using heuristic approaches. Natural Evolution
Strategies is one such heuristic approach, showing promising
results in the function optimization area. We take a look
at the theory behind using it and compare it to different
approaches, which are currently being used.

Index Terms—task allocation, natural evolution strategies

1. Introduction

Task allocation is a problem which occurs in many
different forms, but the general form can be described as
follows: There are tasks which need to be done, as well
as agents which can do those tasks. For an agent to do a
specific task he needs to pay a specific cost and he gets
a specific profit. Each agent has a limited budget and he
can only do as many tasks as he can pay for. The goal is
to allocate the tasks to the agents, such that the profit is
maximized and every agent stays within their budget.

One example is the factory allocation issue, which
can be defined as follows. You can build a set amount of
factories and need to allocate them to different locations.
Each location has differing costs and profits associated
with it. The factories would be the tasks and the locations
would be the agents in this case. You can only place 1
factory at a location, so the budget of the agents would
be 1 and each location offers a different profit due to a
variety of reasons like tax and surroundings.

It is a very relevant problem lately, due to the rising
popularity of distributed systems and IoT. Task allocation
is a very common problem in these areas, so there is a
need for good solutions.

There are some approaches which are still used and
guarantee an optimal allocation, most prominent of which
being the branch-and-bound algorithm. Jensen et al. in [1]
describes the basics of this approach. They enumerate the
candidate solutions in a special way, which enables them
to search parts of the solution space only implicitly. In
other words, it is possible to eliminate multiple candidate
solutions just by checking one.

Unfortunately, finding the optimal allocation is NP-
hard as proved by Cardellini et al. in [2], which means
that it is not possible to find it in polynomial time. For
this reason the problem is most commonly solved with

heuristics. Heuristics may return sub-optimal solutions,
but they are much faster than traditional approaches like
the branch-and-bound solver.

There are many different heuristics which may be used
for task allocation and we will be describing some of them
in section 2. In this paper, we will be looking at a heuristic
which shows a lot of promise, Natural Evolution Strategies
(NES). NES is a state of the art function optimization
algorithm which was first mentioned by Wiestra et al. in
[3]. We will be describing NES in more detail in section
4. It isn’t possible to directly apply NES for solving Task
Allocation, which is why it needs to be adapted for this
use-case. We will be taking a deeper look at why it is not
suitable and a possible solution in section 5.

Another aspect is that there may be some optimiza-
tion goals, which are specific to that instance of the
problem. These goals tell the algorithm which solutions
to prioritize. One such goal is optimizing energy usage
as Seeger et al. describes in [4], where an allocation is
considered optimal if it minimizes total energy use over
an execution. Another optimization goal is response time
and availability as Cardellini et al. describes in [2]. More
optimization goals would be to minimize network usage,
end-to-end latency, inter-node traffic etc. We will describe
some use-cases in detail in section 2.

2. Background and Related Work

In this section we will be looking at some use-cases
of task allocation.

Cardellini et al. considers the optimal operator place-
ment for distributed stream processing applications in [2].
This is a basic use-case of the Task Allocation Problem.
She has formulated the problem and implemented a solu-
tion which can be used as a benchmark against which to
compare other placement algorithms.

Stanoi et al. looked at the problem of the distribution
of query operators over a network of processors in [5] .
He adapted a hill-climbing heuristics to reduce the search
space of configurations.

Rizou et al. developed a distributed placement al-
gorithm that minimizes bandwith-delay product of data
streams between operators. He used a heuristic that first
calculates the solution in an intermediate continuous
search space and then mapping it to the physical network.
([6])

Gerkey et al. in [7] considers multi-robot task alloca-
tion (MRTA), which is also one of the textbook examples
of our problem. He has formulated MRTA in a formal

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

11 doi: 10.2313/NET-2020-04-1_03

manner and given some commonly-employed and greedy
solutions for the easier problems.

Seeger et al. tackles the problem of a malfunctioning
IoT device, by allocating its tasks to other devices in
the network in [4]. He solves the allocation problem by
removing some constraints to transform it into a linear
problem and using the simplex method [8].

In [9], Lewis et al. tackles the general problem by
re-casting it into the form of an unconstrained quadratic
binary program (UQP), which is then solved by a tabu
search method developed for solving the general UQP
model.

Cano et al. considers the problem of assigning soft-
ware processes to hardware processors in distributed
robotics environments in [10]. They model it as a task
allocation problem and use constraint programming, a
constructive greedy heuristic and a local search meta-
heuristic to solve it.

In [11], Wun-Hwa Chen et al. considers a special form
of task allocation where they attempt to assign tasks to
processors such that the communications cost among the
processors, as well as the fixed costs of the processors are
minimized. To solve this they use a hybrid method that
combines Tabu search, described by Glover et al. in [12],
for finding local optimal solutions and noising methods,
described by Charon et al. in [13], for diversifying the
search scheme.

Using evolution strategies for solving Task Allocation
is not a new Idea, as it has already been discussed by
Gupta et al. in [14]. The key difference is that they only
consider some basic evolution strategies. But they already
get some promising results, which gives us hope that NES
might perform even better.

There have been innumerable other examples of Task
Allocation, all with slightly different solutions. But it
should be apparent now that this is a common problem
without a commonly accepted perfect solution.

3. Modeling the Task Allocation Problem

We will base the model on the approach from
Cardellini et al. in [2]. Let A denote the set of Agents
and T the set of Tasks. Furthermore let P be a matrix
such that the element pi,j represents the profit when agent
i does task j, let C be a matrix such that the element ci,j
represents the cost of agent i doing task j and let B be a
set which contains the budget information of each agent
such that agent i has budget bi. There is another overview
of the described parameters in table 1.

Symbol Description

ai Agent with the index i
ti Task with the index i
pi,j Profit when agent i does task j
ci,j Cost when agent i does task j
bi Budget of agent i
xi,j Represents if agent i was assigned task j

(1)

With these definitions we can now define Solving the
Task Allocation problem for n tasks and m agents as the
process of maximizing

m∑

i=0

n∑

j=0

pi,jxi,j (2)

while also staying withing the budget for each i:
n∑

j=0

ci,jxi,j ≤ bi (3)

Where xi,j = 1 when task j was allocated to agent i and
0 otherwise. Another constraint is that a task can only be
assigned to a single agent which means that

m∑

i=0

xi,j = 1 (4)

for each j. In most instances of this problem there would
be more constraints, but for the sake of simplicity, these
will be the only constraints we will consider as they
appear in every instance of the problem. This is a common
formulation of the problem and it can also be used with
a branch-and-bound solver in order to find the optimal
allocation.

4. Natural Evolution Strategies

Function optimization problems appear in a variety
of different scientific areas. Often these problems are not
feasibly solvable in a short amount of time. Thankfully,
small errors can sometimes be tolerated and the solution
does not need to be optimal. This is where a heuristic
approach like Natural Evolution Strategies (NES) ([3] and
[15]) comes into play. They can find a solution to the prob-
lem in a much shorter time. The solution they come up
with however, may not always be optimal, which is why
it’s important to pick the right heuristic. NES is one such
algorithm which uses an heuristic approach for performing
’black box’ function optimization. The structure of this
function, also known as the fitness function, is unknown,
but some measurements, chosen by the algorithm, are
available.

4.1. How NES Works

To understand how NES functions, we need to first
understand how the basic Evolution Strategies (ES) work.
They are named as such due to their inspiration from
natural Darwinian evolution. The basic idea is to produce
consecutive generations of samples (candidate solutions)
with each generation coming closer to the optimal result.
We initialize the algorithm with a set of samples. They
are then evaluated using the fitness function. The ones
with the best performance are then chosen to create the
next generation by mutating their genes, while the others
are discarded. The Process is continued until a satisfying
result is reached. This approach was proven to be very
powerful, but it does have many problems. The most
prominent being the high sensitivity to local optima (sub-
optimal solutions) and the slow speed of the evolution.

The Covariance Matrix Adaptation (CMA) algorithm
is a much more sophisticated evolution strategy. CMA

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

12 doi: 10.2313/NET-2020-04-1_03

does not discard bad samples, but uses them to gener-
ate correlated mutations, which substantially speeds up
evolution. It uses a multivariate normal distribution to
draw mutations for the next generation. CMA is a major
improvement to the previous algorithm, but it has an
unpredictable nature and is still somewhat sensitive to
local optima.

Natural Evolution Strategies keep the correlated muta-
tions of CMA, but also try to reduce the sensitivity to local
optima. NES estimates a gradient towards better expected
fitness in every generation using a Monte Carlo approx-
imation. This gradient is then used to update both the
parent individual’s parameters and the mutation matrix.
NES uses a natural gradient instead of a regular gradient
to prevent early convergence to local optima, while also
ensuring large update steps. These differences make NES
faster and less sensitive to sub optimal solutions compared
to CMA.

4.2. Canonical NES

Now that we understand the concept of NES, we can
take a look at a basic form of the algorithm.

Input: f, θinit
repeat

for k = 1..λ do
draw sample zk ∼ π(·|θ)
evaluate the fitness f(zk)
calculate log-derivatives ∇θlogπ(zk|θ)

end
∇θJ ← 1

λ

∑λ
k=1 ∇θlogπ(zk|θ) · f(zk|θ)

F ← 1
λ

∑λ
k=1 ∇θlogπ(zk|θ) ∇θlogπ(zk|θ)T

θ ← θ + η · F-1∇θJ
until stopping criterion is met;

Algorithm 1: Canonical Natural Evolution Strategies

Algorithm 1 was taken from [15] and depicts a pseudo
code for the canonical NES algorithm.

The goal is to compute a gradient over the fitness
function with regards to the search distribution θ and use
it to update the distribution parameters, which are then
used to draw the next generation of samples.

First of all, the inputs are the fitness function (f) and
the initial parameters for the distribution (θ). Since NES
usually uses the normal distribution, the parameters will
be the mean (µ) and the standard deviation (σ).

The first step in the algorithm is to draw all the sam-
ples from the normal distribution. In order to do that, we
need to evaluate the fitness of each sample and calculate
their log-derivatives.

Once we have drawn and evaluated the desired amount
of samples (λ) as well as calculated their log-derivatives,
we can use that information to calculate the gradient
and update the distribution parameters accordingly. These
parameters will be used to create the next generation.

Now the only thing that is left is to repeat all the steps
until a stopping criterion is met, or in other words, until
we have a satisfying solution. This is the basic idea behind
NES. In order to use it for task allocation, we will need
to make some adjustments.

5. Solving Task Allocation with NES

As described in section 3, solving the Task Allocation
Problem, is equivalent to optimizing a function, while
staying within specific constraints. This is why using a
state of the art function optimization algorithm like NES
is a good approach. Unfortunately there is a problem
with using the regular NES. It uses a multivariate nor-
mal distribution to draw samples, which is a continuous
distribution and as such makes the algorithm incompatible
with discrete variables. As our formulation from section
3 accepts only discrete solutions, we will need to adjust
the algorithm accordingly.

In order to solve this problem, we will use the ap-
proach by Benhamou et al. in [16]. They found a way to
make CMA compatible with discrete variables. They show
in great detail that it is possible to extend the method
for drawing samples to multivariate binomial correlated
distributions, which are shown to share similar features
to the multivariate normal used by CMA and NES. In
other words, they show that the multivariate binomial
distribution is the discrete counterpart of the multivariate
normal distribution.

As described in section 4.1, NES is very similar to
CMA. In particular, both use a multivariate normal dis-
tribution. The other differences like the natural gradient
don’t affect this method. So all we have to do is change
our algorithm such that mutations are not drawn from a
normal distribution, but a multivariate binomial one:

µ+ B(σ2C) (5)

With µ as the mean, σ as the standard deviation and
C as the covariance matrix in the case of CMA-ES, which
we will translate to NES.

Now that we have all the puzzle pieces we can put
them together and define a basic algorithm. The algorithm
itself is very similar to Algorithm 1, but there are some
key differences.

Input: f, c, µinit, σinit
repeat

for k = 1..λ do
draw sample zk ∼ µ+ B(σ2F)
evaluate the fitness
check constraints c
calculate log-derivatives

end
compute gradients
update F
update distribution parameters (µ, σ)

until stopping criterion is met;
Algorithm 2: Task Allocation with NES

Algorithm 2 shows a pseudo code for solving task
allocation with NES. As it can be seen, the major differ-
ences to Algorithm 1 are first of all the inputs. To solve
Task Allocation we need to pass our fitness function (2),
but also the constraints (3) and (4). This is necessary as
not all valid solutions may satisfy the constraints set by
our model. This is also the reason why we need to check
the constraints for each sample that we test. Another big
difference is the distribution, from which we draw our

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

13 doi: 10.2313/NET-2020-04-1_03

samples. We are using the binomial distribution for the
reasons mentioned before. The other difference is that we
left out the exact calculations. They can be taken over
from the original algorithm for the most part, but may
need some small tweaks, since we are using a binomial
distribution and there may be some room for improvement
in the algorithm. In the original paper [15] there are
already some mentions of the algorithm being tailored to
specific use-cases (see sNES in section 3.5). To recognize
whether there is room for improvement in our use-case
it is necessary to implement and test the algorithm in a
common task allocation scenario.

6. Conclusion

We have seen that Task Allocation is a widespread
problem. There have been many different approaches to
solving it, but due to it being NP-hard, it is very hard
to find a suitable one. Most instances of the problem are
solved either by the branch-and-bound approach, if the
optimal solution is needed, or by heuristics, if smaller de-
viations from the optimal solution can be tolerated. These
heuristics are often tailored to the specific instance of the
problem and do not translate well into other instances. In
other words, there still does not exist a perfect solution,
which solves every instance of the problem optimally.
Although we did not test our method, we can take a look
at the results in the original NES paper [3]. They have
tested NES on many different optimization problems and
concluded that, NES can go toe to toe with most other
function optimization algorithms. This and the fact that
it has a polynomial complexity leads us to believe that it
can be as good as, if not better than, currently used algo-
rithms for some instances of the task allocation problem.
Naturally, it is necessary to implement the algorithm first,
before coming to any further conclusions, but what we
can say, is that it is certainly an approach which is worth
considering.

7. Future Work

The plan for the future is to first implement the
algorithm and test how well it performs. It will almost
certainly be necessary to tweak the calculations com-
pared to Algorithm 1, in order to truly optimize it for
task allocation. Once the algorithm is implemented and
optimized for task allocation, we are confident that it
will be a solution which offers both quality and speed.
If NES turns out to be as good as we hope, it may be
possible to find even more areas where NES could bring
an improvement. Task Allocation isn’t the only problem,
which can be boiled down to a function optimization
problem and is usually solved with heuristics. There are
innumerable others, which is why the need for quality
heuristic approaches is staggeringly big. So the next step
after testing NES with Task Allocation is to find other
similar problems in need of a better heuristic solution.

References

[1] J. Clausen, “Branch and bound algorithms – principles and exam-
ples,” 1999.

[2] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal
operator placement for distributed stream processing applications,”
in Proceedings of the 10th ACM International Conference on
Distributed and Event-based Systems, ser. DEBS ’16. New
York, NY, USA: ACM, 2016, pp. 69–80. [Online]. Available:
http://doi.acm.org/10.1145/2933267.2933312

[3] D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber, “Natural
evolution strategies,” in 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelli-
gence), June 2008, pp. 3381–3387.

[4] J. Seeger, A. Bröring, and G. Carle, “Optimally self-healing iot
choreographies,” 2019.

[5] I. Stanoi, G. Mihaila, C. Lang, and T. Palpanas, “Whitewater:
Distributed processing of fast streams,” Knowledge and Data Engi-
neering, IEEE Transactions on, vol. 19, pp. 1214–1226, 10 2007.

[6] S. Rizou, F. Dürr, and K. Rothermel, “Solving the multi-operator
placement problem in large-scale operator networks,” 2010 Pro-
ceedings of 19th International Conference on Computer Commu-
nications and Networks, pp. 1–6, 2010.

[7] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” The International
Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.
[Online]. Available: https://doi.org/10.1177/0278364904045564

[8] J. A. Nelder and R. Mead, “A simplex method for function
minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–313,
01 1965. [Online]. Available: https://doi.org/10.1093/comjnl/7.4.
308

[9] M. Lewis, B. Alidaee, and G. Kochenberger, “Modeling and
solving the task allocation problem as an unconstrained quadratic
binary program,” 04 2004.

[10] J. Cano, D. R. White, A. Bordallo, C. McCreesh, A. L.
Michala, J. Singer, and V. Nagarajan, “Solving the task variant
allocation problem in distributed robotics,” Autonomous Robots,
vol. 42, no. 7, pp. 1477–1495, Oct 2018. [Online]. Available:
https://doi.org/10.1007/s10514-018-9742-5

[11] W.-H. Chen and C.-S. Lin, “A hybrid heuristic to solve a
task allocation problem,” Computers & Operations Research,
vol. 27, no. 3, pp. 287 – 303, 2000. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0305054899000453

[12] F. Glover, “Tabu search—part i,” ORSA Journal on Computing,
vol. 1, no. 3, pp. 190–206, 1989. [Online]. Available: https:
//doi.org/10.1287/ijoc.1.3.190

[13] I. Charon and O. Hudry, “The noising method: a new method
for combinatorial optimization,” Operations Research Letters,
vol. 14, no. 3, pp. 133 – 137, 1993. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/016763779390023A

[14] A. K. Gupta and G. W. Greenwood, “Static task allocation
using (µ, λ) evolutionary strategies,” Information Sciences,
vol. 94, no. 1, pp. 141 – 150, 1996. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0020025596000126

[15] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters,
and J. Schmidhuber, “Natural evolution strategies,” Journal of
Machine Learning Research, vol. 15, pp. 949–980, 2014. [Online].
Available: http://jmlr.org/papers/v15/wierstra14a.html

[16] E. Benhamou, J. Atif, R. Laraki, and A. Auger, “A discrete
version of CMA-ES,” CoRR, vol. abs/1812.11859, 2018. [Online].
Available: http://arxiv.org/abs/1812.11859

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

14 doi: 10.2313/NET-2020-04-1_03

TLS Fingerprinting Techniques

Zlatina Gancheva, Patrick Sattler∗, Lars Wüstrich∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ga94vad@tum.de, sattler@net.in.tum.de, wuestrich@net.in.tum.de

Abstract—Internet security has become a key concern to
society in the last couple of decades as more and more
sensitive data are being transferred over the Internet. This
has led to the adoption of cryptographic protocols such as
Secure Sockets Layer protocol (SSL) and Transport Layer
Security protocol (TLS), which serve to protect information
sent across the Internet. However, even though encryption
resolved many security problems, it raised another question
and namely how to inspect network traffic while still com-
plying with privacy restrictions.

TLS Fingerprinting is a method, developed to assist
network monitoring. This paper takes a closer look on how
TLS Fingerprinting works and analyzes the advantages of
it as a client identification method by reviewing different
Fingerprinting implementations.

Index Terms—Transport Layer Security, Secure Socket
Layer, Network monitoring, Client identification, Finger-
printing

1. Introduction

Nowadays, Transport Layer Security protocol (TLS)
is the cryptographic protocol that is used to encrypt the
majority of the internet traffic. It creates a huge visibility
gap, which serves to prevent third parties from observing
user’s communication. This, however, poses a challenge to
network administrators, who are trying to analyze traffic
and who do not necessarily have access to the endpoint
devices. The traditional way of intercepting and decrypt-
ing traffic is no more applicable, since it does not comply
with current privacy standards and causes lower network
performance [1]. Therefore, there is a pressing need for
a method to improve traffic analysis. A possible solution
to this problem is the generation of TLS fingerprints to
identify network clients.

TLS fingerprinting - a non-invasive method - meets
all the following criteria for traffic monitoring. It aims to
provide quick and successful client identification, while
being compatible with existing technologies and preserv-
ing the integrity of the encrypted information [2], [3]. TLS
fingerprinting a is completely passive and payload based
approach, which works by capturing and analyzing the
unencrypted messages exchanged during a TLS session
initialization. In those messages both parties agree on
various parameters such as protocol version and encryp-
tion keys, which will be used to establish the encrypted
connection that follows. This procedure is defined by the
term ’handshake’ and it is subsequent to the TCP 3-
Way Handshake. Most of the handshake parameters are

specific enough for a unique client signature to be built
and recorded into a database.

Figure 1: TLS protocol structure [4]–[7]

1.1. Outline

This paper is divided into 5 Sections. The second
Section aims to explain TLS fingerprinting by making a
detailed observation of the organization of the encryption
it is based on. It provides a brief overview of TLS’s
history, current TLS versions in use and explains in detail
important steps such as the TLS client-server Handshake.
A detailed overview of different fingerprinting techniques
is done in the third Section. The applicability of the results
is discussed in Section four. Lastly, Section five concludes
the paper.

2. Background

Transport Layer Security (TLS) is a cryptographic
protocol, descendant of Secure Socket Layer protocol
(SSL), and was first released in January 1999 [1]. Its most
widespread version now is TLS 1.2 with more than 95
percent of the web servers supporting it as of February
2020 [8]. In 2018 however, a major TLS upgrade was
made and TLSv1.3 was released. It aims to increase
speed by reducing the number of handshake messages and
improve security by not supporting outdated ciphers and
hashing algorithms (e.g. SHA1, MD5, DES) [1]. The 1.3
version is relatively new, but the most popular browsers
such as Chrome, Firefox and Opera already support it in
their latest releases [9].

TLS should provide [10]–[12]:

• Authentication - The server always authenticates
itself to the client.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

15 doi: 10.2313/NET-2020-04-1_04

• Data integrity - After the connection establishment
the data cannot be tampered with by attackers
without detection.

• Confidentiality - After the connection establish-
ment the data is only visible to the endpoints.

The TLS protocol enables client - server applications
to communicate over the network in a manner, designed
to prevent interference and eavesdropping. This done by
encapsulating and encrypting data from the application
layer, which ensures end-to-end security [4]. Hence, TLS
is typically implemented on top of TCP with regard to the
TCP/IP model (Figure 1). It is the encryption protocol cur-
rently standardized [13] for securing the most widespread
network protocols, such as HTTP, FTP, SMTP and takes
part in VoIP and VPN protocols [14]. As can be seen
from Figure 1, the TLS protocol consists of two parts:
the Handshake protocol and the Record protocol. The
fist one ensures that the communicating parties authen-
ticate themselves and is responsible for the negotiation of
cryptographic parameters and key establishment [7]. The
second one utilizes the parameters negotiated during the
handshake. The Record protocol splits the transferred data
into records, which are then individually protected [6].
For the purpose of TLS fingerprinting this paper is going
to focus on the Handshake protocol, since as mentioned
in the Introduction section only there the information
exchanged between the client and the server is in plain
format.

However, before going into detail about the handshake
procedure, it must be pointed out that TLS uses a com-
bination of both Symmetric and Asymmetric encryption
[15]. Asymmetric encryption uses a public-private key
pairing, so that data that is encrypted using the public key
can only be decrypted using the private key and the other
way around [16]. Its purpose is to authenticate the identity
of the website’s origin server. This is also known as public
key encryption. Symmetric encryption on the other hand,
uses only one key for encrypting and decrypting data.
During the Handshake information is exchanged using
asymmetric encryption, until the two sides are finished
generating the session keys. Afterwards the session is
encrypted using Symmetric encryption.

The Handshake process for TLSv1.3 is graphically
presented in Fig 2 and explained as follows [17] :

1) The client calculates a few private/public keypairs
for key exchange and requests a TLS Handshake
by sending a ClientHello message that contains
the following cryptographic information:

• Preferred TLS version (TLS 1.3, 1.2, 1.1,
etc.)

• Client random variable, which represents
a 32 byte string, used to prevent valid data
transmission from repetition or delay with
malicious intent.

• Session ID, that has the default value of
null if this is the first time connecting to
this server [10].

• Cipher suites list (e.g. ECDHE, RSA,
PSK), ordered by preference of the client.
A Cipher suite is a collection of encryp-
tion algorithms used to establish a secure
connection [?].

• Compression methods, used to decrease
the bandwidth.

• List of Extensions, which specify ad-
ditional parameters (e.g. server name,
padding). There are about 20 extensions,
but among the most prominent ones are
Signature Algorithms, Key Share, Elliptic
Curves and Elliptic Curve Point Format
[18]. They could also be included in the
ClientHello fingerprint in order to bring
more diversity [19]:

• List of public keys, which contains a list
of public keys that the server might find
suitable for key exchange

2) The server calculates his private/public key-pair
and answers the client with several messages.
First is a ServerHello message that contains the
negotiated protocol version, the chosen cipher
suite, the session ID, another random byte string,
compression method as well as the public key.
The client and the server then both calculate the
the shared session key that will be used to encrypt
the rest of the handshake, using their private keys
and the public key they have received from their
partner.

3) The second message from the server is a Change-
CipherSpec, which serves to inform the client that
from now on the all the messages will be en-
crypted with the shared key. (however in TLSv1.3
this message is sent simply as a middlebox com-
patibility mode [20])

4) A Wrapper message follows, that comprises of
the Server Encrypted Extensions, Server Cerifi-
cate, Server Certificate Verify and Server Fin-
ished messages. The emphasis here falls on the
fact that the rest of the handshake communication
is encrypted, which is new in TLSv1.3 / is a
major upgrade to TLSv1.2.

5) The client also sends a ChangeCipherSpec, which
has the same purpose as the one send from the
servers.

6) Finally the client also sends a Wrapper message
containing the Client Finished message, inform-
ing that the handshake was successful for the
client.

Now for the duration of the TLS session the server
and client can send each other data that are encrypted
symmetrically with the shared session key.

3. Fingerprinting

Previously a client used to be identified by the browser
User-Agent found in the HTTP header. This is application
layer information, which is now encrypted when the client
uses cryptographic protocol such as TLS. Nevertheless,
careful examination of network traffic has shown that
clients can still be identified by capturing the unique set
of plain text parameters from the Client- and ServerHello
messages. It is important to point out that the elements of
the Client- and ServerHello messages stay static through-
out different sessions, which allows for previously known
clients to be easily recognized. All the client records

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

16 doi: 10.2313/NET-2020-04-1_04

Figure 2: TLS Handhake Steps [1], [17]

are stored in a dictionary database, as this serves to
quickly identify known TLS connections and fingerprint
new unknown ones. In addition to that, clients with odd
behavior can be tracked and discriminated if they are
found to be malware applications. Since malware is known
to use quite unique/custom parameters when they use TLS
communication (normally old or obsolete TLS versions
and/or small number of extensions or cipher suites) [2c03],
a blacklist with their fingerprints can be composed to aid
various TLS fingerprinting implementations.

3.1. Fingerprinting Methodologies

Numerous studies have worked with ClientHello pack-
ets to fingerprint TLS. In 2009 Ristić et al. [21] analyzed
how to fingerprint SSL/TLS clients by evaluating the
Handshake parameters, including the Cipher suites and
Extensions list [21] [19]. In this Section three finger-
printing techniques using TLS implementations will be
described.

