
Virtio-Vsock - Configuration-Agnostic Guest/Host Communication

Johannes Wiesböck, Johannes Naab, Henning Stubbe
Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: johannes.wiesboeck@tum.de, {naab, stubbe}@net.in.tum.de

Abstract—Virtio-vsock provides zero-configuration commu-
nication channels to exchange data between a host and vir-
tual machines running on the host. It builds upon the Socket
API and the new addressing format AF_VSOCK, which
allows easy porting of network applications to virtio-vsock.
This paper explains the fundamentals of the new address
format, and shows a flexible approach, which enables existing
network applications to use virtio-vsock. This approach does
not implement vsock support in every application but instead
uses inetd-style socket activation to be applicable for many
existing applications without modifying their source code. We
focus on providing SSH connections to virtual machines over
virtio-vsock, which will allow access to the virtual machines
with almost no configuration. Additionally, we provide a
generic solution for TCP-based applications.

Index Terms—virtio, vsock, virtual machine socket,
guest/host communication, ssh

1. Introduction

Virtio-vsock is a zero-configuration communication
interface, which enables data exchange between a host
and virtual machines (VMs) running on it. It is designed
to be available on a system by default without any
configuration required. Further, it is based on the Socket
API, which is also used for traditional network protocols.

Possible use-cases for this communication channel
are guest agents, which run in a VM and interact with
the host system, like the qemu-guest-agent [1]. Another
use-case is to provide a host service to a VM like a
remote file system. In the implementation part of this
paper we will focus on running SSH connections over
virtio-vsock. The goal of running SSH over a vsock
connection is to provide an administration interface to
VMs, which is independent of a network configuration.
Thus, less configuration is needed and the interface can
work more reliably.

This paper is structured as follows: First, we introduce
the core concepts of virtio-vsock, which include both,
high-level features, such as the address format, and imple-
mentation details like the underlying protocol. Next, we
compare virtio-vsock with other alternatives for host/guest
communication and we also show a present project that
uses virtio-vsock. After that we describe an approach
for using existing protocols such as SSH or HTTP over
the vsock communication channel. Last, we evaluate the

implementation and give a conclusion of our work with
virtio-vsock.

2. Fundamentals of Virtio-vsock

This section introduces the basic concepts of virtio-
vsock and implementation details.

2.1. Addressing Scheme

With VM sockets a new address format for the
socket() system call named AF_VSOCK is added. An
AF_VSOCK address is a 2-tuple consisting of a Context
Identifier (CID) and a port. A unique CID is assigned
to the host and to every VM in order to identify the
individual machines. The CID is implemented as a 32-bit
integer given in host byte order. Table 1 gives an overview
of CIDs including CIDs which are reserved for special
purposes [2].

The port of a vsock address is used to differentiate
between multiple services running on one machine. Port
numbers are implemented as 32-bit integers in host byte
order [2], unlike TCP/UDP port numbers, which use 16-
bit integers in network byte order. Port numbers below
1024 are called privileged. Only root can bind a socket to
the privileged ports.

2.2. Socket Creation

Vsock connections can be managed using the Socket
API. Thus, a VM socket can be created by a call to the
socket() system call.
vsock = socket(AF_VSOCK, socket_type, 0);
According to version 5.2 of the Linux kernel source
code [3], the only supported value for socket_type is
SOCK_STREAM. This type provides reliable and stream-
based communication with guaranteed and ordered deliv-
ery.

CID Alias Purpose

0 VMADDR_CID_HYPERVISOR hypervisor
1 VMADDR_CID_RESERVED reserved
2 VMADDR_CID_HOST host
[3; 232 − 2] - virtual machines
232 − 1 VMADDR_CID_ANY binding

TABLE 1: Overview of special CIDs

Seminar IITM SS 19,
Network Architectures and Services, October 2019 73 doi: 10.2313/NET-2019-10-1_14



Option Description

REQUEST initiate connection
RESPONSE acknowledge connection initiation
RST connection reset or address not bound
SHUTDOWN request connection shutdown
RW application data
CREDIT_UPDATE updated credit data
CREDIT_REQUEST explicitly request a credit update

TABLE 2: Overview of operations

2.3. Implementation Details

This section provides an overview of the protocol,
which is used in vsock connections.

2.3.1. Flow Control. The stream-mode of virtio-vsock
features a credit-based flow control mechanism, which
prevents the sender from overloading the receiver [4].
The receiver informs the sender about its absolute amount
of allocated receive buffer (buf_alloc) with every packet
sent back or implicitly with a CREDIT_UPDATE packet,
which is introduced in Table 2. The receiver also informs
the sender about the amount of data, which was already
forwarded to the application (fwd_cnt). Additionally, the
sender keeps track of the absolute amount of data it has
sent to the receiver (tx_cnt). Using this information, the
sender can calculate its credit, which is the maximum
amount of data it may send without overflowing the
receivers buffer:

credit = buf_alloc− (tx_cnt− fwd_cnt) (1)

If the credit limit is reached, writing to the socket blocks
until the receiver updates the fwd_cnt value.