Network-based HTTPS Client identification – this
traffic analysis technique achieves proper client identifica-
tion by creating a dictionary, where the Cipher suite list of
the client is paired with their respective User-Agent. The
list of Cipher suites is chosen over other elements from
the TLS handshake, for it is the most diverse amongst
the parameters, supposedly specific enough to identify a
client. Other elements of the Handshake have only a few
different values and are therefore found not suitable.

This method is based on a combination of two ap-
proaches [4]:

• Host-based - based on server monitoring - mea-
sures connections using the decrypted information
from a HTTPS connection, such as the HTTP
header, once it is received on the server side. The
main advantage of this technique is that it pro-
vides results with high accuracy and is applicable
in a controlled environment. It is however, also
dependable on the amount of clients accessing

the monitored server and there is no guarantee
for diverse enough traffic. This could result in an
insufficient amount of produced pairs.
Essentially the accuracy of the data depends on
the attractiveness of the server [4].

• Flow-based - based on network monitoring – this
method works on the precondition that clients use
both HTTP and HTTPS protocols when they com-
municate with the server. Thus it scans the traffic
for connections that share the same IP source
address. Then select a cipher suite list from the
HTTPS connection and pairs it with the User-
Agent from the HTTP connection, which is the
closest in time [4], [14]. As opposed to the host-
based approach, the flow-based one is not limited
to a single server, so it provides more diverse
pairs. Key weakness of the flow-based method
is that is could provide ambiguous/perplexing re-
sults, because there are usually more than one
User-Agent corresponding to a Cipher suite list
[4]. Normally the User-Agents should have only
slight differences, like software version. So the
ones that deviate notably are supposedly connec-
tions, forged by web crawlers, pretending to be a
legitimate clients. Therefore only the most similar
User-Agents sub-strings were taken [14]. There
are some possibilities to improve this method [14].
The first one is to manually inspect the pairs,
which is still an approach prone to errors and
time consuming. The second option is to repeat
the measurement. Yet repeating it in a different
time window or with different network settings
would not necessarily provide complimentary re-
sults. Another way to fixing this shortcoming is to
extend/spread the fingerprint to the TCP/IP layer.

Combined, the host- and flow- based approaches were
proven to be sufficient for the creation of a usable dic-
tionary. Such dictionaries must contain about 300 cipher
suit lists with their assigned User-Agents in order to be
reliable [14]. After careful examination of the results
provided both methods show that the top 10 cipher suite
lists covered more that 68 percent of the network traffic
and the top 31 cipher suite lists are enough to represent
about 90 percent of the traffic. This shows that using both
method it is feasible to identify clients with high accuracy.

JA3/JA3S fingerprinting - this technique is a project
from Salesforce [1], which utilizes both the ClientHello
and the ServerHello to fingerprint the negotiation between
client and server, using MD5 hash to produce an 32
character fingerprint, that is easy to digest. [22], [23].

Initially there was JA3, where only the client side of
the TLS session establishing messages where exploited.
It composes a client fingerprint by collects the decimal
values of the bytes for the following fields in the Clien-
tHello packet: Protocol version, Accepted Ciphers, List
of Extensions, Elliptic Curves, and Elliptic Curve Formats
[24]. It then joins those values together in a string, ordered
as listed above, using commas to separate the field and a
dash to part each value in each field. If there are no TLS
Extensions in the ClientHello, the fields are left empty
[23]. Those values are captured at the earliest possible
stage, even before the server responds. This results in a

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

17 doi: 10.2313/NET-2020-04-1_04

very large fingerprint, which is why the strings are hashed
using MD5 hash.

Alone JA3 is not always enough to create an unique
fingerprint, because when client applications use the same
OS sockets or common libraries their JA3 fingerprints
will be identical. A resolution to this shortcoming is the
extension of JA3 - JA3S [1].

JA3S essentially does the same thing JA3 does, but
with the server response – it uses the ServerHello packet
to gather information from the following fields: Version,
Accepted Ciphers, and List of Extensions [22], [23]. Then
it concatenates them. This is useful, since servers reply to
different clients differently, but to one client the same way
in every session. JA3/JA3S provides additional benefits to
the detection of malware. For example, if the JA3 finger-
print of the malicious application looks indistinguishable
from a JA3 fingerprint of a legitimate application, so it
can only be recognized from the server’s response. Hence,
the combined usage of JA3+JA3S contributes to a highly
trustworthy identification / results in a more accurate
malware detection [1], [22], [23].

Lastly, JA3/JA3S also has some disadvantages. The
first one is that the MD5 hash has become obsolete [1]. It
is important to clarify that back in 2017-2018 developers
chose this hash type, because then it was supported by
current technologies. However, as mentioned in the Back-
ground section, this is no longer the case, for MD5 is
no longer supported in TLSv1.3, which urges the hash
type of the JA3/JA3S to be changed. Additionally the
JA3/JA3S technology is blacklist-based, which implies
that its trustworthiness depends on how often the blacklist
is updated.

Markov Chain Fingerprinting – this traffic classi-
fications technique is conducted on the server side and
is designed based on the message type sequence that
emerges in a single-direction flow form the server to the
client. It can use first-order or second-order homogeneous
Markov chains to model statistical TLS fingerprint of
different applications [25].

Fundamentally, Markov chains are utilized when com-
puting the probabilities of certain events by viewing them
as states transitioning into new or past states [26]. At
the beginning of the method development, researchers
used first-order homogeneous Markov chain model for
computational simplicity [25]. This technique operates
under the assumption that the parameters of each TLS
session differ considerably and therefore the fingerprint
of each application is distinctive enough. However, due
to the limited amount of states during a TLS session, it
could happen, that many applications contain alike transi-
tions in their fingerprints, which could cause them to be
misclassified. This problem could be avoided if the tech-
nique is upgraded to second-order Markov chains that are
able to capture more diverse application features, which
further balances the relationship between complexity and
truthfulness [25].

There are a couple limitations to this method. The
first one being, that applications change their TLS ses-
sion initialization parameters over time, which means that
for higher accuracy levels, it is advised that application
fingerprints must to be updated periodically [27]. The
second one being, that the technique struggles to recognize
applications that have not taken part in the training stage.

To resolve this issue, new application fingerprints must be
incorporated in the existing database accordingly regularly
[25].

Overall, the Markov chain fingerprinting technique
results in proper applications discrimination, which can
come from one of the following reasons [27]:

• incorrect and diverse implementation practices
• the misuse of TLS protocol
• various server configurations
• the application nature.

This leads us to the conclusion that proper classifica-
tion could possibly be avoided by omitting implementation
mistakes or creating the secure layer on a limited set [27].

4. Discussion

TLS Fingerprinting amongst other ways of client fin-
gerprinting is a reliable method for traffic analysis and
client identification [28]. It is passive, payload based and
requires no endpoint agent data [29]. Nevertheless there
could occur some inconveniences, such as collisions.

Fingerprint collision is the event of two fingerprints,
belonging to different applications, overlapping [29]. The
solution to collision avoidance is to take as many param-
eters from the ClientHello message as possible. Suitable
candidates for that are extensions, such as Signature al-
gorithms, Elliptic curves and Elliptic curve point format
[29]. This offers greater variety in comparison to assessing
cipher suites alone.

A different kind of inconvenience is the fact that TLS
Fingerprinting implementations can be avoided or redi-
rected. Based on the researches of Husak et al. [14] and
Frolov et al. [19], a client can prevent TLS Fingerprinting
in the following ways: by using a proxy, by manual change
in the Cipher suite list or by mimicking popular TLS
implementations.

• Usage of proxy redirects the TLS fingerprinting
technology to fingerprint the cipher suite of the
proxy instead of the one of the client [14]. How-
ever, the cipher suite list of a proxy could already
exist in the fingerprint database and thus be rec-
ognized and associated accordingly.

• Manual changes in the client Cipher suite list
are usually done by forced reducing of the list
[14]. The client continues to communicate with
a reduced Cipher suite list and is therefore not
recognized as an existing record. So the Finger-
printing technique fails to find the corresponding
User-Agent. But reducing it so much as to forge
another client’s cipher suite list is a quite difficult.

• Mimicking TLS implementations such as
browsers. Mimicking also has its challenges - it
is difficult to keep up with the rapidly-changing
TLS browser implementations and their many
features. It is also difficult to know what types of
fingerprints to mimic.

Generally fingerprint collisions and TLS fingerprinting
avoidance techniques are not a obstacle for the major-
ity of fingerprinting tools. The biggest concern of TLS
fingerprinting remains the database that the tools use,
because TLS fingerprinting is only as good as the database

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

18 doi: 10.2313/NET-2020-04-1_04

supporting it. Dictionaries may turn into disadvantage,
if they are hard to maintain and update. Currently the
process of the creation of data set collection was manual,
but there are ongoing researches, attempting to automatize
it in the future. [30].

Classification tools usually require to be trained on a
particular data set consisting of benign traffic, which must
be updated regularly to ensure novelty data. Especially
hard to maintain and update is the collection of malware
samples [2c03].

5. Conclusion

Encryption of data is crucial when aiming to protect
the privacy of users. In modern networks, the TLS proto-
col is the current encryption standard for data transferred
over the Internet. Although it is used to mask the plain text
information from the application layer, TLS also provides
a set of unique observable parameters that allow many
conclusions to be made about both the client and the server
[1].

In this paper we have reviewed the three most widely
spread/diverse techniques used for TLS fingerprinting,
starting with the simplest one – Network-based HTTPS
Client identification – essentially divided into two ap-
proaches, which are both based on the extraction of the the
most varied components from the TLS session initializa-
tion messages and writing them down in a database. The
second one being the JA3/JA3S that is partially based on
the Network-based identification as it upgrades it through
memory optimization, hashing the values into 32-character
unique fingerprint, making it quicker for malware software
to be recognized. The last and most complicated method
is the creation of a fingerprint using homogeneous Markov
chains (either first or second order) so as to simulate
the time-varying message sequence that occurs during the
TLS session initialization. Vital characteristic trait of this
method is that conducted on the server side and focuses
mainly on detecting abnormal TLS sessions and improv-
ing discrimination practices. All of these techniques can
identify clients with high accuracy while sustaining their
privacy. A comparison based on the statistical accuracy
of these techniques is hard to derive, because experiments
with each one of them has been done individually, over
different amounts of time, using different traffic samples.

In the future it would be interesting to conduct an
experiment to test how these three techniques would per-
form under the same set of conditions (e.g. time window,
network and servers).

Overall, TLS fingerprinting is a subsection of passive
client identification and traffic. There are other methods
for client fingerprinting, that may partially incorporate
the TLS technology (for example OS fingerprinting [31],
web browser fingerprinting, website fingerprinting, signal
fingerprinting, cookies [32]) that are efficient as well.

References

[1] B. Anderson, S. Paul, and D. McGrew, “Deciphering malware’s
use of TLS (without decryption).” [Online]. Available: http:
//arxiv.org/abs/1607.01639

[2] L. Brotherston, “synackpse/tls-fingerprinting,” accessed: 2020-
01-23. [Online]. Available: https://github.com/synackpse/
tls-fingerprinting

[3] The generation and use of TLS fingerprints. Accessed: 2020-
01-23. [Online]. Available: https://resources.sei.cmu.edu/library/
asset-view.cfm?assetid=539893

[4] M. Husak, M. Cermak, T. Jirsik, and P. Celeda, “Network-based
HTTPS client identification using SSL/TLS fingerprinting,” in
2015 10th International Conference on Availability, Reliability
and Security. IEEE, pp. 389–396. [Online]. Available: http:
//ieeexplore.ieee.org/document/7299941/

[5] Transport layer security protocol | microsoft
docs. Accessed: 2020-01-18. [Online]. Avail-
able: https://docs.microsoft.com/en-us/previous-versions/windows/
it-pro/windows-server-2012-r2-and-2012/dn786441(v\%3Dws.11)

[6] M. D. Center. TLS record protocol - win32 apps. Accessed:
2020-01-23. [Online]. Available: https://docs.microsoft.com/en-us/
windows/win32/secauthn/tls-record-protocol

[7] ——. TLS handshake protocol - win32 apps. Accessed: 2020-01-
23. [Online]. Available: https://docs.microsoft.com/en-us/windows/
win32/secauthn/tls-handshake-protocol

[8] Qualys SSL labs - SSL pulse. Accessed: 2020-02-23. [Online].
Available: https://www.ssllabs.com/ssl-pulse/

[9] Can i use... support tables for HTML5, CSS3, etc. Accessed:
2020-02-23. [Online]. Available: https://caniuse.com/#feat=tls1-3

[10] RFC 8446 - the transport layer security (TLS) protocol
version 1.3. Accessed: 2019-12-13. [Online]. Available: https:
//tools.ietf.org/html/rfc8446#section-4.1.2

[11] RFC 5246 - the transport layer security (TLS) protocol
version 1.2. Accessed: 2019-12-13. [Online]. Available: https:
//tools.ietf.org/html/rfc5246

[12] L. Brotherston, “Lee brotherston’s work,” accessed: 2019-12-13.
[Online]. Available: https://github.com/synackpse/tls-fingerprinting

[13] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson,
N. Vallina-Rodriguez, and J. Caballero, “Coming of age: A
longitudinal study of TLS deployment,” in Proceedings of the
Internet Measurement Conference 2018 on - IMC ’18. ACM
Press, pp. 415–428, accessed: 2019-11-18. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3278532.3278568

[14] M. Husák, M. Čermák, T. Jirsík, and P. Čeleda, “HTTPS
traffic analysis and client identification using passive SSL/TLS
fingerprinting,” vol. 2016, no. 1, p. 6. [Online]. Available:
https://doi.org/10.1186/s13635-016-0030-7

[15] An overview of the SSL or TLS handshake. Accessed: 2019-12-
14. [Online]. Available: www.ibm.com/support/knowledgecenter/
en/ssfksj_7.1.0/com.ibm.mq.doc/sy10660_.htm

[16] Comparative study of symmetric and asymmetric cryptography
techniques | semantic scholar. Accessed: 2019-12-13.
[Online]. Available: https://www.semanticscholar.org/paper/
Comparative-Study-of-Symmetric-and-Asymmetric-Tripathi-Agrawal/
e0e4810c5276f9c05cc82425fcf911f206c52bef

[17] The illustrated TLS 1.3 connection: Every byte explained.
Accessed: 2020-01-18. [Online]. Available: https://tls13.ulfheim.
net/

[18] TLSfingerprint.io - extensions. Accessed: 2019-12-13. [Online].
Available: https://tlsfingerprint.io/top/extensions

[19] S. Frolov and E. Wustrow, “The use of TLS in censorship
circumvention,” in Proceedings 2019 Network and Distributed
System Security Symposium. Internet Society. [Online].
Available: https://www.ndss-symposium.org/wp-content/uploads/
2019/02/ndss2019_03B-2-1_Frolov_paper.pdf

[20] Middlebox compatibility mode. Accessed: 2020-01-18. [Online].
Available: https://www.ibm.com/support/knowledgecenter/en/ssw_
ibm_i_74/rzain/rzainmiddlebox.htm

[21] Ivan ristić: HTTP client fingerprinting us-
ing SSL handshake analysis. Accessed: 2019-12-
11. [Online]. Available: https://blog.ivanristic.com/2009/06/
http-client-fingerprinting-using-ssl-handshake-analysis.html

[22] Open sourcing JA3 - salesforce engineering. Accessed: 2019-
12-13. [Online]. Available: https://engineering.salesforce.com/
open-sourcing-ja3-92c9e53c3c41

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

19 doi: 10.2313/NET-2020-04-1_04

[23] TLS fingerprinting with JA3 and JA3s
- salesforce engineering. Accessed: 2019-12-
13. [Online]. Available: https://engineering.salesforce.com/
tls-fingerprinting-with-ja3-and-ja3s-247362855967

[24] B. Vasudevan, “Elliptic curves in transport layer security (TLS) -
a presentation tutorial,” p. 4.

[25] M. Shen, M. Wei, L. Zhu, and M. Wang, “Classification of en-
crypted traffic with second-order markov chains and application
attribute bigrams,” vol. 12, no. 8, pp. 1830–1843.

[26] K. Chan, C. Lenard, and T. Mills, “An introduction to markov
chains.”

[27] M. Korczynski and A. Duda, “Markov chain fingerprinting to
classify encrypted traffic,” in IEEE INFOCOM 2014 - IEEE
Conference on Computer Communications. IEEE, pp. 781–789.
[Online]. Available: http://ieeexplore.ieee.org/document/6848005/

[28] T. Bujlow, V. Carela-Español, J. Solé-Pareta, and P. Barlet-Ros,
“Web tracking: Mechanisms, implications, and defenses.” [Online].
Available: http://arxiv.org/abs/1507.07872

[29] SquareLemon. Accessed: 2019-11-17. [Online]. Available: https:
//blog.squarelemon.com/tls-fingerprinting/

[30] TLS fingerprinting in the real world. Accessed: 2019-
12-13. [Online]. Available: https://blogs.cisco.com/security/
tls-fingerprinting-in-the-real-world

[31] [1706.08003] OS fingerprinting: New techniques and a study of
information gain and obfuscation. Accessed: 2019-12-13. [Online].
Available: https://arxiv.org/abs/1706.08003

[32] R. Upathilake, Y. Li, and A. Matrawy, “A classification of web
browser fingerprinting techniques,” in 2015 7th International Con-
ference on New Technologies, Mobility and Security (NTMS), pp.
1–5, ISSN: 2157-4960.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

20 doi: 10.2313/NET-2020-04-1_04

Building an OS Image for Deep Learning

Daniel Gunzinger, Benedikt Jaeger∗, Sebastian Gallenmüller∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: daniel.gunzinger@tum.de, jaeger@net.in.tum.de, gallenmu@net.in.tum.de

Abstract—This paper documents the process of creating
an reproducible OS image for deep learning. The target
framework is Tensorflow 2, which is provided in a recent
version in this image, accompanied by support for GPU
acceleration, which can improve performance and thus de-
velopment time significantly. During the creation of this OS
image, a number of problems have been encountered and
solved. Due to the created OS image, it is now possible to
rapidly spin up a server, which can immediately provide a
reproducible environment fit for development and training
of deep learning applications that utilize the Tensorflow 2
framework with GPU acceleration.
Index Terms—operating system, tensorflow, gpu, deep learn-
ing, cuda, cudnn

1. Introduction
In this paper the process of building an OS Image

based on Debian Bullseye in order to provide GPU support
for deep learning applications using Tensorflow 2 with the
new generation of Nvidia RTX Super graphics cards is
discussed.

This aims to provide a reliable and reproducible OS
image for the development and training of deep learning
applications, reducing development time by removing te-
dious setup tasks and improving execution performance
of the developed applications with GPU acceleration.

The OS image also aids the reliability of testing results
of any executed applications as the exact configuration of
the whole OS image can be preserved and tests can be
repeated by loading the OS image again on the same target
network node. Thereby providing the same hardware and
software environment and thus a reproducible platform
that can help in achieving reliable application testing
results for all users of the OS image.

This paper is structured as follows, in Section 2 back-
ground information about the used software and hardware
is provided, including the infrastructure setup which the
OS image is targeted for. In Section 3 the building process
of the OS image is detailed, this contians information
about the testing and building methodology and the prob-
lems that were encountered during this process. Section 4
provides an overview of the performance testing that was
done including benchmark results for the used test scripts
on a target server and its hardware specifications.

1.1. Deep Learning

Deep Learning is a type of machine learning which
can assign a given input to a set of known elements based

on previous training.
Deep Learning is often used to classify images or

recognize known elements in a given input image, but
it is not constrained to only work on images, but can also
work on other input data formats such as text or sound as
DeepL1 or speech recognition software show.

However in this work, the focus is to provide GPU
acceleration of deep learning frameworks primarily con-
cerned with image recognition.

For this purpose it is required to create a model with a
number of different layers which process the input image
and pass their output on into the next layer.

There are different layer types which perform different
computations on the input they recieve and also differ in
their output and output formats.

One layer type which is commonly used in image
recognition models are convolutional layers, this layer
type performs operations on a given range of the input
matrix. In this type of layer each output is the result of a
function over a window of the input.

Another commonly used layer type are fully connected
layers, where each input is connected to each output by a
weight. In this type of layer each output is the result of
an operation involving every single input and its weight.

One more important layer type are pooling layers
which are used to filter the input, perform a specific
operation on a range of inputs and combine them into
one output.

2. Background

In this section the targeted infrastructure setup is
detailed, and choices for software and hardware are ex-
plained.

2.1. Infrastructure Setup

The targeted infrastructure setup consists of a server
network which is managed through the pos software,
which is an abbreviation for plain orchestrating service.

Among many other features out of scope regarding this
paper, it allows for the use of a calendar. In this calendar
multiple users working with the server network can enter
dates, durations and targeted servers in order to reserve
them for their later use, and allows for an overview of the
current reservation status of the available servers. When
a user of this system has a ongoing reservation of one or
multiple servers, it can be used to allocate the specified

1. https://www.deepl.com/press.html

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

21 doi: 10.2313/NET-2020-04-1_05

servers. Once one or multiple servers are allocated by a
user, they can be started, stopped and reset individually.
Available OS images can be chosen for deployment and
an overview of their operational status can be displayed.

For the image building process the mandelstamm soft-
ware is used to create OS images that can be used in the
pos software mentioned above. It consists of a set of build
scripts which are used to specify the contents of the OS
image, such as the base operating system and software that
is supposed to be installed once the image is executed, and
to configure the image for deployment.

The pos and mandelstamm software are projects by
the Chair of Network Architectures and Services and are
not publicly available.

2.2. Software

In this section the software components of the OS
image are described.

As we need a reliable operating system, Debian was
chosen since it provides a stable base system with a broad
range of software packages being available for installation
and use through the repositories. In particular Debian
Bullseye (11), the current testing testing release has been
chosen.

As the main focus of this work is to provide an OS
image for GPU accelerated deep learning, deep learning
libraries need to be available too. Thus Tensorflow 2 and
PyTorch are installed through the pip package manager
and included in the OS image.

While Tensorflow 2 provides APIs in multiple differ-
ent programming languages2, we focused on providing
support for a Python workflow, which is also required for
PyTorch.

Python is available in many different versions, with
incompatibilities between the major versions 2 and 3, for
our OS image we aimed to provide a recent version of
Python 3.7, which is available through the Debian reposi-
tories and is also supported for use with the Tensorflow 2
library.

As a major task of this work is to provide GPU
acceleration for Tensorflow and PyTorch, the GPU driver
and multiple libraries from Nvidia also need to be included
into the OS image.

The installed version of the drivers is 430.64, with
CUDA 10.1 being provided by libcuda1 and cuDNN
7.6.5.32 installed through Nvidias generic package for
linux targets. Other important libraries in order to pro-
vide GPU acceleration are libcudart10.1, libcublas,
libcufft, libcurand, libcusolver, libcusparse and
the nvidia-cuda-toolkit.

2.3. Hardware

The decision to work with the Nvidia graphic cards
stems from their hardware acceleration capabilites for
compute and deep learning applications.

The amount of streaming processors present on these
cards is useable through the CUDA API which can provide
impressive speedups for Tensorflow programs over execu-
tion on general purpose CPUs. Another feature which the

2. https://www.tensorflow.org/api_docs

Nvidia RTX series GPUs provide are the Tensor Cores,
which can provide another speedup over common general
purpose hardware for mixed precision matrix multiplica-
tions, commonly used in the network training phase.

3. Building Process

In order to build the images the mandelstamm software
is used to create and package the OS images.

For the first attempt at creating the target OS im-
age Debian Buster was chosen as the operating system,
as it is the latest stable release version. In order to
enable support for the used GPUs the nvidia-driver
and the nvidia-smi (system management interface) were
included into the OS image.

When attempting to test the created image on the
targeted server, it became apparant that the version of the
nvidia-driver package available in Debian Buster is not
recent enough to support the used RTX 2080 Super GPUs,
as elaborated upon in Section 3.2.1.

Thus the built image was tested on a server containing
two Nvidia GTX 1080 Ti GPUs in order to determine if
the approach for driver installation had succeeded. The
installation success could be confirmed by executing the
nvidia-smi utility which reported the two GPUs with
their correct names and further statistics such as current
power consumption and memory usage.

The next step was to install Tensorflow 2, which
instead of building it from source, can be acquired via the
Python pip utility. During the installation of Tensorflow 2
the latest version available through pip was used, at the
time of this testing this was version 2.0.0, which was
released on September 30th of 20193.

This installation led to the discovery of the next prob-
lem due to Tensorflow 2 requiring at least version 19 of
the pip utility, which is not provided in any of the Debian
repositories as described in Section 3.2.2.

This required the pip utility to not be installed through
the apt package manager using the Debian repositories,
but instead through downloading a provided installation
file from the Python Package Authority (PyPA) and exe-
cuting it in order to complete the installation4.

Thereafter the installation of Tensorflow 2 was again
attempted by installing version 2.0.0 through the pip
utility, this time completing successfully and thus enabling
first tests to be run.

Since the goal of this image is to provide GPU ac-
celeration support with the Tensorflow 2 library, the first
test was to see if the GPU is recognized as a processing
device by Tensorflow 2 as described in Section 3.1.1.

This revealed warnings about a number of additional
libraries needed in order to register the GPU successfully,
and libcudnn.

All of these libraries except for libcudnn are available
through the Debian repositories, however installing them
was of no help since the available versions did not match
the required CUDA version, as described in Section 3.2.3.

At this point the upcoming Bullseye release of Debian,
version 11, has been chosen due to the package availability
problems and a lack of driver support for the targeted

3. https://pypi.org/project/tensorflow/#history
4. https://pip.pypa.io/en/stable/installing/

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

22 doi: 10.2313/NET-2020-04-1_05

graphics card series that were encountered with Debian
Buster.

As the Bullseye release of Debian is still in devel-
opment, neither the official release date nor the end of
life date is known yet, however extrapolating from the
Debian version history5 a release date in 2021 and an end
of life date around 2024 would match the current pace of
releases.

By changing the target OS to Debian Bullseye a
problem with the mandelstamm build scripts became ap-
parent, as the URL format for the security repositories
had changed for Debian Bullseye as elaborated upon in
Section 3.2.4. Thus the mandelstamm build scripts had to
be adapted in order to successfully build the OS image.

After this problem was addressed, the build script for
Debian Bullseye was modified by adding calls to the apt
package manager in order to install the Nvidia GPU driver
and system management interface from the Debian repos-
itories. Another call to the package manager was added
in order to install the aforementioned additional GPU
libraries which are fortunately available in the required
and matching version in the Debian Bullseye repositories.

Afterwards the built Debian Bullseye image was de-
ployed to the test server with the Nvidia RTX 2080
Super GPU, and the nvidia-smi command was called in
order to determine correct installation of the GPU drivers.
This could be confirmed as the nvidia-smi utility did
now provide the correct name of the card in the output
alongside the other statistics, it also reported both the
nvidia-smi and driver version as 430.64, which officially
supports the targeted card as listed in the release notes for
this driver6.

After all necessary tools and libraries have been suc-
cessfully installed Tensorflow 2 can be installed via pip,
however the version that is going to be installed has to
match the installed CUDA and cuDNN version. In our
case the chosen version was version 2.1.0rc0, which is
the first release candidate of Tensorflow version 2.1 and
requires CUDA 10.1 and cuDNN >=7.47.

After the first confirmation of driver support for the
installed card the next testing stage was executed by listing
available devices in Tensorflow as described in more detail
in Section 3.1.1. This returned the expected result of a
processing device list with one CPU and one GPU device
being available.

By running the test script in order to verify the avail-
ability of GPU acceleration a problem with Tensorflows
memory allocation behaviour on GPUs became apparent,
which is described in greater detail in Section 3.2.6.

After solving the GPU memory allocation issue, all
parts of the test script could be executed successfully on
both CPU and GPU, demonstrating full functionality of
the OS image.

3.1. Testing and Deployment

This section explains the methods used for testing the
functionality of the produced OS images.

5. https://wiki.debian.org/DebianReleases
6. https://www.nvidia.com/Download/driverResults.aspx/153714/en-

us
7. https://www.tensorflow.org/install/source#gpu

3.1.1. Initial testing by listing devices. For initial
testing the following two lines of code were used to list
the available processing devices, such as the CPU and
GPU.
from tensorflow.python.client import device_lib
device_lib.list_local_devices()

3.1.2. Deep learning test script. In order to test the
functionality of the Tensorflow installation and to ensure
that the installed CUDA and cuDNN versions work with
the chosen version of Tensorflow a custom test script has
been created.

It trains a neural network for image classification using
the CIFAR10 dataset8, and is structurally similar to a
Tensorflow tutorial example for CNNs9.

The script has two major sections, in the first section
convolutional layers are used, this section can be disabled
and thus skipped. This first section contains two Conv2D
layers10 with a Max-Pooling layer in between the two
Conv2D layers.

The second section of the script uses fully connected
layers, thus the input is first flattened. After the input has
been flattened two fully connected layers are added as
Dense layers11, with the first layer using a ReLU activation
function and the second (final) layer using the softmax
activation function.

Using these layers as described above, the model is
then trained for ten epochs over all images contained in
the CIFAR10 dataset.

3.2. Encountered Problems

This section elaborates on the problems that were
encountered during the creation and testing of the OS
images and their solutions.

3.2.1. Target GPU not supported in Debian Buster.
Due to the first build targeting Debian Buster, the latest
version of the driver available in the Buster-specific repos-
itories was installed, which was version 418.74.

However as we need to support an Nvidia RTX 2080
Super GPU this is not recent enough, as it does not support
any of the Super-series cards, which were released in July
of 201912.

This was noticed due to the nvidia-smi utility output
not reporting the name of the installed GPU correctly.

3.2.2. Tensorflow software requirements. There are also
problems with the availability of recent Python3 pip
versions on several Debian versions including Buster and
Bullseye, as the repositories only provide pip version
18.1, yet at least version 19 is required for our target
application Tensorflow 2.

8. https://www.tensorflow.org/datasets/catalog/cifar10
9. https://www.tensorflow.org/tutorials/images/cnn
10. https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D
11. https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
12. https://www.anandtech.com/show/14663/the-nvidia-geforce-rtx-

2080-super-review

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

23 doi: 10.2313/NET-2020-04-1_05

3.2.3. Mismatched GPU library versions in Debian
Buster. While the repositories for Debian Buster do
contain libraries for CUDA 10.1 support, none of the
other important libraries for GPU acceleration support
are available in version 10, instead only in version 9.2,
which could not be used successfully in combination with
Tensorflow 2. The problematic libraries are libcudart,
libcublas, libcufft, libcurand, libcusolver and
libcusparse.

3.2.4. Missing support for Debian Bullseye in mandel-
stamm. As mandelstamm does not have a specific build
script for Debian Bullseye, an image creation was first
attempted by copying the build script for Debian Buster
and changing the release name from Buster to Bullseye.

This however did not result in a successful image
creation as the security repositories could not be found.
After closer inspection of the build scripts and Debian
documentation, an adjustment had to be made to the
generic Debian build script as the URL of the security
repository had its format changed13, thereby creating a
special case in the build script.

3.2.5. Installation of the cuDNN Package. An impor-
tant library regarding GPU acceleration for deep neural
networks is Nvidias cuDNN package. It is only available
through a repository for Ubuntu, installations on other
distributions require a more generic package available for
download on Nvidias website through the Nvidia Devel-
oper Program14, which however requires a membership in
the mentioned developer program.

Thus it is necessary to install the package manually
according to Nvidias documentation15.

3.2.6. Issues with cuDNN and Tensorflows default
settings. When executing the test script on a GPU device,
an error about not being able to allocate memory was
returned. This turned out to be a configuration issue
instead of a driver or library issue and has been solved
by adding a small loop which iterates over the available
GPU devices and calls the following function for each
GPU device:
tf.config.experimental.set_memory_growth(device,
True)
After setting this flag for each GPU device the
convolutional network part of the test script could be run
without issues on the GPU device, which as described
in Chapter 4 allowed for a significant speedup over
executing it on the CPU.

3.2.7. Default build options of available Tensorflow
packages. During the execution of the test scripts on
the CPU using the Tensorflow 2.1.0rc0 build obtained
via the pip package manager the following warning was
logged:
Your CPU supports instructions that this
TensorFlow binary was not compiled to use:
AVX2 AVX512F FMA
Which implies that the execution times observed using

13. https://www.debian.org/releases/bullseye/errata#security
14. https://developer.nvidia.com/rdp/cudnn-download
15. https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html

when the CPU for the test script could be significantly
lowered by building Tensorflow from source with
enabled support for the advanced AVX instruction sets
and the fused multiply-add instuction set, which both
can accelerate a common operations of deep learning
applications significantly.

This is a problematic default build setting as a majority
of recent CPU architectures, starting with Intels Haswell
microarchitecture in June 201316 include support for the
AVX2 and FMA instruction sets.

If support for using these instruction sets is added in
future builds a meaningful speedup could be observed
when running deep learning applications without GPU
acceleration, as the SIMD instruction sets AVX2 and
AVX512 can improve the throughput of matrix multipli-
cations and other common operations in multiple neural
network types.

4. Performance Evaluation

In this section we compare the performance of the test
script when running on the CPU and the GPU.

The performance testing was conducted on a server
with the relevant specifications listed in Table 1.

TABLE 1: Testing server specifications

Part Equipped

Processor Intel Xeon Silver 4214 (12c24t, up to 3.20GHz)
Memory 8x32GiB DDR4 2400MHz in hexa-channel
Mainboard Supermicro X11SPi-TF
Graphics card Nvidia RTX 2080 Super

The test script (see Section 3.1.2) was used and the
complete execution time for each configuration was ob-
tained with the time command.

In order to show the speedup of different operations,
two different configurations were used for the test script
execution. First, the complete script including all opera-
tions was executed. For the second configuration the test
script was modified to skip the execution of convolutional
operations.

Both of these configurations were executed three times
with and without GPU acceleration and the execution time
for these tests was then averaged in order to alleviate the
effects of run-to-run variance.

TABLE 2: Performance testing results

Test CPU execution time GPU execution time

Complete 763.65 (14945.69) 90.73 (156.78)

Fully
connected
network 107.00 (1439.07) 63.49 (126.29)

Results format: real time (user time) in seconds

The results listed in Table 2 show that GPU accel-
eration provides a significant speedup, especially when
working with convolutional networks, which can be ex-
plained by inspecting the functionality of the layers and
the capabilities of the used hardware.

16. https://en.wikichip.org/wiki/intel/microarchitectures/
haswell_(client)#New_instructions

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

24 doi: 10.2313/NET-2020-04-1_05

Some of the operations in the script described in
Section 3.1.2 are rather compute bound, while other types
of operations, such as pooling or the processing of activa-
tion functions is rather memory bandwidth bound17. The
parallelizability of the layers is an important aspect of the
observed performance scaling, as the amount of compute
cores differs greatly between the used CPU, where 12
cores with 24 threads are available, and the used GPU,
where 3072 shader processors and 384 tensor cores are
ready to compute.

In memory bound operations the GPU will also have
an advantage as it features a 256bit wide memory bus
operating at 15500MT/s resulting in a theoretical peak
bandwidth of 496GB/s to the GDDR6 chips. In compar-
ison the CPU can access six channels of DDR4 memory
with a width of 64bits each, resulting in a 384bit wide
memory bus operating at 2400MT/s resulting in a theo-
retical peak bandwidth of 115.2GB/s.

With a complete execution of the test script we can
observe a speedup of 88.1% when enabling the GPU
acceleration over a CPU only execution. By disabling
the execution of the convolutional layers, the difference
in execution time shrinks significantly, however enabling
GPU acceleration still yields a 40.7% decrease in runtime.

With these numbers we can also see that the execution
of convolutional networks profits much more from GPU
acceleration, as the execution time compared to the re-
duced test configuration increases by 42.9% while the time
taken when executing on the CPU increases by 613.7%.

However, it is important to note that the chosen release
for Tensorflow 2 (2.1.0rc0), seems to lack support for
CPU instruction sets that could improve the execution time
when running on the CPU significantly, as described in
Section 3.2.7.

5. Conclusion and Future Work

The created OS image supports the use of GPU ac-
celeration with Tensorflow 2, which provides a significant
reduction in runtime for deep learning applications, espe-
cially in applications which include convolutional neural
networks.

Currently the OS image is based on Debian Bullseye
for the operating system, featuring the Nvidia drivers in
version 430.64 for support of their latest series of graphics
cards, as well as a number of accompanying libraries.

Other installed software includes Python 3.7, a recent
version of the pip package manager and most importantly
recent versions of Tensorflow 2 and PyTorch.

With the OS image ready for deployment, time is
saved in the development workflow as tedious setup tasks
can be skipped by deploying the OS image to an available
server and using it for the development tasks.

The building process did also show that in order to
create an environment featuring recent versions of the Ten-
sorflow and PyTorch frameworks with GPU acceleration
support, special attention needs to be brought to the used
graphics cards and the GPU driver version, as well as the
available libraries regarding GPU acceleration, as these
libraries have dependencies on specific CUDA versions.

17. https://docs.nvidia.com/deeplearning/sdk/dl-performance-
guide/index.html

For the future the OS image can be extended to include
more available deep learning frameworks as well as more
software tools that ease the development workflow.

Additional images using other operating systems, e.g.
Ubuntu as a basis could also be created in order to expand
the available software support through more repositories,
thus allowing for more use cases and letting developers
choose an environment with which they are already fa-
miliar.

If a version of this image is to be created for CPU
only execution of Tensorflow 2 applications, it would
be beneficial to check the target CPU for its supported
instruction sets, compile Tensorflow from the source code.
By including all instruction sets that the target CPU can
support in the compilation settings a performance advan-
tage over the precompiled binaries available through pip
can be achieved.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

25 doi: 10.2313/NET-2020-04-1_05

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

26

Modern Traceroute Variants and Adaptations

Julius Niedworok, Johannes Zirngibl, Patrick Sattler∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: julius.niedworok@tum.de, zirngibl@net.in.tum.de, sattler@net.in.tum.de

Abstract—Traceroute is a widely used tool to perform mea-
surements on the network path from a source to a destina-
tion. However, there are some issues when applying it to the
recent structure of the Internet. Load balancing techniques
are very common to encounter on today’s Internet paths.
This article describes a few approaches that can be used
to adapt the original concept of traceroute to the current
structure of the Internet. When looking at network topology
discovery, the Multipath Detection Algorithm (MDA) and its
lightweight version MDA-Lite come in place. For broader
discovery Yelling at Random Routers Progressively (Yarrp)
can help to speed up the process, which is advantageous for
measurement of short living network topologies. However,
when tracing a single application flow, Service traceroute
provides more precise results. Choosing the right approach
for a given use case is crucial in order to obtain appropriate
results.

Index Terms—Active Internet Measurements, Traceroute,
Network Topology Analysis

1. Introduction

Over the years traceroute became a well-known tool
for network administrators to perform network diagnosis
tasks. The original approach introduced by V. Jacobson
in 1989 [1] is implemented in the standard Linux tool
traceroute. The idea of traceroute is to provide the user
insights on the path, which is taken through a network to
a given destination. It creates active measurement probes
for each hop along the path. This is done iteratively by
increasing the probe’s Time To Live (TTL) and inspect
the ICMP response message of the host where the TTL
expired [2]. The probe packets can be of different protocol
types depending on the use case and on the network
infrastructure. Although traceroute is widely used today,
it does not fit the needs of the present structure of the
Internet. Traditional traceroute is based on the assumption
that there is a single forward path to the destination host.
As shown in Figure 1, this can be problematic in load bal-
anced networks. Traceroute would send a probe to node A
with TTL n. When increasing the TTL to n+1, the probe
could either traverse the upper or the lower path. In case
of Figure 1 the probe reaches node B. Traceroute again
increases the TTL to n+2. However, this time the probe
traverses the lower path, through node C, and discovers
node F. Given that the previous probe discovered node B,
traceroute would assume that there exists a path between
node B and F. The ICMP response message contains only

A
B

C

D

E
F

A
B

C

D

E
F

Actual	Network	Topology

Traceroute	Discovery

Figure 1: Problems using Traditional traceroute

the address of the node where the TTL expired. Therefore,
traditional traceroute cannot detect, if the probe traversed
through a different path than previous probes. Moreover,
nodes C and D remain hidden.

The utilization of load balancing techniques has in-
creased excessively over the last years [3]. In general
there are different ways of performing load balancing on
network traffic [4], [5]:

• Per-destination load balancing depends on the
destination specified in the packet.

• Per-flow load balancing derives its decision from
the packets flow identifier.

• Per-packet load balancing concentrates on keep-
ing the load as equal as possible. No effort is made
to keep packets of a single flow on the same path.

Per-destination load balancing does not create a problem
when tracing the forward path to a single destination
host. Traditional traceroute changes the header to be able
to match an ICMP response packet to its corresponding
probe packet [2]. This is done by varying the destination
port field for UDP probes and the sequence number for
ICMP Echo probes. In case of per-flow load balancing
such behavior leads to potential different paths for each
probe packet. As described by Augustin et al. [6], this
can be mitigated using Paris traceroute. Paris traceroute
explicitly controls the packet header to direct the packet
through a certain path. An ICMP response packet contains
the discarded header of the probe, as well as the first eight
octets of the payload. Instead of changin the flow identi-
fier, Paris traceroute makes use of these eight octets for
matching probes to the responses. In consequence, Paris
traceroute can deal much better with topologies such as the
one shown in Figure 1. Paris traceroute cannot get around

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

27 doi: 10.2313/NET-2020-04-1_06

the problems created by per-packet load balancing due to
its randomness. However, in those cases where there is
per-packet load balancing employed Paris traceroute can
detect it.

These days traceroute is not only used for what it
was initially intended. It is applied to a broader range
of problems, i.e., detection of all load balanced paths or
tracing specific services. Some approaches even separate
from the idea of tracing towards a single destination host
and rather try to get a bigger picture of the network
topology [7], [8]. The following sections will look at
recent traceroute-based approaches that deal with these
additional use cases.

2. Network Discovery

This section describes approaches to discover the net-
work in a broader sense. First, it explains an approach
to discover all paths from a single source to a single
destination. Afterwards, it diverges from the traditional
scenario of tracing towards a single destination. A recent
approach to discover the network topology is presented.

2.1. Detecting all Paths

After introducing Paris traceroute, the authors ex-
plored a way of getting a broader view of the network
topology [9]. In 2009 Darryl Veitch et al. [7] present their
final version of the Multipath Detection Algorithm (MDA).
MDA extends Paris traceroute to reveal all possible load
balanced paths to a given destination. It runs iteratively
through the paths and elicits all interfaces at each hop.
In order to enumerate the paths from a node at hop
h, it generates a number of probes with random flow
identifiers and selects the ones which reach that node.
Subsequently, it sends these probes to hop h+1 to discover
all successors. It sends these probes under the assumption
that hop h is a load balancer that evenly allocates traffic to
k paths. MDA is using a statistical approach to compute
the number of probes nk which need to be sent over the
node at hop h in order to enumerate all of its successors
at a given level of confidence. If it is not possible to
find more than k successors after sending nk probes,
MDA stops and assumes to have enumerated all possible
successors. However, in case k + 1 successors have been
found, MDA continues with the assumption that there are
at most k+1 successors. Correspondingly, it will generate
and send nk+1 probes. With this approach MDA claims
to find all load balanced paths between a source and a
destination host.

There are different constructs that can be encountered
when discovering the network topology. As soon as load
balancing comes in place, so-called, diamonds will be
exposed. According to the definition of Augustin et al.
“a diamond is a subgraph delimited by a divergence
point followed, two or more hops later, by a convergence
point, with the requirement that all flows from source
to destination flow through both points” [10]. Figure 2
shows two examples of diamonds. The upper diamond is
an example of an unmeshed diamond and the lower one an
example of a meshed diamond. Vermeulen et al. [3] define
meshing between two hops to meet one of the following
criteria:

MDA	on	unmeshed	Diamond

n1

n4
4n1+δ 4n1

2n1

MDA	on	meshed	Diamond

n1

n4
4n2+δ' 4n2

2n1

2

2

2

2

2

2

2

2

1

1

3

3

3

3

4

4

Figure 2: MDA on Meshed and Unmeshed Diamonds

• If the two hops h and h+1 have the same number
of nodes, then the out-degree of at least one node
of hop h must be two or more. Consequently, at
least one node at hop h+1 will have an in-degree
of two or more.

• If hop h has fewer nodes than hop h+1, then the
in-degree of at least one node at hop h + 1 must
be two or more.

• If hop h has more nodes than hop h+1, then the
out-degree of at least one node at hop h must be
two or more.

A diamond is considered to be meshed as soon as one
hop is meshed. In the example of Figure 2 MDA would
execute the following steps in order to detect the diamond
topology [7]:

1) To discover hop 1, MDA sends n1 probes with
the assumption that there is only one node. As it
cannot discover a second node, it will stop after
n1 probes.

2) In order to discover hop 2, MDA will send n1
probes again. However, this time it will discover
another node before it stops. Therefore, it will
continue with the assumption that there are two
nodes. While sending n2, probes it will discover
a third node and, after adjusting the number of
probes, a fourth one. As it cannot discover a fifth
node, it will stop after sending n4 probes.

3) When discovering hop 3, MDA starts with the
assumption that each of the four nodes has one
successor. A number of n1 probes need to be
sent over each of the four nodes. As the set
of n4 probes that revealed these four nodes at
hop 2 does not contain a number of n1 probes
per hop 2 node, MDA needs to generate more
probe packets. When generating new probes, it
is unlikely that the new probes are evenly spread
over all four nodes. Therefore, an overhead of a
few additional probes, denoted as δ will occur.
In the case of the unmeshed diamond, MDA
will stop after sending these probes as only one

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

28 doi: 10.2313/NET-2020-04-1_06

successor node is discovered for each node at
hop 2. For a meshed diamond, however, MDA
will detect a second node. It needs to send n2
probes over each node at hop 2. Therefore, MDA
generates another set of additional probes with a
potential overhead of δ′. As no third node will
be discovered, MDA will stop after sending these
probes.

4) In the last step MDA will discover the node at
hop 4 by sending a number of n1 probes per node
at hop 3. As there are already n1 probes available
per hop 3 node, there is no need to generate
new probes. MDA will stop after sending a total
number of 2n1 probes.

This procedure requires a lot of active measurement
traffic to be generated. For this reason, Vermeulen et al. [3]
came up with a lightweight version of the algorithm,
called MDA-Lite. It makes use of the benefit that nearly
half of all diamonds, which are found in the Internet, only
have a single hop with multiple nodes [3]. In consequence,
meshed diamonds are very uncommon. This allows MDA-
Lite to minimize the situations where it needs to generate
new probes for already discovered nodes, as seen in Step 3
of full MDA. Figure 3 illustrates the process of MDA-Lite
on the same unmeshed diamond as in Figure 2. Discovery
of hop 1 and 2 works the same way as for MDA. When
revealing hop 3, the benefit of MDA-Lite comes into
effect. Instead of generating and sending 4n1 + δ probes,
MDA-Lite will consider the set of nodes at hop 2 as one
node and proceed as usual. As two nodes are discovered,
n2 probes need to be sent. These probes can be taken from
the set of n4 probes, which were sent before. Similar to
the third step, MDA-Lite will consider all nodes at hop 3
as one and send a total number of n1 probes to discover
hop 4. MDA-Lite will therefore send 2n1 + n2 + n4
probes in total. In contrast, full MDA will send 11n1 + δ
probes for the unmeshed and 8n2 + 3n1 + δ′ probes
for the meshed diamond. Keeping in mind that for most
confidence levels, including the ones used by Vermeulen
et al., n2 < 2n1 holds, this clearly shows the amount of
probes saved by MDA-Lite. In their paper Vermeulen et
al. compare the savings in more detail based on actual
numbers by defining example values for all parameters of
MDA-Lite [3].

The above steps of MDA-Lite do not reveal all edges
of the graph even in unmeshed diamonds. However, the
task to obtain the rest of the edges is deterministic rather
than stochastic. It will therefore most likely require less
probes for high levels of confidence. The three possible
situations are handled as follows [3]:

• In case there are more nodes at hop h than at hop
h + 1, additional probes are generated for each
node at hop h and sent to hop h + 1. This will
find all successors for the nodes at hop h and thus
find the missing edges.

• If there are more nodes at hop h+1 than at hop h,
the probes that have discovered the nodes at hop
h+1 will be sent to hop h. This will unmask the
missing edges.

• Given that both hops have the same amount of
edges, both of the above procedures are applied.

n1

n4
2

2

2

2

1
3

3
4

n1 n4

n2

22
2 2

1
3

3
4

n1 n4
n2 n1

22
2 2

1
3
3

4

1/2.

3.

4.

Figure 3: MDA-Lite on Unmeshed Diamond

Assuming there is no meshing, MDA-Lite will perform
with much less probes than full MDA. In order to de-
tect meshing MDA-Lite, applies stochastic probing for
potential meshing. This includes the need for the costly
generation of additional probes. The amount of these
additional probes can be set by the user as a parameter
introduced by MDA-Lite. For all meaningful values used
by Vermeulen et al. the amount of additional generated
probes is less than with full MDA [3]. In case meshing is
detected, MDA-Lite will switch to full MDA.

2.2. Large Network Topology Discovery

Augustin et al. [10] already came up with the idea
of getting a broader view on the network topology. They
started using MDA to trace traffic to a network prefix
rather than an address. However, the problem of exten-
sive active measurement network traffic gets even more
significant when tracing towards a network prefix. When
requiring a lot of time to complete the measurement of
a network topology, one can encounter changes of the
topology, which will bias the result of the measurement.
Due to that problem, Beverly introduced an implemen-
tation called Yelling at Random Routers Progressively
(Yarrp) [8]. He determined that the problems of most
traceroute implementations, when it comes to larger net-
work topology discovery, to reside in the following:

• Maintenance of State for each probe that has not
yet received a response: this state usually consists
of timing information as well as the probes iden-
tifier.

• Sequential Probing of the path: this can lead to
a significant execution time for large networks.
Moreover, sending probes sequentially, hop by hop
and node by node, can lead to intrusion detection
mechanisms to identify the probe traffic as a se-
curity risk.

Yarrp deals with the sequential probing problem by adjust-
ing the order of the probes by randomizing the destination
and TTLs of the probes. To achieve pseudo randomness,
the target IP addresses, as well as the TTLs, are encrypted

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

29 doi: 10.2313/NET-2020-04-1_06

by a keyed block cipher. This projects the input of IP
addresses and TTLs onto a new pseudo random order. To
eliminate the need to maintain state for each probe, Yarrp
encodes all state information into the probe packet. This
is done by overloading the TCP header of the probe. For
example, the TTL of the original probe gets encoded in the
IP identification field [11] and the elapsed time resides in
the TCP sequence number. The approach of Yarrp can be
beneficial, especially in situations when the measurement
time is important [8]. It allows measurement and analysis
of short living topologies.

3. Service Oriented Approach

Tracing the path of a specific application’s network
traffic can be hard using (Paris) traceroute. The application
can have multiple flows to different destination hosts. In
order to solve this task with Paris traceroute, one would
have to create probe packets with flow identifiers that
match the flow identifiers of the applications network
traffic [12]. But even if the flow identifier matches the
applications flow identifier, for TCP connections many
routers discard packets that do not belong to an already
known open connection [13]. The idea that many ser-
vice oriented tracing tools apply is that they place their
probe packets into an existing flow. There are different
implementations available for TCP connections [13]–[15].
However, they all work under the assumption that there is
a single connection that is established for each application.
A lot of applications fetch their content from multiple
sources over different connections. This makes it hard
to observe the paths, which the network traffic of an
application is taking through the Internet.

For this reason, Morandi et al. [16] proposed an im-
plementation called Service traceroute. This tool uses the
idea of previous service oriented implementations, but it
provides a feature to automatically select all flows to trace
based on high level user input and provides the capability
to trace them simultaneously. For example, the user can
specify to trace all flows related to traffic of the streaming
service Youtube by using its name as a service specifier.
Moreover, the tool also works with UDP.

The execution of Service traceroute is split into two
phases:

• The observation phase identifies the flows to be
traced by observing the specified network inter-
face. The flows are identified by the high level
search terms of the user. To achieve this kind of
functionality, a database of services signatures was
created and is used to identify the services.

• The path tracing phase executes the probing on
each identified flow. It stops probing as soon as
the application closes the TCP connection or after
a given timeout for UDP.

The probe packets are constructed from the observed
packets of the actual application flow. For TCP packets,
Service traceroute uses empty TCP Acknowledgements
with the same flow identifier and sequence number as
probe packets. In order to match the ICMP response
messages to the probes, it uses the IP Identification
field [11]. For UDP packets, Service traceroute constructs

UDP packets with an empty payload using the same flow
identifier as in the original packets.

Service traceroute can be a useful tool, especially
when tracing short living flows, such as small web down-
loads [16]. On the one hand, the probe traffic will result
in a higher overhead in these situations. On the other
hand, other Tracing tools could be hard to launch in
these situations, as they do not provide any reasonable
fast way of identifying which flows to trace. As part of
their work, Morandi et al. compared Service traceroute to
Paris traceroute with and without MDA [16]. For Paris
traceroute they used the same flow identifier as the flow
identifier of the application traffic. The results show that
7% of the discovered paths by Service traceroute could not
be discovered by Paris traceroute. When using MDA to
discover all paths, more than 40% of the paths reported
by Service traceroute are not found within all paths re-
ported by MDA. The authors explain the reason for Paris
traceroute performing worse than Service traceroute with
the possibility that some routers drop packets that do not
belong to an active flow. This proves the need for tools
that inject their probes into active flows.