2.3.2. Protocol. In this section we describe the lifetime
of a stream-based virtio-vsock connection together with
the operations involved in the connection. An overview of
all possible operations is shown in Table 2. A connection
consists of two endpoints, a server and a client, where
the server runs on the VM and the client on the host or
vice-versa.

We will now look into the steps involved in a possible
vsock connection. Therefore, we will first look into
the connection from an application point of view and
later from the protocol point of view. First, the client
application initiates the connection. Second, the client
sends data to the server and third, closes the connection.
These three phases are visualized as colored areas in
Figure 1. Originally virtio-vsock used a different protocol
than the one shown in this section. However, according
to Hajnoczi [5] virtio-vsock protocol was partially
reworked from the original protocol shown in [1]. The
description of the protocol in this section was derived
from observations made while examining connections
using the packet analyzer Wireshark.

As shown in Figure 1, a connection is initiated with
a two-way handshake. It begins with the client sending
a packet of type REQUEST. If the server accepts the

Client Server
REQUEST

RESPONSE

RW

CREDIT_UPDATE
...

SHUTDOWN

RST

Initiation

Data Transfer

Teardown

Figure 1: Overview of a sample stream-based vsock con-
nection.

connection, it answers with an RESPONSE packet. The
connection is now established. Application data is sent in a
packet of type RW. Every time received data is forwarded
to the application, for example when the server application
reads data from the socket, the server sends a credit update
to the client. The credit update informs the client about
the updated fwd_cnt value. The connection is terminated
with a two-way tear-down. The disconnecting side sends
a packet of type SHUTDOWN, which is acknowledged
with a RST packet terminating the connection.

2.4. History

AF_VSOCK has originally been introduced to
the Linux kernel in 2013 by VMware for VMware
virtualization products [6]. AF_VSOCK was later
implemented in virtio to be used with the kernel-based
virtual machine (KVM) and QEMU. Virtio-vsock is
part of the mainline Linux kernel since version 4.8 [7].
Support for virtio-vsock was added to libvirt in version
4.4.0 [8].

3. Related Work

This section will give a brief overview of alternatives
to the virtio-vsock technology. Also an example where
virtio-vsock is used in practice is covered in this section.

3.1. Alternatives to Virtio-vsock

Virtio-vsock can be compared to other technologies
providing communication services between hosts and
VMs. Two alternatives shown by Hajnoczi [1] are virtio-
serial and virtual networking.

3.1.1. Virtio-serial. Virtio-serial is a virtual serial device,
which is used to establish connections between hosts and
guests [9]. A respective serial device is available on the
guest and on the host-side. Applications can open the
device and exchange data through the serial connection.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 74 doi: 10.2313/NET-2019-10-1_14



Compared to virtio-vsock, virtio-serial has a few dis-
advantages [1]. The first downside is the limited number
of channels, which equals the limited number of provided
serial devices. To cope with this problem, data would
have to be multiplexed on the application layer. Another
disadvantage of virtio-serial is its implementation as a
serial device. While this is not a problem per-se, it makes
porting networking applications based on the Socket API
more difficult than reusing the Socket API.

3.1.2. Networking. Another approach for guest/host com-
munication is the usage of a virtual network [10]. This
solution provides full network functionality to VMs. Thus,
it is not only usable for guest/host communication but it
also provides inter-VM networking and internet-access.
The virtual network enables network applications to run
between VMs without modifying them.This is possible, as
the virtual network uses the internet protocol (IP) and thus
supports all IP based applications. The downside of the
networking approach is that creating network interfaces on
the host and on the guests can be very complex and may
not be desired [1]. In our case, we explicitly want to avoid
additional network interfaces on the guest side, because
they might influence the results of network-related tests
or benchmarks running on the VMs.

3.2. NFS-vsock - File System over AF_VSOCK

Stefan Hajnoczi proposed support for the network file
system (NFS) in 2016 [11]. The goal is to support NFS
over vsock connections natively in the NFS implementa-
tion of the Linux kernel. For example, NFS over vsock
could be used for network attached storage (NAS) services
in cloud environments or to provide files to VMs during
installation. Unfortunately, patches for vsock support in
NFS have not been applied to the mainline Linux kernel
so far, so using it requires a patched kernel.

4. Implementation

In this section we present the motivation for our
implementation and possible implementation approaches.
We select one approach and implement it for use with
SSH and other protocols, such as HTTP and SMB.

4.1. Motivation

The motivation for this implementation is to enable
various applications to use virtio-vsock for transport be-
tween hosts and VMs. We specifically focus on running
SSH connections over VM sockets to provide a zero-
configuration interface for VMs that is independent of
a network configuration. Besides the SSH solution, a
generic solution for TCP based services is also provided.

4.2. Approaches

In the following we compare two possibilities to en-
able applications to use virtio-vsock, namely native sup-
port and inetd-style.