Morandi et al. also inspected potential interference
with the application of the observed flows. They did
not find any conflict with the packets being sent by the
application.

4. Conclusion and Outlook

As the use cases of traceroute slowly expanded to a
broad range of problems, the choice of the right imple-
mentation is important. When finding all possible exist-
ing paths towards a single destination, no matter what
the packet’s payload will look like, then MDA and its
lightweight version MDA-Lite will be the right choice [3].
As a tool for large network topology discovery Yarrp tries
to speed up the execution time. This makes it particularly
useful to discover short living network topologies [8]. In
case of tracing down a single application, the user might
not necessarily be interested in parts of the network that
are not taken by the applications network traffic. In this
case the use of service oriented approaches provides the
best results [16].

Besides the approaches discussed in this article, there
exist many more solutions. Most traceroute-based solu-
tions do not investigate the use of the Record Route field
of the IP header [17]. This field is actually meant to
allow tracing the paths of network traffic. Each router
along the path will include its address in a list inside
the IP header. Tcpsidecar is a tool integrating the Record
Route field [14]. Unfortunately, the amount of hops being
captured by the Record Route field is limited and most
routers do not adhere to its specification. Moreover, some
firewalls even block packets that have the record route
option specified.

Instead of actually improving the core behavior of
traceroute, there are tools available which try to focus on
filtering out the wrong paths reported by traceroute [18],
[19].

There are also a few attempts to deploy active mea-
surement infrastructure to deal with the problem of mea-
suring the Internet. One of the most famous ones is RIPE
Atlas [20]. Relying on global infrastructure brings some

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

30 doi: 10.2313/NET-2020-04-1_06

benefits as well as some other challenges, which are not
discussed as part of this paper.

All in all, traceroute remains a useful tool for ad-hoc
measurements. There are a few issues with the traditional
approach that can be mitigated by choosing the right
improvement.

References

[1] MAN(8) Traceroute for Linux, Linux 5.4, 2019, accessed Dec 09
2019. [Online]. Available: http://man7.org/linux/man-pages/man8/
traceroute.8.html

[2] D. Malone and M. Luckie, “Analysis of ICMP Quotations,” in Pas-
sive and Active Network Measurement, S. Uhlig, K. Papagiannaki,
and O. Bonaventure, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 228–232.

[3] K. Vermeulen, S. D. Strowes, O. Fourmaux, and T. Friedman,
“Multilevel MDA-Lite Paris Traceroute,” in Proceedings of the
Internet Measurement Conference 2018, ser. IMC ’18. New York,
NY, USA: ACM, 2018, pp. 29–42.

[4] Juniper, “Configuring Per-Packet Load Balancing,” 2018,
accessed Dec 09 2019. [Online]. Available: https://www.
juniper.net/documentation/en_US/junos/topics/usage-guidelines/
policy-configuring-per-packet-load-balancing.html

[5] Cisco, “How Does Load Balancing Work?” 2015, accessed Dec 09
2019. [Online]. Available: https://www.cisco.com/c/en/us/support/
docs/ip/border-gateway-protocol-bgp/5212-46.html

[6] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman,
M. Latapy, C. Magnien, and R. Teixeira, “Avoiding Traceroute
Anomalies with Paris Traceroute,” in Proceedings of the 6th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’06.
New York, NY, USA: ACM, 2006, pp. 153–158.

[7] D. Veitch, B. Augustin, R. Teixeira, and T. Friedman, “Failure
Control in Multipath Route Tracing,” in IEEE INFOCOM 2009,
April 2009, pp. 1395–1403.

[8] R. Beverly, “Yarrp’Ing the Internet: Randomized High-Speed Ac-
tive Topology Discovery,” in Proceedings of the 2016 Internet
Measurement Conference, ser. IMC ’16. New York, NY, USA:
ACM, 2016, pp. 413–420.

[9] B. Augustin, T. Friedman, and R. Teixeira, “Multipath tracing with
Paris traceroute,” in 2007 Workshop on End-to-End Monitoring
Techniques and Services, May 2007, pp. 1–8.

[10] B. Augustin, T. Friedman, and R. Teixeira, “Measuring Load-
balanced Paths in the Internet,” in Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’07.
New York, NY, USA: ACM, 2007, pp. 149–160.

[11] J. Touch, “Updated Specification of the IPv4 ID Field,” Internet
Requests for Comments, RFC 6864, February 2013, accessed Dec
09 2019. [Online]. Available: https://tools.ietf.org/html/rfc6864

[12] M. Luckie, Y. Hyun, and B. Huffaker, “Traceroute Probe Method
and Forward IP Path Inference,” in Proceedings of the 8th ACM
SIGCOMM Conference on Internet Measurement, ser. IMC ’08.
New York, NY, USA: ACM, 2008, pp. 311–324.

[13] J. Edge, “Tracing behind the firewall,” LWN.net, Jan 2007, accessed
Dec 09 2019. [Online]. Available: https://lwn.net/Articles/217076/

[14] R. Sherwood and N. Spring, “Touring the Internet in a TCP
Sidecar,” in Proceedings of the 6th ACM SIGCOMM Conference
on Internet Measurement, ser. IMC ’06. New York, NY, USA:
ACM, 2006, pp. 339–344.

[15] D. Kaminsky, Paratrace Man Page, Linux 5.4, 2019, accessed
Dec 09 2019. [Online]. Available: https://man.cx/paratrace

[16] I. Morandi, F. Bronzino, F. Bronzino, and S. Sundaresan, “Service
Traceroute: Tracing Paths of Application Flows,” in Passive and
Active Measurement, D. Choffnes and M. Barcellos, Eds. Cham:
Springer International Publishing, 2019, pp. 116–128.

[17] J. Postel, “Internet Protocol,” Internet Requests for Comments,
RFC 791, September 1981, accessed Dec 09 2019. [Online].
Available: https://tools.ietf.org/html/rfc791

[18] A. Marder and J. M. Smith, “MAP-IT: Multipass Accurate Passive
Inferences from Traceroute,” in Proceedings of the 2016 Internet
Measurement Conference, ser. IMC ’16. New York, NY, USA:
ACM, 2016, pp. 397–411.

[19] N. Brownlee, “On Searching for Patterns in Traceroute Responses,”
in Passive and Active Measurement, M. Faloutsos and A. Kuz-
manovic, Eds. Cham: Springer International Publishing, 2014,
pp. 67–76.

[20] “Ripe Atlas,” RIPE Network Coordination Centre, accessed Dec
09 2019. [Online]. Available: https://atlas.ripe.net/

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

31 doi: 10.2313/NET-2020-04-1_06

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

32

Smart-M3 vs. VSL for IoT

Ilena Pesheva, Christian Lübben∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: pesheva@in.tum.de, luebben@net.in.tum.de

Abstract—The benefits of autonomous data exchange in
software environments and multi-device communication have
triggered the development of various middleware services to
enhance data exchange in distributed systems. These mid-
dleware solutions have gained great importance in reducing
overall system complexity and enabling interoperability in
the context of information sharing.

This paper takes a closer look at two data exchange mid-
dleware solutions: The Smart-M3 platform and VSL overlay
for Internet of Things. They both solve key challenges in the
environment of device heterogeneity and propose a data-
centric approach to information exchange.

We explain the core differences in their key features and
give an overview of their field of application.

Index Terms—middleware, data-centric, interoperability

1. Introduction

In the era of rapid digitalization and constant emerg-
ing of new technological devices, the idea of seamless
and wireless information exchange between these devices
has evolved to a need. This is referred to as ubiquitous
computing, which is gradually emerging as the dominant
type of computer access [1]. As M. Weiser states in [1],
it is enabling nothing fundamentally new, but by making
everything faster and easier to do, it is transforming the
perception of what is possible. An example is the Internet
of Things (IoT) that quickly gained importance as part
of the Internet mainly because of its immense impact,
remarkable growth and capability. Its main features are
interrelating "computing devices, mechanical and digital
machines, objects, animals or people that are provided
with unique identifiers (UIDs) and the ability to transfer
data over a network without requiring human-to-human or
human-to-computer interaction" [2]. Benefiting from ICN-
principles IoT has a data-centric traffic design rather than
addressing a specific host. This results in improvements in
data latency, scalability, reliability, resilience and is more
energy efficient than typical host-based communication
[3].

The distributed nature of the devices participating in an
IoT system and the heterogeneity of application scenarios
introduce interoperability problems and challenges for
developers. This triggered the introduction of the Virtual
State Layer (VSL). It is, as M.-O. Pahl, S. Liebald, and
C. Lübben specify in [3], "a data-centric middleware that
securely unifies the access to distributed heterogeneous
IoT components.". Its core tasks are to discover, read and

write data that another IoT component has produced and
thus to be able to orchestrate IoT environments.

The idea behind it is Service Oriented Architecture
(SOA). It modularizes the complex IoT applications into
smaller mashups, creating microservices that are simple
and can be later reused. It fully separates logic and data
in IoT services which contributes to major VSL features
such as delivering service data even when a service is
offline or security-by-design, meaning that security is fully
implemented within the VSL [4].

The interest of getting computing devices to interop-
erate and to do so with whatever devices are locally close
at any point in time has also raised the question of dealing
with complexity and interoperability issues. Participating
in different domains means implementing several different
standards, which are often serving specific use cases and
not aiming to create a general interoperability framework
[5]. The semantic web is attempting to defy this issue
by implementing an interoperability framework with the
ultimate goal of making a machine understand the World
Wide Web data. The result would be a "giant global graph"
of linked data that describes the information of the web in
a standard model for data interchange - Resource Descrip-
tion Framework (RDF) [6] and Web Ontology Language
(OWL) [7] that enable the encoding of semantics [8].
Nonetheless, there is a need for a mechanism that enables
sharing of dynamic, rapidly changing information on a
local level about the current state of a device and the
web is not the most suitable environment for that purpose.
Therefore, the interoperability platform Smart-M3 was
created with the goal, as explained in [5], "to (enable
devices) to easily share and access local semantic infor-
mation, while also allowing access to the locally relevant
parts of the ’giant global graph’ to be available". Smart-
M3 acts as a smart space solution that enables devices of
all kinds to engage in interoperability and have a shared
view of data and services. The goal is to provide a better
user experience where users can effortlessly add or remove
devices from the platform and grant every participating
device the same information access.

The similarities between the VSL and Smart-M3 plat-
forms in their main purpose and idea raises the importance
to differentiate them and thus to be able to apply them
accordingly.

2. Feature comparison

Both VSL and Smart-M3 platforms serve as dis-
tributed systems middleware and share the common pur-
pose of enabling interoperability in heterogeneous envi-

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

33 doi: 10.2313/NET-2020-04-1_07

ronments. However, they rely on different architectural
approaches and comprehend data in a different manner.
The following section gives a brief overview of the general
system architecture of Smart-M3 and VSL. Furthermore,
we address their core differences considering the follow-
ing key feature components: data access, data storage, data
discovery, data transport, semantic structure and security.
This step-by-step comparison will allow us to obtain a full
perspective of the functional and semantic divergence of
each system.

2.1. General system architecture

Smart-M3 works on the basis of a blackboard archi-
tectural model and implements the idea of space-based
computing. The architecture it implements consists of
two core components: knowledge processors (KP) and
semantic information brokers (SIB) that may be concrete
or virtual. The core of the system is hosted by a device
which contains the SIB and the physical data base. Then
there are other devices hosting KPs - pieces of software
implemented to read and contribute data to a SIB [9].
One or more SIBs connected to each other define a smart
space that contains information provided by the KPs. An
illustration example of a M3 smart space distribution is
presented in Figure 1 featured in [10] by J. Honkola, H.
Laine, R. Brown and O. Tyrkkö.

Figure 1: Smart-M3: SIB and KP distribution

The VSL overlays key components are the so-called
Knowledge Agents (KA) that manage data for different
services. Every KA serves the purpose of storing relevant
data for a specific node while also enabling inter-service
communication [3]. Figure 2 described in [3] gives a
detailed view of the VSL architecture model, consisting
of a hardware underlay with IoT nodes, VSL Peer-to-
Peer overlay and multiple microservices that register at
a KA. The VSL offers IoT nodes unified access to the
Knowledge Agents, which can also run on the same IoT
node like a service [4].

2.2. Data access

The connection between the SIBs in Smart-M3 is en-
abled by a protocol providing distributed deductive closure

Figure 2: VSL general architecture and logical connectiv-
ity

[11]. This allows all KPs to access the same information
in the smart space with no regard of the specific SIB they
are connected to.

[5] A KP can access a SIB by using Smart Space Ac-
cess Protocol (SSAP). This protocol has eight operations:
join, leave, insert, remove, update, query, subscribe and
unsubscribe. Therefore, the KPs are able to interact with
the content in the smart space. The operations enabling
this interaction are not concrete as they depend on the
defined parameters and the actions that SIB and KP should
initiate. They may also be encoded using different formats,
JSON or XML for example.

[5] The protocol uses sessions to establish a connec-
tion between the KP and the SIB components. First, a join
operation is executed by the KP, the SIB then inspects it
and decides whether the KP can join or not. Following
a successful join the KP is allowed to perform other
activities. If the SSAP protocol is successfully supported
by the SIB and KP implementations interoperability will
be ensured.

The VSL, as mentioned in the Introduction, finds its
specific purpose in Internet of Things services. Its working
principle is to fully decouple data from hosts providing
ICN properties [12]. Unlike Smart-M3, it is implemented
as self-organizing Peer-to-Peer overlay, enabling data-
centric communication between and within IoT hosts. It
targets microservice-based architecture in order to run
independent IoT microservices. Access is based on hi-
erarchical data item identifiers and is enabled via get and
set, subscriptions to changes and stream connections [4].
This is to be differentiated from the Smart-M3 data access
method, which is push-based one instead of a publish-
subscribe one as in VSL.

2.3. Data Storage

Smart-M3, as already stated in Section 2.1, has two
key components - the knowledge processor and the seman-
tic information broker. The information is stored in the
smart space, consisting of one or more SIBs, as an RDF
graph. The storage is realized on some defined ontology,
however, there is no obligation for using a specific one.
The KPs, having once successfully accessed the smart

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

34 doi: 10.2313/NET-2020-04-1_07

space, are then able to contribute to or to read the stored
in the smart space content. [5]

VSL works on a different principle for storing data
(see Figure 2). Instead of having a distributed shared
memory architecture that contains all the information like
the smart space in the Smart-M3 platform (see Figure
1), it stores data always at the source. This follows as
a consequence of the disconnection between logic and
data [4]. The platform implements data managing agents,
the KAs, which are connected to each other in a Peer-to-
Peer structure. Each of them is responsible for running
a number of microservices and stores data relevant to
them. This results in distributing information to be stored
and retrieved all over the network. Therefore, locality is
an important issue when dealing with VSL, especially
when information exchange happens constantly. However,
due to the full location transparency in the data lookup
process, data can be stored on any KA, not necessarily on
the one that is running on the same IoT node (source) as
the service.

2.4. Data Discovery

The VSL, as already mentioned in Section 2.1, imple-
ments data discovery in a Peer-to-Peer manner between
the KA peers. The KAs are assigned with overlay IDs
and an underlying address that can be IP-Address. The
data node discovery happens via special tags, provided by
the KAs, which return all instance addresses associated
with the given tag. This means that the semantic lookup
happens KA-locally via a search for coupling candidates.
Services do not bind statically, unlike how the Knowledge
Processors in Smart-M3 bind to their services.

In contrast to the encapsulated nature of the VSL
data discovery that is fully integrated and closed to the
concrete IoT network, the Smart-M3 platform is allowed
access to parts of the "giant global graph" that results
from the Semantic Web [8], in addition to sharing and
accessing local semantic information between the engaged
software entities and devices. Thus, it is making use of
both local and global information, represented as an RDF
graph. This allows easy linking of data between different
ontologies, which aims to solve the interoperability issue.
Unlike the Semantic Web, which represents the idea of
a single, centralized web of machine-understandable in-
formation, Smart-M3 sets distinct spots, the Knowledge
Processors, in the Web. These spots may be connected
to many devices of different kinds and gather specific
machine-understandable information that is unique but
non-exclusive for the particular KP and has a concrete
focus and purpose. Overlapping of information between
the KPs is even needed to ensure interoperability [5].

2.5. Data Transport

[5] In the Smart-M3 interoperability platform, the
core component responsible for data interaction is the SIB.
Its internal architecture consists of five layers: Transport
layer, Operation handling layer, Graph operations layer,
Triple operations layer and Persistent storage layer. The
transport layer, being the first access point of the SIB
architecture, must ensure that various domains, service
architectures and networks are able to communicate and

exchange information, regardless of their different com-
munication capabilities. To be able to overcome this issue,
the SIB supports various communication mechanisms,
such as Bluetooth, TCP/IP, HTTP and NoTA. The most
suitable mechanism is being selected depending on the
operating environment. This indicates once more one of
the core principles in Smart-M3 - to be able to operate
regardless of the communication mechanisms restrictions.

[4] As already mentioned in Section 2.3, VSL or-
ganizes its information exchange in a Peer-to-Peer pro-
cess by distributing it between a number of Knowledge
Agents. Thus they must be capable of addressing each
other accordingly. The information exchange is enabled
via IP unicast and multicast connections. Unicast is used
in the case of a single recipient of the data and multicast
- as the core maintenance of the overlay. The Knowledge
Agent has a Transport Manager, which along with the
Connection Manager and the Overlay Manager, manages
the connectivity between the IoT nodes. It uses HTTP
over TCP/IP as a transport protocol, although different
protocols are also applicable.

In contrast to Smart-M3, VSL does not adopt any other
data transport technology, such as Bluetooth for example,
as the communication transport happens within the VSL
overlay. It does not have the need to accommodate to the
different capabilities of other domains or service architec-
tures like Smart-M3 does.

2.6. Semantic Structure

[5] The Smart-M3 platform allows storing and query-
ing information on the basis of tuple space mechanisms.
This means that data is exchanged between a consumer
and a producer entity. In the case of Smart-M3 these are
the SIB and the KP respectively. Data is produced in tuple
form and retrieved from the consumer using a specific
pattern. As mentioned in Section 2.5, there are five logical
layers responsible for the access, operations and storage of
data to the SIB. After access has been established, requests
in the form of SSAP operations run in threads to query,
insert or remove information from the RDF store [6].
This is handled by the Graph operations layer where the
operations are being scheduled. In the Triple operations
layer happens the inserting, querying and removing of
triplets from the RDF store. Triplets, connected to form a
graph, represent the architecture or the RDF data format.
The linking of triplets results in a structured data graph,
resembling the World Wide Web. A triple is a statement
in the form subject-predicate-object (e.g the sky /subject/
has the color /predicate/ blue /object/). The RDF syntax
is abstract, meaning that it can be represented by using
a variety of notations in the arrangement order subject-
predicate-object. The semantic is the representation of
the subject, predicate and object roles in the statement.
Due to the RDF format of data its linking under different
ontologies has been made extremely easy, reducing system
complexity and enabling cross-domain interoperability.

[3] Similarly to the Smart-M3 platform, VSL also
implements a tuple-space mechanism in the form of a
structured data item graph to organize its data, although
in a hierarchical manner. Each time a service is being
registered at a Knowledge Agent, an identifier is passed
for the data model representation. An instance of this

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

35 doi: 10.2313/NET-2020-04-1_07

model is being created at the KA allowing the connection
and communication of this service to other services via the
KA API. The data nodes participating in the structured
graph are in fact the digital data twins of the managed
IoT software and hardware entities. VSL uses tags and
identifiers pinned to the data nodes, offering a modularized
tagging approach. The items in the hierarchical structure
can be accessed transparently from an arbitrary participat-
ing KA.

To summarize, Smart-M3 is using data in the form of
triplets according to the RDF syntax to store and retrieve
information, whereas the VSL uses a hierarchical data
structure in the form of a data node tree and is instantiating
digital twins of data every time a service and a KA
interact.

2.7. Security

[4] The main issue of the IoT data is security because
of the vulnerable nature of private user data. Therefore,
VSL implements security-by-design, which means that
the mechanisms implemented in the VSL middleware
cannot be outmaneuvered. This, as mentioned in Section
2.1, comes as a result of the full separation of service
logic and data and promises a secure throughout com-
munication. In particular, VSL assigns certificates to each
of its components (services and KAs). These certificates
ensure the authentication of software modules, as well
as enabling communication between KAs that is TLS-
secured, including secure exchange of keys for encrypted
stores. Due to access control to IoT nodes and specific
synchronization of type information and access modifiers
between the KAs, VSL ensures secure addressing and
trusted IoT orchestration.

The smart space environment is vulnerable to threats
and security risks as well. In contrast to VSL, Smart-M3
has not been provided a sufficient security mechanism to
this point. In [13], Kirill Yudenok and Ilya Nikolaevskiy
introduce a security solution protecting the data inter-
change between the KPs and the smart space. For robust
authentication they propose the usage of the Host Identity
Protocol (HIP) for key exchange [14]. The HIP protocol
can be integrated in the SIB access module and thus enable
a SIB to restrict access to information in the smart space
that the KPs have provided.

2.8. Comparison summary

In order to retain a clear and structured view of the
information presented in the previous subsections, Table
1 summarizes and highlights the most important aspects
and differences of the Smart-M3 and VSL middlewares.

3. Issues and Reliability

Both the Smart-M3 platform and the VSL overlay aim
to implement simplistic architecture designs for reliability
and robustness reasons. However, issues and challenges
are an inevitable part of every system regardless of its
kind. In the following we highlight some important aspects
to consider when dealing with data-centric issues and
vulnerabilities of each system.

TABLE 1: Key feature differences

Smart-M3 VSL

Data access SSAP get/set
Data storage smart space at the source

Data discovery use of local or
global information

tag or address
based

Data transport Bluetooth, TCP/IP
HTTP and NoTA HTTP over TCP/IP

Data structure RDF graph hierarchical graph

Security not implemented
internally security-by-design

Implementation C, C++, Python,
C#, Java Java

3.1. Smart-M3

Arguably the main issue in the Smart-M3 system is
security, as mentioned in Section 2.7. There we elaborated
the main causes of this issue and mentioned a resolution
method presented by K. Yudenok and I. Nikolaevskiy in
their work [13]. In [15] written by Matti Eteläperä et al.
a test of two smart space information broker implementa-
tions is presented: Smart-M3 and RIBS (RDF Information
Based System), the second being an M3 tool for devices
with restricted computational capabilities. Based on their
measurement analysis the authors conclude that neither
system is satisfactory enough for wide-spread usage. The
authors state that "Smart-M3 performance and usability
leave a lot to be desired, as even a simple single triple
insert operation has a latency of 86-176 milliseconds in
our tests. The performance of Smart-M3 is not suitable
for use cases needing fast response times."

3.2. VSL

The Virtual State Layer decouples data not only from
hosts (ICN principle), but even from services on hosts,
as already mentioned in the Introduction. This presents a
significant advantage in the case of a service failure, as de-
coupled data is then managed only within the middleware.
Energy efficiency also follows as a consequence, because
not needed services can be interrupted while their data
still remains attainable. Nevertheless, the advantages that
follow from the ICN principle have challenges on their
own. In [16] the authors A. Lindgren, F. B. Abdesslem,
et al. address the aspects of naming, caching, actuation,
decoupling between publisher and consumer, etc. They
suggest that naming can become a size-problem when
e.g. the size of the name can become larger that the
size of the data; Caching reduces latency but can also
be useless when using At Most Once object requesting
strategy; Actuation may conflict with the ICN address-
ing design and further reduce caching advantages and
impose latency requirements; Although having multiple
advantages, decoupling publisher/consumer has trouble in
resolving publisher mobility when deducing the name of
the data for consumers.

4. Field of application

In [5] the authors present several smart space appli-
cation scenarios. They involve different applications, var-
ious services and multiple types of devices (e.g. phones,

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

36 doi: 10.2313/NET-2020-04-1_07

laptops, sensors). All domains have M3 software agents
installed on them. An example described in [17] shows a
scenario that involves an application for sports tracking,
a music streaming service, a gaming domain and a phone
call observer application. The results show improved user
experience due to seamless component cooperation be-
tween the participating devices and services. An ongoing
call can trigger information exchange in the smart space
resulting in pausing the music and the game. Furthermore,
one example demonstrates a mash-up between two differ-
ent scenarios, proving the ease of their mixing. [5]

An example for the VSL overlay in use is shown in
[3] by Marc-Oliver Pahl, Stefan Liebald and Christian
Lübben. In their work they present a VSL demo consist-
ing of a smartphone based controller and a light sensor
based game whereby they "demonstrate the data-based
coupling and the service-orientation of the VSL" [3]. Each
participating service implements a VSL interface, several
microservices and local data items (figure 2). Users make
interactive data queries via the smartphone controller and
thus switch lights found by type or address.
This demo illustrates the benefits of VSL in environments
where decoupling specific services is needed, whereas
the Smart-M3 platform, while also demonstrating inter-
service communication, points out the ease of creating
scenario mashups.

5. Conclusion

This paper reviews the similarities and differences
between the Smart-M3 platform and the VSL IoT overlay.
Both systems aim to solve the interoperability problem
and thus present data-centric solutions for reducing system
complexity in heterogeneous environments. However, they
employ contrasting approaches and architectural styles,
which makes their distinction of great importance. Smart-
M3 is a space-based system that enables interoperability
through the use of the Semantic Web. It targets multi-
device implementation and enables sharing of local infor-
mation between hosts. VSL follows ICN principles and
has its main focus on Internet-of-Things environments
where it manages the entire inter-service communica-
tion between IoT devices. It implements a Peer-to-Peer
architecture for routing and unlike Smart-M3, VSL is
making use of the network connectivity between devices
to enable communication and data exchange. It imple-
ments security-by-design, whereas Smart-M3 has not im-
plemented a specific security mechanism. Thus we have
shown that Smart-M3 can be used easily in an environ-
ment of different domains; it handles usage and mixing
of various scenario instances. The VSL overlay has its
specific focus on the IoT environment where it manages
each aspect of the communication services.

References

[1] M. Weiser, “The computer for the 21st century,” vol. 3, no. 3, pp.
3–11. [Online]. Available: https://doi.org/10.1145/329124.329126

[2] What is internet of things (IoT)? - definition
from WhatIs.com. (Date accessed: 30.11.2019). [Online].
Available: https://internetofthingsagenda.techtarget.com/definition/
Internet-of-Things-IoT

[3] M.-O. Pahl, S. Liebald, and C. Lübben, “VSL: A data-centric
internet of things overlay,” in 2019 International Conference on
Networked Systems (NetSys), pp. 1–3.

[4] M.-O. Pahl and S. Liebald, “Information-centric IoT middleware
overlay: VSL,” in 2019 International Conference on Networked
Systems (NetSys). IEEE, pp. 1–8. [Online]. Available: https:
//ieeexplore.ieee.org/document/8854515/

[5] J. Honkola, H. Laine, R. Brown, and O. Tyrkkö, “Smart-m3 infor-
mation sharing platform,” in The IEEE symposium on Computers
and Communications, pp. 1041–1046, ISSN: 1530-1346.

[6] RDF - semantic web standards. (Date accessed: 12.01.2019).
[Online]. Available: https://www.w3.org/RDF/

[7] “OWL web ontology language overview,” p. 22, (Date
accessed: 19.02.2020). [Online]. Available: https://www.w3.org/
TR/owl-features/

[8] T. Berners-Lee, J. Hendler, and O. Lassila, “Scientific
american: Feature article: The semantic web: May
2001,” p. 4, (Date accessed: 23.02.2020). [Online].
Available: https://www-sop.inria.fr/acacia/cours/essi2006/
Scientific\%20American_\%20Feature\%20Article_\%20The\
%20Semantic\%20Web_\%20May\%202001.pdf

[9] I. Oliver, “M3 information SmartSpaces tech-
nology overview,” (Date accessed: 05.12.2019).
[Online]. Available: https://www.slideshare.net/ianoliver79/
m3-information-smartspaces-technology-overview

[10] SOFIA - smart m3 information-sharing platform. NOKIA. (Date
accessed: 29.01.2020). [Online]. Available: https://www.slideshare.
net/sofiaproject/sofia-smart-m3-informationsharing-platform

[11] “A mechanism for managing and distributing information
and queries in a smart space environment:,” in Proceedings
of the Joint Workshop on Advanced Technologies and
Techniques for Enterprise Information Systems. SciTePress
- Science and and Technology Publications, pp. 145–153.
[Online]. Available: http://www.scitepress.org/DigitalLibrary/Link.
aspx?doi=10.5220/0002193101450153

[12] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,” vol. 50,
no. 7, pp. 26–36. [Online]. Available: http://ieeexplore.ieee.org/
document/6231276/

[13] K. Yudenok and I. Nikolaevskiy, “Smart-m3 security: Authentifi-
cation anc authorization mechanisms,” in 2013 13th Conference
of Open Innovations Association (FRUCT), pp. 153–162, ISSN:
2343-0737.

[14] A. Gurtov, M. Komu, and R. Moskowitz, “Host identity protocol:
Identifier/locator split for host mobility and multihoming,”
(Date accessed: 15.02.2020). [Online]. Available: https://www.
researchgate.net/publication/233893326_Host_identity_protocol_
Identifierlocator_split_for_host_mobility_and_multihoming

[15] M. Etelapera, J. Kiljander, and K. Keinanen, “Feasibility evaluation
of m3 smart space broker implementations,” in 2011 IEEE/IPSJ
International Symposium on Applications and the Internet, pp.
292–296.

[16] A. Lindgren, F. B. Abdesslem, B. Ahlgren, O. Schelén, and A. M.
Malik, “Design choices for the IoT in information-centric net-
works,” in 2016 13th IEEE Annual Consumer Communications
Networking Conference (CCNC), pp. 882–888, ISSN: 2331-9860.

[17] J. Honkola, H. Laine, R. Brown, and I. Oliver, “Crossdomain
interoperability: A case study,” in In Smart spaces and, pp. 22–
31.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

37 doi: 10.2313/NET-2020-04-1_07

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

38

Clustering with Deep Neural Networks – An Overview of Recent Methods

Janik Schnellbach, Marton Kajo∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: janik.schnellbach@tum.de, kajo@net.in.tum.de

Abstract—The application of clustering has always been
an important method for problem-solving. As technology
advances, in particular the trend of Deep Learning enables
new methods of clustering. This paper serves as an overview
of recent methods that are based on Deep Neural Networks
(DNNs). The approaches are categorized depending on the
underlying architecture as well as their intended purpose.
The classification highlights and explains the four categories
of Feedforward Networks, Autoencoders (AEs) as well as the
generative setups of Variational Autoencoders (VAEs) and
Generative Adversarial Networks (GANs). Subsequently, a
comparison of the concepts points out the advantages and
disadvantages while evaluating their suitability in the area
of image clustering.

Index Terms—Deep Neural Networks, Deep Clustering, Vari-
ational Autoencoder, Generative Adversarial Net

1. Introduction

The basic idea of clustering is the analysis of data
with the aim to categorize it into groups sharing certain
similarities. The assessed data can range from a small
number of characteristics to a huge multidimensional set.
Because it is expected to derive certain trends from the
input, clustering is a common method to solve practical
problems.

A particular example is the application of clustering
as performed by John Snow back in the 19th century.
John Snow worked as a physician during the cholera
epidemic in London. His idea was to mark the cholera
deaths on a map of the city, as one can see in Figure (1).
Since the deaths notably centered around water pumps, he
discovered the correlation between the water supply and
the epidemic.

While John Snow did his clustering task manually on
a sheet of paper, nowadays methods allow clustering in
an automated manner. The application of Artificial Intel-
ligence enables to process big amounts of data while being
way more effective. One can distinguish between Super-
vised and Unsupervised Learning. Supervised Learning
assigns the data to prior defined classes of characteristics
and qualities. This process is also called classification. In
contrast, Unsupervised Learning, of which one category
is clustering, can uncover those classes simply from the
given set of data without preliminary definitions [2]. The
methodology of clustering can either be generative or dis-
criminative. The generative approach tries to work out the
data distribution with statistical models such as a Gaussian
Mixture Model (GMM) or the k-means algorithm. These

Figure 1: John Snow’s Death Map [1]

models will be explained later in the paper. Discriminative
Clustering on the other hand applies separation and classi-
fication techniques to map the data into categories without
any detour. Regularized information maximization (RIM)
is a famous example of this type and will also be discussed
in the next section [3].

As both, the amount of data as well as the type of
data can vary considerably, a steadily growing selection of
methods is currently available. With an increasing amount
of approaches, it can be difficult to maintain an overview
of the various concepts. The recently published work of
Technical University in Munich [4] discusses the current
state of the art deep clustering algorithms in a taxonomy.
The authors give an overview of the different approaches
on a modular basis to provide a starting point for the
creation of new methods. However, it lacks proper classi-
fication of currently available frameworks, as the authors
rather have an eye for the composition of methods instead
of the big picture. For this reason, our paper makes a fur-
ther contribution towards this set of methods with a more
detailed description of the concepts as well as a proper
classification of them. As it has only been marginally
included in the recent paper, special attention is given
to novel trends in the area of Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANs).

In the following, Section 2 describes the different cate-
gories for clustering with Deep Neural Networks (DNNs).
For each category, several methods are illustrated. Sub-
sequently, Section 3 does provide an evaluation of the
aforementioned methods, with regard to the application
area of images, followed by a summary in Section 4.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

39 doi: 10.2313/NET-2020-04-1_08

Figure 2: Overview of methods that are addressed in this
paper. Feedforward Networks are the basic building block
for AEs. VAEs and GANs then again consist of AEs
themselves.

2. Deep Clustering

2.1. Feedforward Networks

As a standard setup of a Neural Network, one can
define a group of Feedforward Network architectures that
follow the same approach: the optimization of a specific
clustering loss [5]. This category can be subdivided into
Fully-Connected Neural Networks (FCNs) and Convolu-
tional Neural Networks (CNNs).

Figure 3: Layout of Feedforward Networks [6]

FCN is also frequently called Multilayer Perceptron
(MLP). This architecture has a topology where each
neuron of a layer is connected with every neuron on the
subjacent layer. The links between neurons have their
own weight, regardless of the other connections. CNNs,
on the other hand, are rather inspired by the biological
layout of neurons, which means that a neuron is only
connected to a few others of the overlying layer [5].
In contrast to FCN, a consistent pattern of weightings
is used between the neurons of two layers. Figure (3)
illustrates the layouts and their weighting described above.

Deep Adaptive Clustering (DAC) is an approach
for image clustering, developed by the University of
Chinese Academy of Sciences. Due to the area of
application, it is also called Deep Adaptive Image
Clustering. DAC handles the relationship of two pictures

as a binary relationship. By doing this, it decides whether
an image matches a certain cluster or not. The pictures are
compared by the cosine distance of previously calculated
label features, that are extracted from the images by
a CNN. Based on the results, the framework decides
whether the pictures belong to the same or different
clusters. However, this method requires a good initial
distribution of clusters, which can be hard to initialize [7].

Information Maximizing Self-Augmented Training
(IMSAT) The Previously described feedforward method
is based on CNNs. However, this paper seeks to provide a
broad overview of the different approaches pending on the
network architecture. An example for the application of
FCNs is IMSAT. This method is based and advanced from
the method of Regularized Information Maximization
(RIM) [8].

The basic idea is to handle both the class balance as
well as the class separation, meaning that RIM has the
objective to balance the amount of data entities inside
the clusters. The underlying FCN applies a function that
maps data dependent upon the similarity into similar
or dissimilar discrete representations. Additionally, Self
Augmentation is applied to the data set. This is done, in
order to impose the invariance on the data representations
[9].

2.2. Autoencoder (AE)

Figure 4: Basic layout of an AE [10]

The above described Feedforward Networks can be
used to assemble the network of an AE, which is shown
in Figure (4). It consists of an encoder and a decoder
[11]. Both have different tasks during their training phase.
While the encoder maps the input data according to an
encode function within a latent space, the decoder recon-
structs the initial input data with the objective of a minimal
loss on the reconstruction [12]. The encoder, as well as
the decoder, can either be constructed as FCN or CNN.
The setup can be trained according to a certain data set
[5].

Training can be divided into two phases. While
one can separate the two phases in a logical way, both
are generally realised simultaneously. During the first
phase, the AE performs a pretraining while focusing
on the minimization of the basic reconstruction loss.
The optimization of this parameter is carried out by
any type of AE. The second phase can be seen as a
finetuning of the network. The approaches for this step
can differ substantially, as various kinds of clustering
parameters can be used to optimize the result. The
different finetuning strategies are described as part of the
approaches presented in the following paragraphs [4].

Deep Embedded Clustering (DEC) is possibly the

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

40 doi: 10.2313/NET-2020-04-1_08

most significant contribution in the area of clustering
with AEs. For the second phase, the so-called cluster
assignment hardening loss is optimized. The framework
targets to minimize the Kullback–Leibler divergence
between an initially computed soft assignment and an
auxiliary target distribution. This is done iteratively,
with an accompanied improvement of the clustering
assignment [13]. It is often used as a starting point, as
well as a comparison tool for other approaches [14].

Deep Embedded Regularized Clustering (DEPICT)
This approach is based on DEC and is particularly suited
for image datasets. It mitigates the risk of reaching
degenerative solutions by the addition of a balanced
assignment loss [4].

Deep Clustering Network (DCN) extends the previously
described AE with the k-means algorithm. The k-means
optimization tries to cluster the data around so-called
cluster centers to enable an easier representation of
the data. DCN optimizes k-means along with the
reconstruction loss in the second phase [4].

Deep Embedding Network (DEN) The DEN approach
has the objective to improve the clustering towards an
effective representation. This is done by an additional
locality-preserving loss as well as a group sparsity loss
that are jointly optimized in the second phase [14].

2.3. VAEs

While the two aforementioned types can result in
high-quality clustering, they are not able to point out the
actual coherence of the analyzed data set. Knowledge
about that enables to synthesize sample data from the
existing dataset. This can be particularly impressive for
pictures. In a nutshell, VAE is a refined variant of the
traditional AE that forces the AE cluster to impose a
certain distribution. It optimizes the lower bound of a
data log-likelihood function [15].

Variational Deep Embedding (VaDE) VaDE uses
a GMM as the predefined distribution. The GMM selects
a fitting cluster that is subsequently transposed towards
an observable embedding by a DNN [15].

Deep clustering via GMM VAE with graph embedding
(DGG) extends the GMM with stochastic graph
embedding in order to address a scattered and complex
spread of data points. Graph embedding is applied to the
pairs of vertexes in a similarity graph. The objective is
to retain information about the relationship of the pairs
while mapping each node as a vector with preferably
low dimension [16]. The relationship and similarity
among pairs are calculated by a minimization of the
weighted distance, using their posterior distributions.
In summary, DGG optimizes a combination of the loss
of the previously described graph embedding with the
already known GMM distributive function [17].

Latent tree VAE (LTVAE) has been published
by researchers from Hong Kong earlier this year.
Their framework takes a particular account of the

multidimensionality and the associated range of
differentiating structures concerning the data. A tree
structure is used, built by multiple latent variables, each
including a partition of data. During a learning phase,
the tree updates itself, using the relationships among
the different facets of the data. Figure (5) shows four
different facets as the outcome of clustering applied to
the STL-10 dataset. It can be observed that (b) Facet
2 has an emphasis on the front of the cars, compared
to the other facets. In general, Facet 2 seems to have a
relation to the eyes and lights of the objects. Also, when
comparing the deers of facet 2 and 3, one can recognize
a pattern in facet 2 with an emphasis on the antlers of
the animals [18].

Figure 5: Results for application of LTVAE to STL-10
[19]

2.4. GANs

Next to VAEs, we take a closer look at GANs. A
GAN is constructed from a generator and a discriminator.
Those two operate in a minimax game. The generator is
trained towards a distribution of a certain data set. The
discriminator has the task to verify whether a sample
from this distribution is a real one or a fake one. Based
on this verification, feedback is given to the generator
which is used to further improve the sample quality [20].

Categorical GAN (CatGAN) A popular modification
of the common GANs are the CatGANs. In simple
terms, the discriminator no longer decides whether the
samples are real or not. Instead, samples are assigned
to appropriate categories. CatGANs use a combination
of generative and discriminative approaches. This novel
approach requires the generator to spread the samples
across the different categories in a balanced way and,
most importantly, the generated samples need to be
clearly classifiable for the discriminator [3, Section 3.2].

Discover relations between different domains
(DiscoGAN) DiscoGANs are based on the idea of
cross-domain relations. Human beings are able to
understand correlations among different entities. For
instance, one can discover the relationship between shoes
and handbags that share a resemblance in their color

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

41 doi: 10.2313/NET-2020-04-1_08

Figure 6: Application of DiscoGAN [22]

sample. Figure (6) presents the application of DiscoGANs
on this particular example. Mutually independent image
sets of shoes on the one hand and bags, on the other
hand, are subject to this picture. Depending on the input,
the GAN finds a visually appropriate match.

DiscoGANs can associate an entity from a given pool
of entities to a fitting entity from a different pool of
entities. This is achieved by coupling two different GANs,
which are able to map each entity to the opposite entity
[21]. This technique enables to discover links between
different clusters and therefore DiscoGANs may create
new clusters by combining existing ones.

3. Discussion

After the previous section pointed out the different
categories with the different types, this part focuses on the
application as well as the advantages and disadvantages
of the frameworks. The comparison is made on the level
of categories, focusing on the application area of images.
Since FCNs are fully connected, they are less suited
for image processing. For high-resolution images, FCNs
quickly find themselves reaching the limits of feasibility
in terms of trainability and depth. Therefore, CNNs are
rather suited for images. Depending on the requirements,
the depth of Feedforward Networks and in particular of
CNNs can be adapted.

The depth of AEs is rather limited since the opposing
layout of decoder and encoder requires the depth on both
sides. Instead, AEs offer the usage of different clustering
parameters, which can be jointly optimized. Conventional
Feedforward Networks solely optimize clustering loss.

In contrast to the previous methods, VAEs and GANs
feature the ability of sample generation. In general, the
optimization process of both can be expected to require a
larger extent of computing power than Feedforward Net-
works and AEs [5]. Considering images once more, GANs
usually score better than VAEs in terms of image quality,
as the usage of the maximum likelihood approach tends to
deliver blurry images. With a more rapid generation and
better quality through a generative model, GANs usually
score better. It can be said that the general setup allows

a more extensive and rather flexible usage in comparison
to VAEs [23].

This paper does offer a large extent of recent
approaches and methods. In addition, we want to provide
further food for thoughts in the area of deep clustering.

Deep Believe Networks (DBNs) As briefly mentioned
in the context of DGG, there is a group of generative
graphical models that have not been mentioned yet.
DBNs are assembled by multiple stacked Restricted
Boltzmann machines (RBMs). The starting paper [4]
provides Nonparametric Maximum Margin Clustering
(NMMC) as an example for DBNs.
Further types of GANs do also apply adversarial
nets with the objective of clustering. Information
Maximizing Generative Adversarial Nets (InfoGANs)
learn the disentangled representation of the data and
are particularly suited for scaling of complex datasets
[5]. Other types may not have an immediate link to
the task of clustering. However, the fundamentals of
those might be useful for future research. Stacked GANs
(StackGANs), for instance, address the task of image
generation based on textual descriptions. It is based on a
divide and conquer approach that splits up the problem
into smaller subproblems [24].
VAE-GANs combine the two approaches of sample
generating methods. As described in [25], the idea is
to replace the decoder of a VAE with a GAN. This
tries to deal with the blurry images that were mentioned
earlier in this section. The idea behind its design is to
cope with the VAE’s reconstruction task by utilizing the
detected feature representation from the discriminator of
the GAN. However, as mentioned before, both require
much computing power, which applies all the more for a
combination as described above.

4. Conclusion

In this paper, we have emphasized the opportunities for
clustering, which emerge through the recent advancements
in the area of Deep Learning. Based on the network layout
we derived different categories. For each of them, several
frameworks are described in detail, featuring information
about a preferred application area. In addition, we pro-
vided a comparison of the categories which included a
specific focus on image clustering with special attention
to the respective advantages and disadvantages. Finally,
we give a further reference to different technologies that
haven’t been mentioned in this paper.

Overall, our paper has provided a general overview
of the existing clustering frameworks and can further be
used to get deeper into either the general topic of Deep
Clustering or a specific type of category.

References

[1] [Online]. Available: http://blog.rtwilson.com/wp-content/uploads/
2012/01/SnowMap_Points-1024x724.png

[2] R. Sathya and A. Abraham, “Comparison of supervised and
unsupervised learning algorithms for pattern classification,”
International Journal of Advanced Research in Artificial
Intelligence, vol. 2, no. 2, 2013. [Online]. Available:
http://dx.doi.org/10.14569/IJARAI.2013.020206

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

42 doi: 10.2313/NET-2020-04-1_08

[3] J. T. Springenberg, “Unsupervised and semi-supervised learning
with categorical generative adversarial networks,” 2015.

[4] E. Aljalbout, V. Golkov, Y. Siddiqui, and D. Cremers,
“Clustering with deep learning: Taxonomy and new methods,”
CoRR, vol. abs/1801.07648, 2018. [Online]. Available: http:
//arxiv.org/abs/1801.07648

[5] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long, “A survey
of clustering with deep learning: From the perspective of network
architecture,” IEEE Access, vol. 6, pp. 39 501–39 514, 2018.

[6] [Adjusted]. [Online]. Available: https://www.researchgate.net/
profile/Eftim_Zdravevski/publication/327765620/figure/fig3/AS:
672852214812688@1537431877977/Fully-connected-neural-
network-vs-convolutional-neural-network-with-filter-size-1-
2.ppm

[7] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep
adaptive image clustering,” in 2017 IEEE International Conference
on Computer Vision (ICCV), Oct 2017, pp. 5880–5888.

[8] A. Krause, P. Perona, and R. G. Gomes, “Discriminative
clustering by regularized information maximization,” in Advances
in Neural Information Processing Systems 23, J. D. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta,
Eds. Curran Associates, Inc., 2010, pp. 775–783. [On-
line]. Available: http://papers.nips.cc/paper/4154-discriminative-
clustering-by-regularized-information-maximization.pdf

[9] W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama,
“Learning discrete representations via information maximizing
self-augmented training,” 2017.

[10] [Online]. Available: https://i.stack.imgur.com/zzzp7.jpg

[11] N. Mrabah, N. M. Khan, and R. Ksantini, “Deep clustering
with a dynamic autoencoder,” CoRR, vol. abs/1901.07752, 2019.
[Online]. Available: http://arxiv.org/abs/1901.07752

[12] D. Berthelot, C. Raffel, A. Roy, and I. J. Goodfellow,
“Understanding and improving interpolation in autoencoders via
an adversarial regularizer,” CoRR, vol. abs/1807.07543, 2018.
[Online]. Available: http://arxiv.org/abs/1807.07543

[13] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep
embedding for clustering analysis,” CoRR, vol. abs/1511.06335,
2015. [Online]. Available: http://arxiv.org/abs/1511.06335

[14] T. Yang, G. Arvanitidis, D. Fu, X. Li, and S. Hauberg, “Geodesic
clustering in deep generative models,” CoRR, vol. abs/1809.04747,
2018. [Online]. Available: http://arxiv.org/abs/1809.04747

[15] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational
deep embedding: A generative approach to clustering,” CoRR,
vol. abs/1611.05148, 2016. [Online]. Available: http://arxiv.org/
abs/1611.05148

[16] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, “Graph
embedding and extensions: A general framework for dimensional-
ity reduction,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 29, no. 1, pp. 40–51, Jan 2007.

[17] L. Yang, N.-M. Cheung, J. Li, and J. Fang, “Deep clustering by
gaussian mixture variational autoencoders with graph embedding,”
in The IEEE International Conference on Computer Vision (ICCV),
October 2019.

[18] X. Li, Z. Chen, and N. L. Zhang, “Latent tree variational
autoencoder for joint representation learning and multidimensional
clustering,” CoRR, vol. abs/1803.05206, 2018. [Online]. Available:
http://arxiv.org/abs/1803.05206

[19] [Online]. Available: https://d3i71xaburhd42.cloudfront.net/
7b85357834e398437a291906aded59caff5151eb/9-Figure6-1.png

[20] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative
adversarial nets,” in Advances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2014, pp. 2672–2680. [Online]. Available: http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf

[21] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning
to discover cross-domain relations with generative adversarial
networks,” CoRR, vol. abs/1703.05192, 2017. [Online]. Available:
http://arxiv.org/abs/1703.05192

[22] [Online]. Available: https://ieee.nitk.ac.in/blog/assets/img/GAN/
discogan.png

[23] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb,
M. Arjovsky, and A. Courville, “Adversarially learned inference,”
2016.

[24] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang,
and D. N. Metaxas, “Stackgan: Text to photo-realistic image
synthesis with stacked generative adversarial networks,” CoRR,
vol. abs/1612.03242, 2016. [Online]. Available: http://arxiv.org/
abs/1612.03242

[25] A. B. L. Larsen, S. K. Sønderby, and O. Winther, “Autoencoding
beyond pixels using a learned similarity metric,” CoRR, vol.
abs/1512.09300, 2015. [Online]. Available: http://arxiv.org/abs/
1512.09300

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

43 doi: 10.2313/NET-2020-04-1_08

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

44

Fault tolerance in SDN

Leander Seidlitz, Cora Perner∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: leander.seidlitz@tum.de, clperner@net.in.tum.de

Abstract—Software Defined Networking (SDN) is based on
decoupling the data and control plane of network devices.
Switches handle packet forwarding in the data plane. A
centralized controller offers a global network view to net-
work applications and enables configuration through a single
point. Paths through the network may be configured end-to-
end, the centralized controller takes care of configuring the
switches.

While SDN offers high flexibility, fault-tolerance becomes
an issue. The global view of the controller allows for fast
failover in the data plane. Fault-tolerance in the control
plane is a more complex problem. In order to correctly
process incoming packets a controller must be available at
any time. The fault-tolerance of the control layer is vital for
the function of the network

This paper gives an overview of current approaches to
fault-tolerance in the data as well as control plane.

Index Terms—software-defined networking, fault-tolerance

1. Introduction

Software Defined Networking (SDN) offers greater
flexibility than traditional network architectures. In tra-
ditional network topologies, control and data plane are
distributed over the network. Routing protocols such as
OSPF (Open Shortest Path First) [1] are used by the
distributed entities in order to establish routes through a
network. Network applications have to communicate with
multiple devices in order to configurate the network.

In contrast, SDN splits up the data, control and ap-
plication plane of a network, as depicted by Figure 1.
While the data plane is responsible for packet filtering
and forwarding, the control plane enforces policies and
handles tasks as load balancing and multipath routing. A
central controller configures the data plane by sending
commands to the respective switches. It offers an ab-
stracted view of the network topology and flows to the
network applications in the application plane, enabling
network configuration through a single controller. While
the data and control plane take care of handling flows
in the network, the application plane manages network
policies using the global network view presented by the
control layer.

The switches in the data plane rely on a Network
Information Base (NIB) in order to handle packets. Pack-
ets arriving at the ingress port of a switch are matched
to flows. The NIB specifies how to handle the packet,
and whether to forward or drop it. Packets belonging to

Network Applications

Northbound API/Protocol

Southbound API/Protocol

Application Plane

Control Plane

Data Plane

Figure 1: Structure of a SDN network.

an unknown flow are forwarded to the controller. The
controller decides how to handle the packet, for example
by configuring a flow through commands to the respective
switches. The flow configuration received by the switches
through controller commands is saved in the NIB. Future
packets of the established flow can be handled without
consulting the controller.

Communication between the control plane and appli-
cation plane is done through a northbound Application
programming interface (API) or protocol. As of December
2019, there are no standarized APIs or protocols for
the northbound interface, although Representational State
Transfer (REST) APIs are widely used.

The control plane communicates with the switches
through a southbound API or protocol. OpenFlow [2] is a
common protocol for the communication between control
and data plane.

While the separation of data and control plane offers
flexibility, the centralized control plane creates a single
point of failure. To ensure correct network function, the
control plane must be available at any time.

The Fault Tolerance Problem. Networks are expected to
operate without disruption, even in the presence of link or
device failures. Faults in the network should be handled
quickly and transparently, causing only minimal service
interruption. The strict separation of data and control
plane forces us to handle fault-tolerance for both planes
separately. SDNs require approaches to fault-tolerance in

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

45 doi: 10.2313/NET-2020-04-1_09

two domains: The data plane, where switches or links can
fail as well as the control plane, where controllers or the
link between controller and switch may fail.

We will focus on fault-tolerance in the control plane.
Section 2 gives an overview of fault-tolerance in the
data plane. Approaches to fault-tolerance in the control
plane are discussed in Section 3. Fault-tolerance in the
application plane is not in the scope of this paper.

2. Fault Tolerance in the Data Plane

The data plane takes care of handling packet flows
in the network. Flows are established by the controller
through configuration of the individual switches. For re-
liable network operation the data plane must be resilent
against link and switch failures. Failures have to be de-
tected quickly and resolved by rerouting affected traffic
on alternative links, restoring the networks functionality.

Still, basic network policies must not be violated. For
example, traffic rerouted on a different path through the
network should not be able to bypass a firewall. Fault-
tolerance mechanisms therefore do not only have to regard
the network topology but also its policies configured by
the application layer.

The controller possesses global knowledge of the
network topology and can therefore run centralized al-
gorithms. These are potentially more efficient than dis-
tributed algorithms, such as the rapid spanning tree pro-
tocol [3], which only have limited information about the
network.

Approaches to focusing on data plane fault tolerance,
such as FatTire [4], the approach of Paris et al. [5] or
CORONET [6], have to ensure resilence of the data plane
against failures without introducing large overhead.

2.1. Reacting to Topology Changes

The structure of SDN based networks is not static.
Links in the network are removed and established, con-
stantly changing the networks topology. While traffic
should usually take a near optimal path through the net-
work, this path may fail. An optimal failover algorithm
would choose the next optimal path, but calculating this
path can be expensive and therefore time-consuming for
large networks. Restoring the network function by apply-
ing a suboptimal path outweighs path optimization and
is acceptable. A suboptimal path can be optimized after
network function is restored.

Traffic traversing the network on an suboptimal path
causes overhead. While rerouting the traffic to a lower-
overhead path may lower the costs of traversing the
network by finding a better path. Reconfiguring the net-
work introduces overhead as well. Approaches to fault-
tolerance should only change existing paths if the benefit
of rerouting traffic is larger than the overhead caused by
reconfiguring.

2.2. Minimizing Overhead

Paris et al. [5] present an approach that finds a balance
between optimal paths and the frequency of reconfigura-
tion. They divide their approach into two sub-mechanisms:

Firstly, rapid handling of failures by rerouting to alterna-
tive paths and secondly a mechanism for path optimiza-
tion.

Restoring Paths. After a link or device failure backup
paths are calculated on demand. The priority is to quickly
find an alternative path, which is allowed to be sub-
optimal. The path is calculated based on a shortest-path
algorithm. Restoring the path is vital for the networks
function, the path optimization is taken care of by another
mechanism.

Optimizing Paths. Optimization of network paths is done
by a mechanism Paris et al. call Garbage Collection of
network resources. Periodically flow allocations in the net-
work are analyzed and optimized. An iterative algorithm
converging to the optimal solution is used. As new links
become available and failed links are repaired, the garbage
collection may reroute traffic, should network changes
open up shorter paths. Rerouting is only done in case that
the optimization is larger than the overhead caused by the
necessary network reconfiguration.

In a static network the paths would converge to the
optimal solution. Failed links and devices introduce sub-
optimal paths and therefore overhead, moving further
away from the optimal solution.

2.3. OpenFlow Action Buckets

OpenFlow 1.3 [7] introduced the concept of action
buckets. An action bucket groups a number of rules, the
bucket itself is bound to conditions based on switch state,
such as the status of a link.

Action buckets allow creating conditional forwards
such as deactivating a set of rules as a link fails. The
buckets are prioritized. Packets are matched with the rules
in the highest bucket which conditions are met. This
allows specifying precomputed backup paths that become
instantly active when a link fails. FatTire [4] makes use
of OpenFlow action buckets.

The FatTire Language allows the definition of network
paths as regex-like expressions. Paths in the network are
specified end-to-end, the necessary degree of fault toler-
ance can be specified for each path. The FatTire compiler
then calculates the hops through the network for path
realization as well as possible backup paths. The result
is an OpenFlow configuration that can be applied to the
individual switches. As links fail the precomputed backup
paths become active. Repaired links are instantly reused.

2.4. Fault-Tolerant Controllers

The solutions presented above depend on the con-
troller being available at any point. Nevertheless, con-
troller failures are possible and must be handled. A failed
control plane leaves the network in a headless state. Events
such as incoming packets belonging to unknown flows
cannot be handled without a controller. Therefore, a fault-
tolerant control plane is vital. In the following section we
will present approaches to a fault-tolerant control plane.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

46 doi: 10.2313/NET-2020-04-1_09

(a) Centralized (b) Distributed

Figure 2: SDN Control Plane Topologies.

3. Fault-Tolerance in the Control Plane

While fault-tolerance in the data plane is essential,
the data plane is dependent on the controller. The control
plane is vital for the operation of the network as it handles
tasks such as deciding how to handle unknown flows
as well as the communication with the application layer.
The controller must be operational at all times to ensure
correct network operation. SDN builds on a centralized
controller. This controller presents a single point of failure.
Introducing redundancy to the control plane allows for a
fast failover in case of a controller fault. In the following
we present approaches to fault-tolerant controllers.

3.1. Control Plane Topology

SDN control planes either have a single logically
centralized controller (Figure 2a) or are constructed in a
distributed topology (Figure 2b). A distributed topology
has multiple controllers, each handling a separate domain
of a network. Distributed typologies are mostly found in
large networks in which a single controller cannot handle
the load. Multiple parallel operating controllers offer the
possibility of one controller taking over another part of a
network as its controller fails.

The solution to fault-tolerance in a distributed con-
troller scheme can be found in approaches such as Hyper-
Flow [8] or ECFT [9]. In the following we will focus on
more traditional SDN based networks with a centralized
controller.

Logically Centralized Control Planes. In a logically
centralized control plane only one controller is active at
any time. This controller takes charge of all decisions
in the network such as configuring the switches. Fault-
tolerance in a logically centralized scheme is commonly
achieved through a master-slave approach.

A master controller operates the control plane, slave
controllers passively mirror the master controllers state.
As the master controller fails, one of the slave controllers
becomes master and takes over.

The failover time is critical. The network is inpoerable
as long as the controller is not available.

3.2. Ravana: A Master-Slave Approach

In the following we discuss master-slave approaches to
fault-tolerance in the control plane on the example Ravana

[10]. In a master-slave topology, multiple controllers are
present. One controller serves as master controller, con-
trolling the network. Slave controllers mirror the master,
and take over if the master fails.

Ravana [10] is an approach ensuring fault-tolerance
for the controller, the communication between controller
and backup controllers as well as for the communication
between switches and the controller. It was proposed by
Katta et al. A solution to fault-tolerance must fulfill the
following requirements:
A) Total event ordering
B) Exactly-once event processing
C) Exactly-once execution of commands
D) Consistency under switch and controller failures

In the following we analyze Ravana in regard to these
requirements.

A) Total event ordering. In a master-slave approach
the slaves must have the same view of the network as
the master. Each replica of the master builds its state
independently, based on the stream of events received. In
order to keep the state equal over all replicas the order
of events processed must be the same for all controllers.
Inconsistent event ordering may be caused by different
latencies between switches and controllers.

There are two approaches to keeping the master and
its replicas in sync:

1) Let the switch broadcast events to all controllers
2) Replicate the event at the master controller before

processing it
Regarding to the first approach, ensuring the same order
of events at each controller is challenging. A total order
would require the controllers to synchronize the events
received, posing a large overhead.

Replicating the event at the master controller before
processing ensures the order of events received. It is the
same for all controller replicas as the master controller
defines the order. In Ravana switches send events to
only the current master controller. The switches use an
event buffer to prevent lost messages in case of a master
controller failure.

By performing event replication at the master con-
troller Ravana ensures a total event order at all replicas.

B) Exactly-once event processing. An approach to fault-
tolerance must ensure that every event sent by a switch
is processed exactly once. Events must not be lost nor

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

47 doi: 10.2313/NET-2020-04-1_09

processed repeatedly. The delivery of messages can be
ensured by sender-side buffers, repeating the transmit if
the receiver has not acknowledged the message.

If a packet causes an event the switch sends the event
to the current master controller and additionally saves the
event in a local buffer. Events received by the master
are replicated to the slave controllers before the master
processes them. The slaves hold back the event from
their application layer until the master has successfully
processed the event. After successful processing of the
event, a confirmation message is sent to the switches and
slaves. The switch clears the event from its buffer, the
slaves can now safely release the event to the application.
If the master fails during event processing, the switch
can retransmit the event from its event buffer to the new
master.

Unique messages IDs and receiver side filtering guar-
antee that messages are processed at most once.

C) Exactly-once Execution of Commands. As com-
mands from the controller may not be idempotent, we
must ensure that they are executed exactly once by a
switch. A command buffer at the controller and acknowl-
edgments by the switches, analogous to the switch-side
event buffer, ensure that a switch receives and successfully
executes a command.

The controller buffers commands sent to the switch,
and deletes them from the buffer when the switch ac-
knowledges execution of the command. The replicas of
the controller are informed about the command buffer and
the status of the commands sent. In case of the master
controller crashing after sending a command but before
processing the acknowledgment by the switch, the new
master controller will find an incomplete command exe-
cution in the command buffer. It will resend the command.
As commands have unique IDs, the switch will filter the
command (ensuring at-most-once execution) but resend
the acknowledge to the new master. The master controller
will mark the command as successfully executed and
replicas are informed.

D) Consistency under Switch and Controller Failures.
Switches retransmit events and acknowledge commands.
As long as the controller does not fail, we can handle
switch failures the same way as single-controller SDN
do: Relay the decision to the control application in the
application layer. The network application will then decide
how to reroute traffic and send appropriate commands to
the controller.

Combined switch and controller failures pose a more
complex problem. Should the master controller fail before
finishing the processing of an event, a slave controller will
take over. A switch that has sent an event has therefore not
received an acknowledge yet. If this switch fails during
this failover, it cannot retransmit the event to the new
master. Still, the new master controller has received a copy
of the event from the old master as events are replicated
before processing. It sees the unfinished event in his buffer
and can process it, even without the switch retransmitting.
After this, we handle the switch failure as regular switch
failure.

We conclude that Ravana solves the requirements
needed for reliable fault-tolerance in the control plane.

We now discuss how the failed controller is replaced in
distributed and centralized topologies.

3.3. Controller Failover

In a distributed control plane topology a controller
is responsible for a set of switches. HyperFlow [8] or
ECFT [9] are approaches to fault-tolerance in distributed
schemes. Both approaches use a similar approach to
replacing the failed controller. The switches the failed
controller was responsible for are split up and assigned
to other controllers. This is done based on metrics such
as the delay between the respective switch and controller
as well as the controller load. In order to prevent cascading
failures controllers must not be overloaded.

In a master-slave topology the slave controllers have
to decide on who becomes the new master. Ravana [10]
solves this problem by letting the switches contend for
a distributed Zookeeper [11] lock. The controller that
obtains the lock becomes the new master. The new master
then informs the switches of the change in master con-
troller.

3.4. Interfacing with the Application Layer

In a traditional SDN topology, the application layer in-
terfaces with a single controller. A fault-tolerant approach
should be observational indistinguishable from a single
controller SDN: the system should behave in the same
way as a fault-free single controller system would.

Additionally, controller redundancy and failover
should be transparent for the application layer. This en-
ables network applications to interface with fault-tolerant
control layers without the need of rewriting.

4. Conclusion and Future Work

While fault-tolerance in the data plane seems mostly to
be an optimization problem, fault-tolerance in the control
plane is a more difficult problem to solve. Concerning
the data plane, the global knowledge of the controller
allows fast re-routing of traffic in case of failed links and
switches. In the control plane, failures are more difficult
to handle.

We presented requirements, solutions to fault-
tolerance in the control plane must meet, and how ap-
proaches can fullfil them. Ravana [10] is a promising
master-slave approach to fault-tolerance in the control
plane. It offers transparent fault-tolerance and fast failover
between controllers. Ravana does require extension of the
OpenFlow protocol, which may hinder its acceptance.

Future extensions to master-slave schemes for fault-
tolerance in the control plane may base on Ravana and
extend it. Current protocols fail at state-replicating multi-
threaded control applications as well as handling byzan-
tine faults. These are tasks to be solved by future ap-
proaches to fault-tolerance in SDNs.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

48 doi: 10.2313/NET-2020-04-1_09

References

[1] J. Moy, “OSPF Version 2,” RFC Editor, RFC 2328, Apr. 1998.
[Online]. Available: https://tools.ietf.org/html/rfc2328

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, p. 69, Mar.
2008. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
1355734.1355746

[3] IEEE Standards Association, “IEEE Standard for Local and
metropolitan area networks–Bridges and Bridged Networks,”
IEEE, Tech. Rep., May 2018. [Online]. Available: http://
ieeexplore.ieee.org/document/6991462/

[4] M. Reitblatt, M. Canini, A. Guha, and N. Foster, “FatTire:
declarative fault tolerance for software-defined networks,” in
Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking - HotSDN ’13. Hong
Kong, China: ACM Press, 2013, p. 109. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2491185.2491187

[5] S. Paris, G. S. Paschos, and J. Leguay, “Dynamic control for
failure recovery and flow reconfiguration in SDN,” in 2016 12th
International Conference on the Design of Reliable Communication
Networks (DRCN). Paris: IEEE, Mar. 2016, pp. 152–159. [Online].
Available: http://ieeexplore.ieee.org/document/7470850/

[6] Hyojoon Kim, M. Schlansker, J. R. Santos, J. Tourrilhes,
Y. Turner, and N. Feamster, “CORONET: Fault tolerance for

Software Defined Networks,” in 2012 20th IEEE International
Conference on Network Protocols (ICNP). Austin, TX, USA:
IEEE, Oct. 2012, pp. 1–2. [Online]. Available: http://ieeexplore.
ieee.org/document/6459938/

[7] Open Networking Foundation, “OpenFlow Switch Specification,”
Open Networking Foundation, Tech. Rep. Version 1.3, Jun. 2012.
[Online]. Available: https://www.opennetworking.org/wp-content/
uploads/2014/10/openflow-spec-v1.3.0.pdf

[8] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Con-
trol Plane for OpenFlow,” in INM/WREN’10 Proceedings of the
2010 internet network management conference on Research on
enterprise networking, Apr. 2010, p. 6.

[9] W. H. F. Aly and A. M. A. Al-anazi, “Enhanced Controller Fault
Tolerant (ECFT) model for Software Defined Networking,” in
2018 Fifth International Conference on Software Defined Systems
(SDS). Barcelona: IEEE, Apr. 2018, pp. 217–222. [Online].
Available: https://ieeexplore.ieee.org/document/8370446/

[10] N. Katta, H. Zhang, M. Freedman, and J. Rexford, “Ravana:
controller fault-tolerance in software-defined networking,” in
Proceedings of the 1st ACM SIGCOMM Symposium on Software
Defined Networking Research - SOSR ’15. Santa Clara,
California: ACM Press, 2015, pp. 1–12. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2774993.2774996

[11] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper:
Wait-free coordination for Internet-scale systems,” Proceedings of
the 2010 USENIX Annual Technical Conference, p. 14, Jun. 2010.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

49 doi: 10.2313/NET-2020-04-1_09

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

50

Time Synchronization in Time-Sensitive Networking

Stefan Waldhauser, Benedikt Jaeger∗, Max Helm∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
E-Mail: stefan.waldhauser@tum.de, jaeger@net.in.tum.de, helm@net.in.tum.de

Abstract—Time-Sensitive Networking (TSN) is an update to
the existing Institute of Electrical and Electronics Engineers
(IEEE) Ethernet standard to meet real-time requirements of
modern test, measurement, and control systems. TSN uses
the Precision Time Protocol (PTP) to synchronize the device
clocks in the system to a reference time. This common sense
of time is fundamental to the working of TSN. This paper
presents the principles and operation of PTP and compares
it to the Network Time Protocol (NTP).

Index Terms—clock, network time protocol (NTP), precision
time protocol (PTP), synchronization, time, time-sensitive
networking (TSN)

1. Introduction

In real-time systems, the correctness of a task does not
only rely on the logical correctness of its result but also
that the result meets some deadline [1]. A typical example
of a real-time system is a control system in industrial
automation that has to integrate multiple sensor readings
and then initiate an action in response. This requires a
deterministic underlying network.

Time-Sensitive Networking (TSN) is a set of stan-
dards that represent an ongoing effort of the Institute of
Electrical and Electronics Engineers (IEEE) 802.1 TSN
Task Group [2] to extend and adapt existing Ethernet
standards on the data link layer to meet real-time require-
ments of modern test, measurement and control systems.
Advantages over traditional Ethernet include guaranteed
bounded latency for time-critical data while transmitting
time-critical data and best-effort data on the same net-
work [3].

The foundation of TSN is establishing a shared sense
of time in all networked devices in the system. Only then
they are able to perform time-sensitive tasks in unison
at the right point in time. This shared sense of time is
achieved through the use of the Precision Time Protocol
(PTP) [3]. PTP is a message based time transfer protocol
that enables clocks in the nodes of a packet-based network
to synchronize (phase and absolute time) and syntonize
(frequency) with sub-microsecond accuracy to a reference
time source. PTP was first described in the IEEE 1588-
2002 standard. The standard was later revised in IEEE
1588-2008 [4]. The revised protocol is commonly referred
to as PTP Version 2 and is used in TSN together with the
profiles IEEE 802.1AS and IEEE 802.1ASRev [5].

The paper starts with a description of PTP Version 2 in
Chapter 2. The chapter begins with a brief overview of the
two fundamental phases of the protocol: the best master

clock algorithm and message based time synchronization.
Then the various PTP device types and message types are
discussed. The two phases are described in more detail in
the rest of the chapter.

Next, in Chapter 3, PTP Version 2 is compared
to another message based time synchronization protocol
called Network Time Protocol (NTP) Version 4. Various
advantages and disadvantages are discussed.

Finally, Chapter 4 concludes the paper.

2. Precision Time Protocol

An IEEE 1588 system is a distributed network of PTP
enabled devices and possibly non-PTP devices. Non-PTP
devices mainly include conventional switches and routers.
An example PTP network can be seen in Fig. 1.

The operation of PTP can be conceptually divided into
a two-stage process [6]. In the first stage, the PTP devices
self-organize logically into a synchronization hierarchy
tree using the Best Master Clock Algorithm (BMCA). The
devices are continuously exchanging quality properties of
their internal clock with each other. The PTP device with
the highest quality clock in the system eventually assumes
the role of grandmaster (GM) and provides the reference
time for the whole system. The subnet scope in which all
clocks synchronize to the GM is called PTP domain. The
BMCA is explained further in Section 2.3.

In the second stage, time information continuously
flows downstream from the GM between pairs of PTP
ports with one port in the master state serving time
information and the other in the slave state receiving time
information. Eventually, the system reaches an equilibrium
where all clocks are synchronized to the GM of the
system. Time synchronization between master and slave
is initiated by the master port, which periodically sends
synchronization messages to its slave. These messages are
timestamped by the master at transmission and by the
slave at arrival. A slave now has two timestamps, the
sending time according to the clock of the master, and
the receiving time according to its clock. As the message
takes some time to travel through the network, the slave
also needs to know the network delay to calculate the
offset to the master [6].

PTP supports two mechanisms to calculate this de-
lay: End-to-End (E2E) and Peer-to-Peer (P2P). The E2E
mechanism requires the slave to measure the total delay
between itself and the master (thus end-to-end). The P2P
mechanism, on the other hand, requires each device (in-
cluding switches and routers) on the path between master
and slave to measure the delay between itself and its

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

51 doi: 10.2313/NET-2020-04-1_10

direct neighbor (peer). The total network delay between
master and slave is the sum of the peer delays along the
path. Technically, E2E can be used in the same domain
as P2P as long as the two are not mixed along the same
messaging path. Thus, between master and slave, all nodes
must either use E2E or P2P [7]. The two mechanisms are
discussed in more detail in Section 2.5.

2.1. PTP Device Types

The standard defines five PTP device types: or-
dinary clocks, boundary clocks, end-to-end transparent
clocks, peer-to-peer transparent clocks, and management
nodes [4].

An ordinary clock (OC) is an end-device (as opposed
to a switch or router) with a single PTP capable port and
an internal local clock. It can either assume the role of
slave (leave node) or GM (root node) in the synchroniza-
tion hierarchy.

The main source of error in PTP is asymmetry in
the network delay between master and slave. Asymmetric
network delay means that sending a message from master
to slave takes a different amount of time than the other
way around. The most significant sources of asymmet-
ric network delay are different processing and queueing
delays in ordinary switches and routers, different data
transmission speeds, error differences in the generation of
timestamps, and messages taking different routes through
the network [6].

IEEE 1588-2008 defines two types of PTP enabled
switches and routers to deal with the asymmetry problem:
Boundary clocks (BC) and transparent clocks (TC).

A BC has multiple PTP capable ports and one internal
clock shared by all ports. If the BC is selected as the
GM of the system, then all ports switch to the master
state. Otherwise, the BC selects the best clock seen by
all of its ports. The corresponding port then switches to
the slave state, allowing the internal clock to synchronize.
The other ports switch to the master state, serving time
information based on the now synchronized internal clock.
By terminating and then restarting the time distribution,
each BC creates a branch point (internal node) in the
synchronization tree. This allows the BC to effectively
remove the adverse effects of its processing and queuing
delays.

Like a BC, a TC has multiple PTP capable ports,
and one shared internal clock. Eliminating asymmetry
is achieved by timestamping the entrance and exit of
PTP messages that pass through the device. The time the
message spent inside the device, called residence time,
is calculated by subtracting the entrance timestamp from
the exit timestamp. The TC then adds the residence time
to a correction field in the PTP message before passing it
along. The slave can then remove the accumulated queuing
and processing delays by using the correction field value
in the offset calculation.

Transparent clocks exist in variants supporting either
the P2P delay mechanism or the E2E delay mechanism.
Only a single delay mechanism is allowed in the link
between master and slave. A boundary clock with ports
supporting each of the two mechanisms can be used to
connect regions using the different mechanisms. See 1
for an example.

P2P TC

End To End Delay Measurement Peer to Peer Delay
Measurement

BC

Ordinary Switch

E2E TC

OC

Quality Time Source

Grandmaster

M

OCOC

S S

OC

S

MS

OC

M
S

Figure 1: Example PTP Domain (Adapted from [8])

Management Nodes do not take part in the time syn-
chronization but can be used to read and write various PTP
properties of other nodes via Management messages [6].

2.2. PTP Message Types

IEEE 1588 defines two groups of PTP messages [4]:
(1) Event messages, which require an accurate timestamp
both at sending and receiving because PTP uses these as
timing events. (2) General messages, which are being used
to transmit information. In contrast to event messages,
sending and receiving of general messages does not pro-
duce a timestamp.

The event message are Sync, Delay_Req, Pdelay_Req
and Pdelay_Resp. These are used in the time syn-
chronization process to transfer timestamps and correc-
tion information between master and slave. The gen-
eral messages are Announce, Follow_Up, Delay_Resp,
Pdelay_Resp_Follow_Up, Management and Signaling.
Announce messages are used in the BMCA to exchange
clock quality information. Management messages are used
to configure PTP devices. Signaling messages are used by
PTP clocks to communicate in special settings, such as
unicast environments.

IEEE 1588 clocks can either support the one-step or
two-step messaging mechanism. When sending Sync or
Pdelay_Resp messages, clocks need to tell the receiver the
sending timestamp. They are either capable of including
this timestamp in the Sync and Pdelay_Resp themselves
(one-step-clock), or they need to send a second follow-
up message containing it (two-step-clock). Follow_Up and
Pdelay_Resp_Follow_Up messages are used for this [9].

As mentioned before, any delay asymmetry causes a
loss in accuracy. ‘Artificial’ network delay is created if the
timestamps that are generated on the path from master
to slave have a different error than those generated on
the path from slave to master. This happens for example
if software timestamping is used because the operating
system and protocol stack packet processing delay fluctu-
ates. Therefore it is recommended to use devices with PTP
enabled NICs (Network Interface Cards) in the network.
These specialized NICs have a clock, which is used to
timestamp the received and transmitted PTP messages as
close to the physical layer as possible [10]. Timestamps
generated via hardware support have a constant low error
and therefore improve synchronization accuracy.

PTP usually is implemented using multicast communi-
cation, but it can also be configured for unicast messaging.
The PTP standard does not require any specific transport
protocol, but most commonly, UDP is used. The well
known UDP ports for PTP traffic are 319 (Event Message)
and 320 (General Message) [11].

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

52 doi: 10.2313/NET-2020-04-1_10

Power Up

Listen

do/ listen for Announce

Master
do/ transmit Announce
do/ listen for Announce

Slave

do/ listen for Announce

Announce from better Clock

No Announce from better Clock

 Announce
 from better Clock

No Announce
from better Clock

Figure 2: Simplified PTP State Machine of an Ordinary
Clock (Adapted from [12])

2.3. Best Master Clock Algorithm

IEEE 1588 is an administration-free system that can
deal with events like system restarts, failure of a clock,
or changes in network topology automatically. This is
achieved via the BMCA, which runs continuously in OCs
and BCs in a domain [4].

The basics of the BMCA can be explained using the
simplified state diagram of an OC in Fig. 2. All OCs listen
for defined intervals to Announce messages, which are sent
in a specific frequency by ports in the master state to the
PTP multicast address. These messages contain attributes
about the sending clock. At the end of each listening
interval, an OC has either received an Announce message
from a better clock or not.

The attribute comparison algorithm uses the following
criteria in order of precedence to determine if an Announce
message from a better clock has been received [12] [4]:

1) priority1: This is a user configurable field. It is
the first parameter to be considered by the BMCA.
Therefore an administrator can manually set up a
clock quality hierarchy.

2) clockClass: This field generally described the quality
of a clock. A clock connected to a GPS receiver has
a higher class than a free-running clock.

3) clockAccuracy: This field describes the accuracy of
the clock. The value is picked from defined accuracy
levels in the standard, for example, 25 ns to 100 ns.

4) offsetScaledLogVariance: This field describes the sta-
bility of the clocks oscillator.

5) priority2: This is a user configurable field. It can be
used to manually rank clocks of equal quality.

6) clockIdentity: This field is usually set to the Ethernet
MAC address. It is a unique number that is used to
break ties.

If a message from a better clock has been received, a
master OC switches to the slave state. If no such message
has been received, a slave OC switches to the master
state and starts transmitting Announce messages. Freshly
rebooted OCs are in a special listening state and can either
switch to the master or slave state [12].

The process in BCs is similar, but these devices have
to compare all of the Announce messages received on all
the ports, to determine if they become a GM (all ports in
master state) or just a branching point (one port in slave
state and the others in master state) [12].

Eventually, only a single clock assumes the role of
GM in the domain.

M E2E
TC

t1 = 5μs

tm = 0 ts = 5μs

Path delay M⭢S: 10μs

t3 = 25μs
Delay_Req (corr=0)

 t4=30μs
corrsm= 2μs

{t1,t2,t3,t4,
corrms,
corrsm}

t2 = 21μs
corrms = 1μs

Delay_Resp (t4, corr= 2μs)

1μsSync(corr=0, t1)

Path delay M⭠S: 8μs

S

Sync(corr=1μs, t1)

2μs

Delay_Req (corr=2μs)

Delay_Resp (t4, corr= 2μs)

Figure 3: E2E Synchronization (One-Step-Clocks)
(Adapted from [4])

It is important to note that the BMCA never stops
running. This allows the system to react to certain events
by dynamically changing the synchronization hierarchy.
For example, if the current GM gets disconnected from
the network, a new GM is determined automatically.

2.4. Syntonization

Syntonization in this context means frequency locking
two clocks by agreeing on the length of a second. Syn-
tonized clocks, therefore, are running at the same rate.
This paper does not discuss the details of syntonization
using PTP, but it is important to note that any port in the
slave state and any TC syntonizes to the GM [4].

2.5. Synchronization

Time synchronization implies phase-locking two
clocks and making them agree on the same time of day.
Phase locking means that incrementing the time does not
only happen at the same rate in both clocks but also
at the same time. Agreeing on the time of day means
synchronizing the ‘wristwatch time’ – year, month, day,
hour, minute, seconds and so on in a given timezone. Any
OC or BC with a port in the slave state synchronizes to
its respective master in the hierarchy [4].

2.5.1. E2E Synchronization. Fig. 3 shows the message
exchange to synchronize a one-step slave clock and a one-
step master clock with an E2E transparent clock between
them. In the example, there exist two sources of delay
asymmetry: (1) A difference of 1 µs in the TC processing
time. The negative effects of this asymmetry can be au-
tomatically removed. (2) A difference of 2 µs that has its
origin in transmission speed or path length differences.
PTP can not automatically remove the influence of this
asymmetry. However, if measured manually, PTP can be
configured to account for it [6].

As seen in the example, the slave collects four times-
tamps and two correction values during the message ex-
change:

• t1: Sync sending timestamp in master time. In a two-
step clock this timestamp is contained in a separate
Follow_Up message and not in the Sync message
itself.

• corrms, corrsm: Each TC on the path adds the
residence time to the correction field in the Sync or
Delay_Req message

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

53 doi: 10.2313/NET-2020-04-1_10

• t2: Sync receiving timestamp in slave time
• t3: Delay_Req sending timestamp in slave time
• t4: Delay_Req receiving timestamp in master time

The fundamental assumption of all synchronization
protocols that are based on the exchange of timing infor-
mation via networks with unknown propagation delays is
a symmetric network delay between master and slave [6].

Under this assumption the slave is able to calculate the
network delay d between itself and the master by dividing
the corrected round-trip delay by two:

d =
[(t4 − t1)− (t3 − t2)]− corrms − corrsm

2
(1)

This assumption is critical since it is not possible to
determine one-way delays with an unknown clock offset.

In the example:

d =
(30 µs− 5 µs)− (25 µs− 21 µs)− 1 µs− 2 µs

2
= 9 µs

The slave can now calculate the offset o from the
master by subtracting from t2 (slave time): t1 (master
time), the network delay, and the TC correction factor.
The result represents the part of the timestamp difference
that originates from the slave and master clock divergence.

o = t2−t1−d−corrms = 21 µs−5 µs−9 µs−1 µs = 6 µs (2)

The actual offset is 5 µs, so there is an error of 1 µs. This
error occurs because the above assumption was wrong:
There is uncorrected asymmetry in the delay between
master and slave of 2 µs. However, the example demon-
strated that PTP is successfully able to remove the amount
of asymmetry stemming from queue effects in ordinary
switches and routers by replacing them with TCs.

In general for the error e:

e =
NDms −NDsm

2
=

10 µs− 8 µs
2

= 1 µs (3)

The maximum possible error due to asymmetry in the
network is, therefore, half of the round-trip delay.

A

t1 = 5μs

tA = 0 tB = 5μs

Path delay A⭢B: 5μs

t3 = 20μs
 t4=25μs

{t1,(t3-t2),t4}

t2 = 15μsPdelay_Req

Path delay A⭠B: 10μs

B

Pdelay_Resp (t3-t2)

Figure 4: P2P Delay Measurement (One-Step-Clocks)
(Adapted from [4])

M P2P
TC

t1 = 5μs

tm = 0 ts = 5μs

Path delay M⭢TC: 5μs

{t1,t2,
corrms}

t2 = 21μs
corrms = 1μs
+ 4.5μs + 4.5 μs

1μsSync(corr=0, t1)

Path delay TC⭢S: 5μs
Path delay TC⭠S: 4μs

P2P Delay = 4.5μs
Error = 0.5 μs

P2P Delay = 4.5μs
Error = 0.5 μs

Path delay M⭠TC: 4μs
S

Sync(corr=1μs + 4.5μs, t1)

Figure 5: P2P Synchronization (Adapted from [4])

2.5.2. P2P Synchronization. A link between master and
slave that is set up to use P2P synchronization calculates
the network delay differently. Periodically two directly
connected clocks independent of their state perform a
message exchange to measure the network delay between
them. An example is shown in Fig. 4.

Four timestamps are generated that are used to calcu-
late the network delay:

d =
[(t4 − t1)− (t3 − t2)]

2
(4)

=
(25 µs− 5 µs)− (20 µs− 15 µs)

2
= 7.5 µs

The error is again half of the network delay asymmetry
between clock A and clock B. This peer delay is measured
for both directions. This is important because during the
lifetime of the system, the master-slave states of A and B
can change.

Fig. 5 shows an example of time synchronization
between master and slave using the P2P mechanism with
the same delay values as in the E2E case. The timestamps
t1 and t2 are still created by sending a Sync message
from master to slave, but the network delay is calculated
differently.

Each clock on the link that receives the Sync message
adds the peer delay value to the correction field. In addi-
tion, the TCs add the residence time to the correction field
as usual. The correction field, therefore, always represents
the network delay from the master until the current node.

The slave adds the final peer delay to the correction
field and can now calculate the offset to the master:

o = (t2 − t1)− corrms (5)
= (21 µs− 5 µs)− 10 µs = 6 µs

The error is the same as in the E2E example because
the total error is just the sum of all errors made during
the peer network delay calculation.

Even though no higher precision can be achieved using
the P2P mechanism, there are several other factors to
consider [7]:

• Ordinary switches and routers do not respond cor-
rectly to Pdelay_Req messages, in case such devices
are used in the network, the E2E mechanism has to
be used.

• As the master does only need to respond to
Pdelay_Req messages from its direct neighbors and
not to Delay_Req messages from all the slaves that
sync to it, a P2P system scales much better. The load
on a master that a lot of slaves sync to is dramatically
reduced.

• As no Delay_Req messages are used, there is no risk
of the Sync and Delay_Req message taking different
paths in the network. Thus the risk for delay asym-
metry is reduced.

3. Related Work

PTP was designed for usage in local industrial automa-
tion and measurement networks where specialized devices
like BCs and TCs can be used as switches and routers.
Another protocol called Network Time Protocol (NTP), on
the other hand, is the workhorse for synchronizing system
clocks of devices over the Internet to a common timebase

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

54 doi: 10.2313/NET-2020-04-1_10

Stratum 1

Stratum 2

. . .

Stratum 0

Figure 6: Example NTP Hierarchy

(usually UTC). NTP time synchronization is used, for
example, in general-purpose workstations and servers. It
is one of the oldest (the first version was released in 1985)
protocols still in use today and is currently in its fourth
major version. NTP uses UDP on port 123 [13].

Similar to PTP, an NTP network (for example, the
global Internet) is hierarchically organized into primary
servers, which are directly connected to a reference clock,
secondary servers, and clients. In NTP, there also exists the
concept of a stratum which represents the logical distance
of a server/client to a reference clock. Primary servers
have a stratum value of 1 and secondary servers values
between 2 and 15. If a server has a stratum value of 16, it
means that it is not yet synchronized. A server in stratum
n is a synchronization client to a server in stratum n− 1.
In real-world configurations, stratum levels above 4 are
rare [14]. Fig. 6 illustrates the hierarchical strata model of
NTP. To increase robustness, two NTP servers in the same
stratum can also synchronize with each other as peers. If
a server loses connectivity to its upstream NTP server, it
can receive time information from its peers.

Time synchronization of an NTP client is established
through periodic request/reply exchange with one or more
NTP servers they are authorized to access. As in PTP, the
offset of the client clock to the server clock is calculated
from the four timestamps generated during the exchange.
The critical source of error is again the delay asymmetry
between the two messaging directions.

A key advantage of NTP over PTP is that in NTP,
a client polls typically many servers for time synchro-
nization. In case of disagreements between the sources,
the most extensive collection of agreeing servers is used
to produce a combined reference time, thereby declar-
ing other servers as faulty or not trustworthy [15]. PTP
slaves, on the other hand, are trusting a single time source
blindly [16]. Slaves can only assume that the calculated
offset to the master is correct, as they are not capable
of comparing it to some value from other sources. This
means that if the GM has some error that causes it so
send the wrong time information in Sync messages but that
does not affect the clock quality presented in Announce
messages, slaves change their clock to the wrong time.
Several researchers have proposed protocol modifications
to increase PTP robustness [17], including giving slaves
the ability to check the calculated offset against time
information from multiple NTP servers [18].

Another area where NTP has an advantage over PTP
is security. NTP supports authentication with symmetric
keys or public/private certificate pairs to allow clients to
verify the authenticity and integrity of received messages.
The standard IEEE 1588-2008, on the other hand, does
not include any fully defined security model [19]. Security

was not a priority in the development of PTP due to the
typical use case under consideration at the time, i.e. time
synchronization in closed local area networks (LANs)
[20]. This means that in PTP, it is not possible to verify
the authenticity and integrity of the critical Announce and
Sync messages. This allows a malicious actor to influence
the BMCA or time synchronization. Security researchers
have shown that it is possible to cause a major disturbance
in PTP synchronization via an Announce message Denial
of Service attack on a slave. They were even capable
of taking control of the whole PTP domain by creating
an evil grandmaster, that claims better quality than other
alternatives [21].

What PTP lacks in terms of robustness and security, it
makes up for in accuracy. Typical accuracy expectations
of PTP are in the order of 100 ns [22] while the typical
values for NTP accuracy over the Internet range from 5 ms
to 100 ms [23] if there is considerable delay asymmetry,
such as when one direction is via satellite and the other
via broadband.

One might ask why PTP accuracy and NTP accuracy
differ so much when the protocols use an almost identical
message exchange to calculate the clock offset. The dif-
ference in typically achieved synchronization accuracy has
its origin in the vastly different networking environments
the two protocols are used in.

PTP is primarily used in lightly loaded high-speed
LANs. In these networks, overhead is of little concern,
and update intervals of a few seconds or less can be
used. Clocks lose their synchronicity over time because
of changes in the physical environment (primarily tem-
perature and barometric pressure) that affect the oscilla-
tor [24]. High-frequency update intervals allow clocks to
re-synchronize faster. NTP requires long update intervals
of one minute to several hours to minimize load on
the typically heavily used network [22] [24]. NTP also
operates in wide area networks (WAN), where differences
in network speeds and routing paths are common sources
of delay asymmetry. Furthermore, a significant amount of
delay asymmetry can be removed from a PTP network
by using only clocks that support hardware timestamping
and connecting them exclusively via TCs or BCs. While
hardware timestamping in clients and servers is rare but
possible, NTP supports no mechanism for removing vari-
ations in queuing time in switches and routers [25].

Theoretically, a new version of NTP that uses the same
delay asymmetry reduction strategies as PTP could be
developed. If this were done, NTP could reach the same
levels of accuracy and precision as PTP [22]. However, the
current research focus is on improving PTP, rather than
developing a more precise NTP.

IEEE 1588-2019 (PTP Version 2.1) is currently in the
works. This new version addresses some of the robustness
and security issues of PTP by enabling message and
source integrity checking [26]. The next protocol version
also allows sub-nanosecond accuracy and picoseconds
precision of synchronization by incorporating the White
Rabbit extension [27], which was developed at CERN,
into the standard as a new configuration profile [28].
IEEE 1588-2019 is likely going to be released in early
2020 [29].

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

55 doi: 10.2313/NET-2020-04-1_10

4. Conclusion

Choosing PTP as the time synchronization protocol
for the important TSN effort, established PTP as the most
important protocol for synchronizing clocks in real-time
networks. PTP achieves high accuracy not by a novel way
of calculating the offset of a clock, but through hardware
timestamping and the usage of specialized network in-
frastructure devices. PTP currently lags behind NTP in the
areas of robustness and security. Substantial changes to the
protocol are needed to improve the protocol in these areas.
It will be interesting to see if the next version IEEE 1588-
2019 makes it possible to get both accuracy and security
at the same time.

References

[1] K. G. Shin and P. Ramanathan, “Real-Time Computing: A New
Discipline of Computer Science and Engineering,” Proceedings of
the IEEE, vol. 82, no. 1, pp. 6–24, Jan 1994.

[2] IEEE 802.1 TSN Task Group. [Online]. Available: https:
//1.ieee802.org/tsn/

[3] A. Weder, “Whitepaper: Time Sensitive Net-
working,” Tech. Rep. [Online]. Available: https:
//www.ipms.fraunhofer.de/de/press-media/whitepaper-download/
TIME-SENSITIVE-NETWORKING-An-Introduction-to-TSN.
html

[4] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-
2008 (Revision of IEEE Std 1588-2002), pp. 1–300, July 2008.

[5] “Whitepaper: Time Sensitive Networking,” Tech. Rep. [Online].
Available: https://www.cisco.com/c/dam/en/us/solutions/collateral/
industry-solutions/white-paper-c11-738950.pdf

[6] J. Eidson, Measurement, Control, and Communication Using IEEE
1588, ser. Advances in Industrial Control. Springer London, 2006.

[7] End-to-End Versus Peer-to-Peer. [Online]. Available: https:
//blog.meinbergglobal.com/2013/09/19/end-end-versus-peer-peer/

[8] The IEEE 1588 Default Profile. [Online]. Available: https:
//blog.meinbergglobal.com/2014/01/09/ieee-1588-default-profile/

[9] One-step or Two-step? [Online]. Available: https://blog.
meinbergglobal.com/2013/10/28/one-step-two-step/

[10] PTP’s Secret Weapon: Hardware Timestamp-
ing. [Online]. Available: https://www.corvil.com/blog/2016/
ptp-s-secret-weapon-hardware-timestamping

[11] Protocols/ptp - The Wireshark Wiki. [Online]. Available: https:
//wiki.wireshark.org/Protocols/ptp

[12] What Makes a Master the Best? [Online]. Available: https:
//blog.meinbergglobal.com/2013/11/14/makes-master-best/

[13] NTP - The Wireshark Wiki. [Online]. Available: https://wiki.
wireshark.org/NTP

[14] Sun Blueprint: Using NTP to Control and Synchronize
System Clocks - Part I: Introduction to NTP. [Online].
Available: http://www-it.desy.de/common/documentation/cd-docs/
sun/blueprints/0701/NTP.pdf

[15] Combining PTP with NTP to Get the Best of Both
Worlds. [Online]. Available: https://www.redhat.com/en/blog/
combining-ptp-ntp-get-best-both-worlds

[16] P. V. Estrela and L. Bonebakker, “Challenges deploying PTPv2 in a
global financial company,” in 2012 IEEE International Symposium
on Precision Clock Synchronization for Measurement, Control and
Communication Proceedings, Sep. 2012, pp. 1–6.

[17] M. Dalmas, H. Rachadel, G. Silvano, and C. Dutra, “Improving
PTP robustness to the byzantine failure,” in 2015 IEEE Interna-
tional Symposium on Precision Clock Synchronization for Mea-
surement, Control, and Communication (ISPCS), Oct 2015, pp.
111–114.

[18] P. V. Estrela, S. Neusüß, and W. Owczarek, “Using a multi-source
NTP watchdog to increase the robustness of PTPv2 in financial
industry networks,” in 2014 IEEE International Symposium on
Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS), Sep. 2014, pp. 87–92.

[19] RFC 7384 - Security Requirements of Time Protocols in Packet
Switched Networks. [Online]. Available: https://tools.ietf.org/html/
rfc7384

[20] K. O’Donoghue, D. Sibold, and S. Fries, “New security mecha-
nisms for network time synchronization protocols,” in 2017 IEEE
International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication (ISPCS), Aug 2017,
pp. 1–6.

[21] C. DeCusatis, R. M. Lynch, W. Kluge, J. Houston, P. Wojciak, and
S. Guendert, “Impact of Cyberattacks on Precision Time Protocol,”
IEEE Transactions on Instrumentation and Measurement, pp. 1–1,
2019.

[22] IEEE 1588 Precision Time Protocol (PTP). [Online]. Available:
https://www.eecis.udel.edu/~mills/ptp.html

[23] How does it work? [Online]. Available: http://www.ntp.org/ntpfaq/
NTP-s-algo.htm

[24] D. Mills, Computer Network Time Synchronization: The Network
Time Protocol on Earth and in Space, Second Edition. CRC Press,
2017.

[25] NTP vs PTP: Network Timing Smackdown! [On-
line]. Available: https://blog.meinbergglobal.com/2013/11/22/
ntp-vs-ptp-network-timing-smackdown/

[26] What’s coming In the Next Edition of IEEE 1588?
[Online]. Available: https://blog.meinbergglobal.com/2017/09/24/
whats-coming-next-edition-ieee-1588/

[27] M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White
rabbit: a PTP application for robust sub-nanosecond synchroniza-
tion,” in 2011 IEEE International Symposium on Precision Clock
Synchronization for Measurement, Control and Communication,
Sep. 2011, pp. 25–30.

[28] White Rabbit Official CERN website. [Online]. Available:
http://white-rabbit.web.cern.ch/Default.htm

[29] iMeet Central. [Online]. Available: https://ieee-sa.imeetcentral.
com/1588public/

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

56 doi: 10.2313/NET-2020-04-1_10

An Overview on Vehicular Communication Standards

Kilian Zieglowski, Holger Kinkelin∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: kilian.zieglowski@tum.de, kinkelin@net.in.tum.de

Abstract—Communication between vehicles is evolving. It
can be used for reducing dangerous situations, improving
safety in traffic as well as making driving more convenient
by enabling improved in-car entertainment such as Wifi and
Video streaming. The main advantage is safer traffic with
the goal of reducing traffic collisions to almost zero.

There are two main techniques and standards that
compete in the European market. These are the C-ITS
(Cooperative Intelligent Transport System) of the EU based
on the IEEE 802.11p standard, and the new developing
cellular techniques using LTE and in the future the 5G
radio standard. This paper shows an overview of the C-
ITS and the cellular-based ITS (Intelligent Transport System)
and its current standardised security architecture. C-ITS
is mature and tested, whereas cellular ITS has multiple
possible advantages for the future. However, cellular-based
ITS still needs to be standardised and tested for vehicle
communication.

Index Terms—V2X, V2V, C-ITS, IEEE 802.11p, cellular ITS,
ITS Security

1. Introduction

The IoT (Internet of Things) is becoming an important
part of our lives. More and more things are connected
and becoming smarter. Meanwhile, IoT is even used in
the automotive industry with the aim to make our trans-
portation safer and more comfortable. This means making
cars smarter and enabling them to communicate with each
other in real-time. [1]

The new technology is called V2X (Vehicle to Ev-
erything) communication which is the summary of four
different communication types [2]. These types are V2V
(Vehicle to Vehicle), V2I (Vehicle to Infrastructure), V2P
(Vehicle to Pedestrian) as well as V2N (Vehicle to Net-
work) [2]. The V2X ITS (Intelligent Transport System)
has four primary purposes [3]. First, ITS can be used for
improving the safety of transportation with, e.g. assistance
and warnings [4]. The primary purpose is to react on the
not line of sight area, where the current sensors of a car
are nowadays useless [5]. Second, ITS can be utilised to
optimise traffic flow, e.g. platooning, which is the ability
to link vehicles together in an automated way. [4]. Third,
it can also be used for better in-car entertainment for
business or pleasure by offering video-streaming or Wifi
for mobile devices [6]. Fourth, autonomous driving can be
improved with V2X, so a vehicle knows where the others
are located, what they see and has the ability to predict
the next most likely situation [3].

V2X

802.11p-based ITS

C-ITS DSRC

cellular-based ITS

LTE

PC5 UU

5G

PC5 UU

Figure 1: Taxonomy of used V2X communications

The V2X communication can be split into three lead-
ing technologies divided into two fields, which can be
seen in figure 1. One field is the 802.11p-based standard,
with the two technologies DSRC (Dedicated Short Range
Communication) of the USA and the C-ITS (Cooperative
Intelligent Transport System) of the EU [4]. Another field
and technology is the cellular-based system. It uses for
short direct communication the PC5 and for far infras-
tructure communication the UU interface, in LTE and the
upcoming 5G standard [4].

The aim of this paper is to give an overview which
will include advantages and disadvantages of the IEEE
802.11p-based communication, with a special focus on
C-ITS in Section 2, which will be followed by LTE/5G-
based communication in Section 3. Furthermore, oppor-
tunities and difficulties of the coexistence of LTE-based
and IEEE 802.11p-based ITS are detailed in Section 4. In
Section 5, the security is described with the features of
IEEE 802.11p-based ITS in Subsection 5.1 as well as of
the LTE-based ITS in Subsection 5.2. In Section 6, some
related work is listed, which is followed by the conclusion
in Section 7.

2. IEEE 802.11p-based ITS

IEEE 802.11p is based on the normal Wifi standard
IEEE 802.11a, which is broadly used in private Wifi
environments and is adapted for the use in V2X com-
munication [5]. The V2V communication based on the
Wifi Standard 802.11p standard is mature and well tested,
which makes it a technique ready to use [7]. The 802.11p
is divided into two primary standards: the DSRC of the
USA and the C-ITS of the EU [4].

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

57 doi: 10.2313/NET-2020-04-1_11

ORIGINALARBEITEN A. Festag Standards for vehicular communication—from IEEE 802.11p to 5G

Fig. 2. Protocol stack and related core standards for C-ITS in Europe

C-ITS standards in Europe in comparison to the DSRC standards. Fig-
ure 2 shows the overall protocol stack and the corresponding core
standard, keeping the same structure of horizontal layers for access
technologies, networking & transport, V2X messages, applications,
and vertical management and security entities as in Fig. 1.

The IEEE 802.11p equivalent in the C-ITS stack covering PHY and
MAC is termed ITS-G5; the last two letters indicate that it operates
in the 5 GHz frequency band. Like DSRC, it operates in the 5.9 GHz
band, whereas the European spectrum allocation is sub-divided into
part A to D. ITS-G5A with 30 MHz is the primary frequency band
that is dedicated for safety and traffic efficiency applications, ITS-
G5B has 20 MHz for non-safety application, and ITS-G5C is shared
with the RLAN band. A specific requirement in Europe is also that
the ITS-G5 spectrum must limit interference to the 5.8 GHz EFC sys-
tem. However, the key technology features of IEEE-802.11 for DSCR
and ITS-G5 are the same: At the PHY layer, it applies OFDM with the
same parameter set, i.e. “half clocked” compared to IEEE 802.11a,
but an adapted spectrum masks. At the MAC layer, ITS-G5 also em-
ploys EDCA with CSMA/CA and access categories allow for data
traffic prioritization.

Standards for networking & transport and facilities also rely on the
IP protocol for non-safety applications, but a major difference is at
the protocols: While the usage of TCP/UDP and IP version 6 is sim-
ilar, C-ITS specifies an ad hoc routing protocol for multi-hop com-
munication, termed GeoNetworking and specified in the ETSI EN
302 636 standard series. Key feature of this protocol is the usage of
geographical coordinates for addressing and forwarding. Its usage
for addressing facilitates that all vehicles that are located in a geo-
graphical area can become the destination of a packet. While this
is similar to broadcasting a packet to all neighbor vehicles, the ge-
ographical addressing makes the packet delivery independent from
the communication range of a single wireless hop (which can vary
from several 10 meters in unfortunate situations up to 1 km un-
der line-of-sight conditions sometimes found on motorways). Also,
the geographical coordinates are used to forward packets locally
based on the vehicles’ knowledge of its own position and the neigh-
bor positions, and therefore enabling efficient multi-hop routing at
low protocol overhead for establishment and maintenance of net-
work routes in an environment with frequent topology changes. IPv6
packets can also be transmitted over GeoNetworking, for which the
adaptation sub-layer GN6 (IPv6 over GeoNetworking) has been de-
signed and standardized. Compared to the WSMP in the DSRC pro-
tocol stack, GeoNetworking is optimized for multi-hop communica-
tion with geo-addressing, which provides more technical features in

application support, but comes with an increased protocol complex-
ity and overhead.

Standards at the facilities layer define application-related func-
tionality; most relevant are the V2X messages: Foremost, the Co-
operative Awareness Message (CAM) (ETSI EN 302 637-2) [9] peri-
odically conveys critical vehicle state information in support of safety
and traffic efficiency application, with which receiving vehicles can
track other vehicles’ positions and movement. It can be seen as
an equivalent to the BSM in the DSRC protocol stack. In addition,
the Distributed Environmental Notification Message (DENM) (ETSI
EN 302 637-3) [10] disseminates safety information in a geographi-
cal region. Unlike the CAM, which is periodically sent by every vehi-
cle, the DENM transmission needs to be triggered by an application.

For vehicle-to-infrastructure communication, several services are
defined that inform road users from the infrastructure side, control
roadside infrastructure for priority access and preemption, and pro-
vide information from the vehicles to the infrastructure (see Table 1).
These services define dedicated messages, namely the Signal Phase
& Timing (SPAT) message for IIS, the MAP message for TPS, and the
In-Vehicle Information (IVI). In the signal control service message are
bi-directionally exchanged, i.e. it uses Signal Request (SR) and Sig-
nal Status (SS) messages. Finally, DENM and CAM are re-used for
infrastructure-related services (INS and IAS).

Similar to the DSRC standards, C-ITS applications are not stan-
dardized directly. Instead minimum functional and performance re-
quirements for three groups of applications are defined: Road haz-
ard signaling (RHS) includes use cases such as emergency vehicle
approaching, hazardous location and emergency electronic brake
lights. Intersection collision risk warning (ICRW) and longitudinal
collision risk warning (LCRW) refer to potential vehicle collisions at
intersections and rear-end/head-on collisions.

5. Directions for vehicular communication standardization

5.1 New applications and use cases
V2X communication enables a wide range of applications. For the
release 1 of standards, ETSI has categorized them into four groups,
i.e. active road safety, cooperative traffic efficiency, co-operative lo-
cal services, and global Internet services (see Table 2). A subset of use
cases is considered for initial deployment, in Europe also referred to
“Day 1 applications” in the Amsterdam group [15] and similar use
cases for collision avoidance applications in the U.S. Among the ap-
plication classes of release 1, active road safety has the most strin-
gent communication requirements. Still, these requirements can be

412 heft 7.2015 © Springer Verlag Wien e&i elektrotechnik und informationstechnik

Figure 2: C-ITS protocol stack and standards [4]

In the following, the focus is set on the C-ITS of the
EU, because of multiple similarities between DSRC and
C-ITS. The idea of the C-ITS was to spread information
about, e.g. speed and direction to vehicles nearby and if
necessary use multi-hop to reach afar vehicles [4]. More-
over, the EU wants to develop the ITS system without
any infrastructure with the main focus on V2V commu-
nication [8]. It can be seen as a network of vehicles
communicating with each other and relaying messages.
This network decreases the expenses of each car owner
by excluding costly infrastructure. However, for effective
usage, a minimum of 10% of all the cars need to be
equipped with the ITS system to have a noticeable impact
on safety [8]. This equipment quantity would be reached
in 2.5 years if every second newly released vehicle would
be equipped with C-ITS [8].

C-ITS operates like DSRC in the 5 GHz frequency
band and uses the same technology in the lower PHY
and MAC protocol layer [4], which can be seen in figure
2. The single-hop communication ranges from 10 metres
up to 1 kilometre depending on the weather conditions
and if it is in line of vision [4]. The communication can
be further extended by multi-hop message transport [4].
The multi-hop communication uses geographical data for
effective routing [4]. This routing is needed because not
every vehicle in range should resend each message [4].
Such a resending of every vehicle in proximity could
lead to an overhead and breakdown of the system [4].
Therefore, the selection of vehicles utilises an algorithm,
which uses the broadcast information from the vehicles
about their location and their neighbours [4].

Furthermore, the channel width is reduced to 10Mhz,
as a result of robustness issues [8]. That limits the com-
munication data rates to 27 Mb/s, which can be reduced
to 3 Mb/s to react to interferences and enable a larger
communication range and a lower packet failure rate [8].
Nevertheless, this low data rate limits the usability in
the entertainment segment, e.g. video streaming of the
infrastructure or gaming between vehicles [8]. Moreover,
802.11p has a high potential of errors in high-density
vehicle conditions, no exact future enhancement plans,
or usable and buildable RSUs (Road Side Units) [7].
However, for safety-relevant communication it is crucial to
support a low latency real-time communication and C-ITS
enables typical end to end latencies of under 10 ms [9].

802.11p is adapted to the high mobility in vehicle
communication, with a maximum operating speed of 500
km/h by handling doppler effects and frequent changing
multi-path reflections [5]. Notwithstanding, there are scal-
ability issues in high-density areas such as traffic jams

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Survey of Security Aspect of V2X Standards and Related
Issues

Takahito Yoshizawa
KU Leuven – imec – COSIC

Kasteelpark Arenberg 10 Bus 2452,
B-3001 Leuven, BELGIUM

takahito.yoshizawa@kuleuven.be

Bart Preneel
KU Leuven – imec – COSIC

Kasteelpark Arenberg 10 Bus 2452,
B-3001 Leuven , BELGIUM

bart.preneel@kuleuven.be

Abstract – In the past years, two communication
technologies have emerged for Vehicle-to-everything (V2X)
communication, namely IEEE 802.11p-based and cellular-
based solutions. However, V2X-related standards continue to
evolve. For example, IETF has been working on V2X topics
from an IP network and transport perspective. After
completing the LTE-based V2X standard specifications, 3GPP
continues with a 5G-based V2X solution. While IEEE 802.11p-
based and cellular-based solutions appear to be two competing
solutions, there have been proposals for a hybrid approach in
which both technologies co-exist and are used at the same time
in a different manner. However, this implies that there are two
different security solutions with different architectures: this
requires careful consideration to ensure co-existence and
operation. This paper presents a survey of the recent
developments in the area of V2X standardization with a focus
on security aspects.

Index Terms – V2X, security, hybrid architecture.

I. INTRODUCTION
Connected-car and autonomous driving concepts have

been gaining momentum in the automotive industry in the
past years. The market size of these technologies is expected
to grow significantly, and their economic impact will be
significant. The deployment of these innovative technologies
requires the definition of appropriate standards; several
Standard Defining Organizations (SDOs) have taken on this
task. IEEE started the standardization work on 802.11p in
2004; the resulting standard was published in 2010. Further
standardization work was initiated in 2006 by IEEE and
ETSI, resulting in the IEEE 1609 series and the ETSI ITS
series of standards being adopted in the US and Europe,
respectively. In the US, the IEEE 1609 series of
specifications led SAE to define application layer standards
for V2V communication. IEEE 1609 is generally referred to
as the Wireless Access in Vehicle Environment (WAVE),
and SAE coined the term Dedicated Short Range
Communication (DSRC). In Europe, the ETSI specification
is referred to as Intelligent Transport System (ITS-G5) or
Cooperative ITS (C-ITS).

Starting from 2015, as a part of Release 14, the 3rd
Generation Partnership Project (3GPP) has started to define
the Vehicle-to-Everything (V2X) related standard based on
cellular technology, namely Long Term Evolution (LTE), or
Fourth Generation (4G) mobile system. Their work has
resulted in a set of Technical Specifications (TS) for V2X.
3GPP is currently working on Release 16 and continues to
further define specifications for V2X based on 5G.

Consequently, this situation results in two different
standards to address the same needs, defined by different
SDOs using different technologies. Naturally, different
system architectures and solutions imply two different
security architecture and solutions.

Recently, several proposals (e.g., Abboud et al. [1]) have
been made to adopt a hybrid approach where the 802.11p-
based and cellular-based V2X technologies co-exist and are
used simultaneously. However, the security implications of
this hybrid approach have not been analyzed in detail. For
this reason, this paper summarizes the recent developments
of V2X standards and analyzes them from a security
perspective.

The remainder of this paper is organized as follows. Part
II summarizes the evolution of the V2X related standards. In
Part III, we discuss the security implications of the hybrid
approach, identify issues and address potential solutions. Part
IV concludes the paper with areas of future work.

II. EVOLUTION OF V2X STANDARDS
This section presents an overview of the standardization

landscape of two different V2X communication
technologies. In order to clarify the relationships between
the two main standards, Fig. 1 shows the protocol stacks for
ETSI ITS / 802.11 OCB and 3GPP PC5 as well as the Uu
interfaces.

Fig. 1. Protocol stack for ETSI ITS / 802.11 OCB, 3GPP PC5, and 3GPP
Uu interfaces

A. 802.11-OCB mode (formerly 802.11p)
IEEE first published 802.11p the specification as an

amendment to the 2010 version of the 802.11 specification. It
was later incorporated into the 2016 version of 802.11 [2].
Thus “802.11p” is now a historical term only. The original
feature published as 802.11p is now called “outside of
context of a basic service” mode (OCB) in [2]. The overall
objective of the OCB mode is to address the needs of
vehicular communication environment where the duration of
communication is short-lived and thus it is necessary to
establish communication quickly. The main characteristics of
OCB mode can be summarized as follows:

 No IEEE 802.11 Beacon frames are transmitted

 No authentication is required to communicate

 No association is needed to communicate

2019 IEEE Conference on Standards for Communications and Networking (CSCN)

978-1-7281-0864-3/19/$31.00 ©2019 IEEE

Figure 3: Protocol stack and standards for LTE-UU and
PC5 in comparison to C-ITS [13]

because just a single device is capable of sending a
package in a certain time and channel in DSRC [10].

3. Cellular-based ITS

The use of LTE for V2X communication is still im-
mature and so far not ready to use, but it has multiple
advantages today and in future [7]. One aspect is the
steady development and improvement of specifications
and capabilities of the general cellular standards, which
are the basis for cellular V2X communication [7]. The
main advantage of cellular-based communication is the
already existing infrastructure [4] with a global deploy-
ment [3]. The quality of service is guaranteed by cellular
providers, which offer and enlarge their infrastructure for
other use cases such as smartphones. Nearly every new
vehicle uses the cellular network and has already the
infrastructure on board for, e.g. traffic information [11].
Most manufacturers offer information systems such as
RTTI (Real Time Traffic Information) which provide data
about, e.g. road usage, defect cars or tailbacks [11] for
safety and non-safety relevant information.

By developing LTE and LTE-A (LTE Advanced), it
evolved to be a worthy competitor for the 802.11p. LTE-A
supports a mobility speed of up to 350 km/h, a maximum
data rate of 1 Gb/s and a range of up to 30 kilometres [12]
and for the first time a direct communication between
devices [3].

V2I/V2N communication is realised by the LTE-UU
interface [3]. By enabling D2D (Device to Device) in LTE-
A [3], a direct V2V communication is possible on the
basis of a PC5 interface [14]. In LTE Advanced Release
12 of 3GPP, LTE-Direct was supported for the first time
and made direct communication between devices in prox-
imity possible [15]. The cooperation 3GPP standardises
different standards for LTE-UU and PC5 such as the
ETSI does for the C-ITS a comparison can be seen in
figure 3. The authentication and timing are initialised
via the infrastructure [15]. After that, the devices can
communicate directly [15]. The D2D communication is
also possible if there is no base station in range or if
it is damaged [16]. This extends the working area and
saves battery power [16]. However, the D2D system was
still insufficient and unspecialised for vehicle speed, so
in Release 14 of 3GPP it got adapted to the require-
ments of V2V communication [16]. Furthermore, the cel-
lular V2X system is capable of integrating other entities
such as pedestrians which enables V2P communication

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

58 doi: 10.2313/NET-2020-04-1_11

in their system by using the PC5 interface and LTE
smartphones [17]. The integration would be beneficial,
especially for urban areas with the aim of smart cities [17].

By the use of 5G and its adaption for the communi-
cation between machines, the latency of 10 ms to 100 ms
of previous generations decreases to 1 ms, as a result of
complex back coupling [18]. 5G also enables peak data
rates faster than 10 Gb/s, and it supports more than 1
million devices per square kilometre [15]. Moreover, 5G
will support a maximum mobility speed of 500 km/h [19].
That means it would also be possible to transport security-
relevant information using the new cellular standard.

In future, the LTE module in cars can be replaced with
an LTE module which enables both V2V by PC5 and V2I
by LTE-UU with only one Chip [17]. The LTE network
can handle a high density of devices since it is capable of
frequency-domain multiplexing of many devices [10].

4. Coexistence of LTE-based and IEEE
802.11p-based ITS

802.11p, as well as the LTE PC5 standard, are oper-
ating on the 5 GHz simultaneously, which would lead to
interferences [6]. The 5G Automotive Association (5GAA),
which support the cellular-based standard, and car to car
communication consortium (C2C-CC), which support the
WIFI-based communication, are in contact for developing
a method so that both technologies can coexist without in-
terferences or malfunctions [15]. 5GAA made a proposal
to separate the frequencies among them, which has been
rejected by the C2C-CC because the proposed frequencies
are used by them [15]. Also, it is crucial to be prepared for
prospective challenges and not to rule out one system [15].
Nevertheless, the coexistence of the two systems would
be more expensive than just integrating and developing a
single one [17].

5. Security

Security is essential for every ITS system because it
is processing critical data. Moreover, it is important that
every authentication method is able to exclude devices out
of the network, which are sending wrong data.

Currently, there are just a few cars which allow direct
V2V communication [15] like the new VW Golf 8 [20].
Consumer acceptance is a crucial point that needs to
be considered for the integration of ITS. Therefore, it
needs to comply with safety and privacy requirements. For
secure V2X communication, it is necessary that authenti-
cation, authorisation, availability, data confidentiality and
data integrity need to be fulfilled to be prepared for all
possible types of attack [3]. Finally, it is much needed
for privacy reasons to anonymise the data communication
so that personal data is secure, and users can not be
traced [3].

5.1. IEEE 802.11p-based ITS

In C-ITS the authentication can mainly be separated
into two parts, the direct V2V communication and V2I
communication. DSRC uses WAVE (Wireless Access in Ve-
hicular Environments) which is the combination of IEEE

802.11 and IEEE 1609 standard [4]. IEEE1609.2 defines
an authentication method which is useful for V2I [21].
Furthermore, it provides secure communication standards
with the use of PKI (public key infrastructure) [22]. A CA
(certificate authority) validates identities and signs certifi-
cates [21]. Those certificates can be transferred via DSRC
as well as be used for the authentication of messages [21].

In the EU, the security standard for V2X communi-
cation is standardised by the ETSI [21]. In the C-ITS,
secure access is handled similarly to DSRC and is just
broader because of the used GeoNetworking for multi-
hop messages [21]. The C-ITS uses as network protocol
IPv6 in combination with UDP and TCP as transport
protocol [4].

Certificates are also used to support security and pri-
vacy [23]. PKI can be used for signing messages, as well
with pseudonyms for privacy reasons, to enable secure
communication for V2X [23]. The Root-CA is superor-
dinated, which gives certificates to every sub-CA or EE
(End Entity) [23]. There are at least two sub-CAs: the
EA (Enrollment Authority) and AA (Authorisation Author-
ity) [23]. Each vehicle has a personal signature and a
static public key for initialisation whereby the vehicle
gets an EC (Enrollment Credential) certificate of the EA,
which is valid for a few years [23]. An EC is updated
shortly before it expires using the still valid EC at EA for
verification [23]. Furthermore, the EC of the EA can be
used to get short-living ATs (Authorisation Tickets) of the
AA for the usage between vehicles and infrastructure [23].
The vehicle sends a request to the AA as well as the EC
to the EA [23]. If the EC is valid, the EA sends the con-
firmation to the AA, which gives ATs to the vehicle [23].
For safety reasons, a CRL (Certificate Revolution List)
is used for revoking access to the system for possible
malicious entities, where the ECs are listed [23]. If the
EC is not valid, the certificate is sent to the CRL [23].
The separation of authentification of EE in EA and the
certificate issuance of AA to EE is for anonymising the
exact identity of users, so they can not be traced [23]. The
EA saves data of the vehicles for identification on which
the AA has no access to [23].

In future, there will be a certificate policy with some
requirements for the certificates, but every CA can add
requirements for its use [23]. There will be multiple CAs
in Europe, and for coordinating certificates between all
European countries TLM (Trust List Manager) will be
used [23]. The TLM lists all certificates so that vehicles
can be validated in other states and CAs [23]. The TLM
list itself is secured by a certificate with a public key
which has to be sent to every entity to get access to the
list of all valid certificates in order to communicate with
each other [23].

The certificate in a CAM (Cooperative Awareness Mes-
sage) can be reduced to an 8-bit hash code for reducing the
load on the communication channel [23]. Furthermore, the
hash code and the certificate are saved by the receiver and
is updated only once every second [23]. When receiving
a message, the hash code is used for verification [23].
CAMs are sent periodically and frequently [23]. The data
of CAMs, e.g. speed, position and steering of the own and
neighbours vehicles are exchanged regularly and collected
in a local dynamic map [23].

GeoNetworking uses the information about the po-

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

59 doi: 10.2313/NET-2020-04-1_11

sitions of vehicles for efficient routing [4]. Besides, it
enables an exchange of information in a specific geograph-
ical area in order not to be restricted by the signal range of
a single-vehicle [4]. For transmitting IPv6 packets using
GeoNetworking, a sublayer GN6 (IPv6 over GeoNetwork-
ing) was standardised [4].

A DENM (Decentralised Environmental Notification
Message) can make multi-hop and is sent in potentially
dangerous situations [23]. Those Situations may be, e.g.
obstacles on roads, adverse weather conditions or road
works [23]. DENMs can be resent and updated in case
of longer-lasting dangerous activities and are cancelled
when there is no more danger [23]. DENMs are event-
driven and are sent when something happens and are not
sent regularly in comparison to CAMs [23].

The lower protocol layers PHY and MAC are not
expected to be modified in the future so that the subopti-
mal performance may stay the same [4]. However, it will
be modified in the upper layers by superior algorithms
for spreading information, with an increase in safety and
performance [4].

ECDSA (Elliptical Curve Digital Signature Algo-
rithm) [24] is specified as the signature algorithm, with the
usage of the NIST P256, which is an elliptical curve [23].
In future, different algorithms are needed to provide
security like the Brainpool curve with 256 or 384-bit
length [23]. These are standardised in the ETSI standard
TS 103 097 [23].

5.2. Cellular-based ITS

LTE has some standard security mechanisms, but they
are not sufficient in a V2V direct communication using
the PC5 interface without using the base station [16].
Therefore, the security mechanisms can be divided into
two main parts, the direct communication via the PC5
interface and the communication with the infrastructure
via the UU interface, and a future enhancement in 5G.

The LTE system can be used for V2N communication.
However, vehicles have to be authenticated by the infra-
structure and authorised for V2X communication as well
as the vehicle has to authenticate the infrastructure [3].
For secure communication of V2X service, the LTE-AKA
(LTE Authentication and Key Agreement) protocol is used,
which is provided by the LTE security framework [3].
LTE-AKA protocol is used for identification, authorisation
and key sharing and derivation for facilitating secure wire-
less access [3]. Nevertheless, the present LTE-AKA is not
adapted to, e.g. the high mobility of V2I communication
which leads to longer transmission and end-to-end latency
times [3]. Additionally, in LTE-AKA the specific identity
of the entity is not hidden [3]. Hence, the entities are
traceable, and it is possible that a malicious entity uses
a man-in-the-middle attack between the vehicle and the
infrastructure by using his identity and sending wrong
data [3]. This can lead to misinterpretation of vehicles
and can result in crashes [3]. Therefore the LTE-AKA
protocol has to be further extended for safer, faster and
anonymous communication.

Similar to V2I communication, mutual authentication
between the vehicles is needed to avoid malicious spread
of information [3]. For V2V authentication of commu-
nication in the PC5 interface, the ProSe security frame-

work can be used [3]. Furthermore, the ProSe D2D of
3GPP communication can be utilised for authorisation,
authentication and discovery [3]. Some differences are
that vehicles do not have electricity or computing capacity
issues like other mobile devices, what ProSe was initially
developed for, but they have a high mobility [3]. Hence, a
secure access and communication method specialised for
vehicles still need to be standardised [17].

In comparison to that, 5G has multiple use cases and
therefore needs a flexible authentication method which
supports the variety of requirements [25]. The 5G fre-
quency will support an optimised direct communication
for vehicles, where the special security mechanisms of
the LTE D2D can be extended [3]. The secure access can
be divided into two securing ranges. The first mandatory
authentication is for general access to the core 5G [3]. The
second authentication will be optional, which is based on
protocol configuration options, where the PAP/CHAP user
credentials are listed [3].

There are a lot of different techniques to enable
secure communication and authentication. Some mech-
anisms would use the DHKE (Diffie-Hellman Key Ex-
change) generation of symmetric keys or shared keys for
a V2I communication [2]. Lastly, TLS or SSL can be used
for secure communication, but a distinct disadvantage is
that the identity of the entity is visible, which leads to
privacy issues [2].

6. Related Work

Beside the C-ITS system of the EU and the cellular-
based ITS system, which are explained in this paper,
some more systems for ITS are in the development phase.
Some other nations made their own tests on ITS such as
Australia, Japan, China or South Korea [15]. Furthermore,
there is another technology tested for ITS, the WiMAX
(Worldwide Interoperability in Microwave Access), but
with an insignificant role in the market [3] [26]. Moreover,
other countries have their own system and use other fre-
quencies like Japan, which develops an ITS system similar
to DSRC of the US [27] [8]. Some other technologies, for
example, visible light communication or mmWAVE, were
also tested for ITS [15].

7. Conclusion

Both the C-ITS and the cellular-based ITS have ad-
vantages and disadvantages. The C-ITS is a mature tech-
nology which is ready to use. It offers direct V2V com-
munication as well as V2I, which has small latencies.
Furthermore, it allows for more extensive communication
ranges the use of equipped vehicles in the middle as a
repeater. However, up to now, there is no existing infras-
tructure on which the system could build on. Moreover,
there are no RSUs which are ready to build. Nevertheless,
this technology is ready to be published and spread and
could save our lives soon.

On the other side, the cellular-based ITS uses the
already existing infrastructure which is used for, e.g.
smartphones and enables a faster impact on safety, be-
cause of this infrastructure. Additionally, it provides the

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

60 doi: 10.2313/NET-2020-04-1_11

new PC5 interface, which allows a direct device com-
munication and therefore is a strong competitor for C-
ITS. Besides allowing standard cellular communication
by using an infrastructure, it also offers a V2V or V2P
direct communication. This direct communication reduces
the latency time, which was a significant disadvantage
for cellular-based ITS. Furthermore, it enables commu-
nication where no infrastructure is needed, and it enables
communication in areas with insufficient cellular coverage
or outdated technology standards, which would have large
latencies. However, the cellular-based standard for ITS is
not fully standardised and not ready to use, e.g. it has some
uncertainties in the secure access control, which will take
some time for advancement.

The integration of pedestrians over smartphones is
a substantial benefit of cellular-based communication,
which would enable the integration of vulnerable road-
side users such as pedestrians or cyclists. Beyond that,
the ability to use smartphones for communicating with
vehicles enables the integration of old cars. The C-ITS
would need RSUs for communication with other devices,
whose infrastructure was not initially planned by the EU.

References

[1] H. Holland, Connected Cars. Wiesbaden: Springer Fachmedien
Wiesbaden, 2019, pp. 51–81. [Online]. Available: https://doi.org/
10.1007/978-3-658-22929-0_3

[2] K. J. Ahmed and M. J. Lee, “Secure LTE-Based V2X Service,”
IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3724–3732,
Oct 2018.

[3] M. Muhammad and G. A. Safdar, “Survey on existing
authentication issues for cellular-assisted V2X communication,”
Vehicular Communications, vol. 12, pp. 50 – 65, 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2214209617302267

[4] A. Festag, “Standards for vehicular communication—from IEEE
802.11p to 5G,” e & i Elektrotechnik und Informationstechnik,
vol. 132, no. 7, pp. 409–416, Nov 2015. [Online]. Available:
https://doi.org/10.1007/s00502-015-0343-0

[5] A. Filippi, K. Moerman, V. Martinez, A. Turley, O. Haran, and
R. Toledano, “IEEE802. 11p ahead of LTE-V2V for safety appli-
cations,” Autotalks NXP, 2017.

[6] N. Xia and C.-S. Yang, “Vehicular Communications: Standards and
Challenges,” 2017.

[7] A. Bazzi, B. M. Masini, A. Zanella, and I. Thibault, “On the
Performance of IEEE 802.11p and LTE-V2V for the Cooperative
Awareness of Connected Vehicles,” IEEE Transactions on Vehicu-
lar Technology, vol. 66, no. 11, pp. 10 419–10 432, Nov 2017.

[8] R. K. Schmidt, T. Leinmüller, and B. Böddeker, “V2x kommunika-
tion,” in In Proceedings of 17th Aachener Kolloquium, 2008.

[9] C. Ress and M. Wiecker, “Potenzial der V2X-Kommunikation
für Verkehrssicherheit und Effizienz,” ATZ - Automobiltechnische
Zeitschrift, vol. 118, no. 1, pp. 16–21, Jan 2016. [Online].
Available: https://doi.org/10.1007/s35148-015-0154-y

[10] H. Seo, K. Lee, S. Yasukawa, Y. Peng, and P. Sartori, “LTE evo-
lution for vehicle-to-everything services,” IEEE Communications
Magazine, vol. 54, no. 6, pp. 22–28, June 2016.

[11] (2019). [Online]. Available: https://www.bmw-me.com/en/topics/
fascination-bmw/connected-drive/rtti.html

[12] G. Araniti, C. Campolo, M. Condoluci, A. Iera, and A. Molinaro,
“LTE for vehicular networking: a survey,” IEEE Communications
Magazine, vol. 51, no. 5, pp. 148–157, May 2013.

[13] T. Yoshizawa and B. Preneel, “Survey of security aspect of v2x
standards and related issues,” in 2019 IEEE Conference on Stan-
dards for Communications and Networking (CSCN), Oct 2019, pp.
1–5.

[14] Y.-L. Tseng, “LTE-advanced enhancement for vehicular communi-
cation,” IEEE Wireless Communications, vol. 22, no. 6, pp. 4–7,
2015.

[15] B. Masini, A. Bazzi, and A. Zanella, “A survey on the roadmap
to mandate on board connectivity and enable V2V-based vehicular
sensor networks,” Sensors, vol. 18, no. 7, p. 2207, 2018.

[16] V. Marojevic, “C-V2X Security Requirements and Procedures:
Survey and Research Directions,” 2018.

[17] T. Rebbeck, J. Stewart, H.-A. Lacour, A. Lillen, D. McClure, and
A. Dunoyer, “Socio-economic benefits of cellular V2X,” Final
Report for 5GAA.[(accessed on 31 August 2019)], 2017.

[18] R. Freund, T. Haustein, M. Kasparick, K. Mahler, J. Schulz-
Zander, L. Thiele, T. Wiegand, and R. Weiler, 5G-Datentransport
mit Höchstgeschwindigkeit. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2018, pp. 89–111. [Online]. Available: https:
//doi.org/10.1007/978-3-662-55890-4_7

[19] E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The next generation
wireless access technology. Academic Press, 2018.

[20] (2020). [Online]. Available: https://www.volkswagen.de/de/
modelle-und-konfigurator/der-neue-golf.html#iqdrive

[21] A. Weimerskirch, “V2X security & privacy: the current state and
its future,” in ITS World Congress, Orlando, FL, 2011.

[22] A. Rao, A. Sangwan, A. A. Kherani, A. Varghese, B. Bellur, and
R. Shorey, “Secure V2V Communication With Certificate Revo-
cations,” in 2007 Mobile Networking for Vehicular Environments,
May 2007, pp. 127–132.

[23] T. Strubbe, N. Thenée, and C. Wieschebrink, “IT-Sicherheit in
Kooperativen Intelligenten Verkehrssystemen,” Datenschutz und
Datensicherheit - DuD, vol. 41, no. 4, pp. 223–226, Apr 2017.
[Online]. Available: https://doi.org/10.1007/s11623-017-0762-7

[24] B. Brecht and T. Hehn, A Security Credential Management
System for V2X Communications. Cham: Springer International
Publishing, 2019, pp. 83–115. [Online]. Available: https://doi.org/
10.1007/978-3-319-94785-3_4

[25] X. Zhang, A. Kunz, and S. Schröder, “Overview of 5G security in
3GPP,” in 2017 IEEE Conference on Standards for Communica-
tions and Networking (CSCN), Sep. 2017, pp. 181–186.

[26] M. S. Anwer and C. Guy, “A survey of VANET technologies,”
Journal of Emerging Trends in Computing and Information Sci-
ences, vol. 5, no. 9, pp. 661–671, 2014.

[27] G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan,
K. Lin, and T. Weil, “Vehicular Networking: A Survey and Tu-
torial on Requirements, Architectures, Challenges, Standards and
Solutions,” IEEE Communications Surveys Tutorials, vol. 13, no. 4,
pp. 584–616, Fourth 2011.

Seminar IITM WS 19/20,
Network Architectures and Services, April 2020

61 doi: 10.2313/NET-2020-04-1_11

ISBN 978-3-937201-69-6

9 783937 201696

ISBN 978-3-937201-69-6
DOI 10.2313/NET-2020-04-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	Deep Learning on the Mobile Edge
	File Injection for Virtual Machine Boot Mechanisms
	Natural Evolution Strategies for Task Allocation
	TLS Fingerprinting Techniques
	Building an OS Image for Deep Learning
	Modern Traceroute Variants and Adpatations
	Smart-M3 vs. VSL for IoT
	Clustering with Deep Neural Networks – An Overview of Recent Methods
	Fault tolerance in SDN
	Time Synchronization in Time-Sensitive Networking
	An Overview on Vehicular Communication Standards