4.2.1. Native Support. As stated in Section 2.2,
AF_VSOCK reuses the existing Socket API, which sim-
plifies the porting of network applications, as it should
only require minor changes to the source code. By
changing the first parameter of the call to socket() to
AF_VSOCK and by updating the addresses accordingly,
a network application could be ported. In many cases, this
might not be sufficient to port the entire application, as
only the networking part of an application can be ported
easily, which might not apply to the entire application.
An application, which is tightly bound to the TCP/IP
protocol stack, can use the network configuration and
the address format internally. Therefore, changes to the
application logic are required to enable the AF_VSOCK
format. Also user interfaces may be influenced when an
additional protocol should be implemented. In general,
porting an application natively to AF_VSOCK is not
a trivial task and must be done for every application
separately. Changes have to be made to the server and
the client software respectively. A native implementation
of AF_VSOCK support can be complex and therefore
requires a lot of application knowledge.

4.2.2. Inetd-Style. An approach that can be applied to
many services without modifying the application code is
known as inetd-style socket activation.

When using socket activation, a super-server is set up
to listen to incoming connections on a configured port.
When a client connects to this port, the super server will
accept the connection, start the actual application server
and pass the connected socket to the application server.
In inetd-style socket activation the connected socket is
passed to the application by setting the servers standard
input and output to the connected socket. In this scenario,
the application server is not involved in the connection
establishment and can be provided with a connected VM
socket to communicate over AF_VSOCK. A possible
super server is systemd which supports VM sockets
since version 233 [12].

A disadvantage of the inetd-style is that it is not opti-
mized for a specific application and thus has restrictions.
Most importantly, it is required that an application server
supports inetd-style socket activation. Another restriction
is that additional ports can not be opened on behalf of the
application, since all relays have to be set up in advance.
This would make it unusable for example for FTP, which
opens additional ports while in operation. Advantages of
inetd-style are a simple implementation and support for
many different services.

4.3. SSH

As mentioned in Section 4.1, we have a large interest
in running SSH connections over VM sockets. SSH offers
many features which can be used to enable this ability
without port-forwarding and without modifying the source
code of the SSH components. We show these features
and how they are used in the following sections. Figure
2 shows the connection establishment, when a SSH client
on the host tries to connect to a server running on a VM.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 75 doi: 10.2313/NET-2019-10-1_14



ssh -o ProxyCommand='socat - SOCKET-CONNECT:40:0:x0000x16000000x04000000x00000000' user@vm

Listing 1: SSH command to connect to a server over a vsock connection

Host

ssh socat

systemd

sshd

VM1 (CID 3) VM2 (CID 4)

v:22 v:22

bind

pipe

conn
ect

act
iva

te

Figure 2: Establishment of a SSH connection from the
host to a guest over AF_VSOCK

4.3.1. Client-Side. For the client, we use the widely
installed OpenSSH client, which offers the ProxyCommand
command line parameter. ProxyCommand can be any ap-
plication that can connect to a remote SSH server and
forward traffic coming from its standard input to the server
and vice-versa. This proxy application will then connect
to the destination server and forward all traffic from the
client to the server and vice-versa. If this parameter is
used, all SSH traffic is then passed through this proxy
instead of the usual network connection. This creates
the possibility to use socat [13] to forward the SSH
connection to the destinations vsock. A possible command
to connect to a SSH server using this method is shown
in Listing 1. Here, socat connects to the SSH server
running on port 22 of CID 4 and forwards this connection
to the SSH client. Since socat does not offer special
syntax for AF_VSOCK, the generic syntax has to be
used. After SOCKET-CONNECT, socat is instructed to use
protocol number 40 (AF_VSOCK) and type 0. After that,
a hexadecimal representation of struct sockaddr_vm is
given, which contains the port 22 (0x16) and the CID 4
(0x04) of the destination.

4.3.2. Server-Side. On the server-side, the SSH server
sshd is started using inetd-style socket activation provided
by systemd as explained in Section 4.2.2. This way,
systemd is listening to incoming SSH connections on a
local vsock port. Once a connection arrives on this port,
systemd will accept the connection and start sshd. The
connected file descriptor, which represents the accepted
SSH connection, is passed to sshd as its standard input
and standard output. Sshd is now able to use the SSH
connection without being involved in the establishment of
the connection.

4.4. Generic Solution using Port-Forwarding

Many existing network applications have no native
support for the vsock protocol. Therefore, we imple-
mented a generic solution that can be used by many
applications using the TCP protocol but do not support
vsock. It is not necessary for the application server to

support inetd-style socket activation. This solution works
by mapping vsock addresses to local IPv6 addresses. Thus,
applications which are restricted to use TCP connections
can access the vsock protocol over the interface introduced
in Section 4.4.2.

4.4.1. Address Mapping. To make the vsock protocol
available to applications, which support only TCP
connections, CIDs of the vsock domain are mapped to
local IPv6 addresses. For this mapping we use the IPv6
subnet fc00::/7, that is assigned for unique-local-unicast
addresses, which are not routed on the internet. IPv6
addresses from this subnet can be chosen for local usage
without colliding with globally unique addresses. Before
CIDs can be mapped to IPv6 addresses, a random /64
prefix is chosen from the subnet fc00::/7. By definition,
a locally assigned prefix from this subnet should have
its eighth bit set to one [14]. Therefore, a possible valid
prefix would be fd00:abcd:ef12:3456::/64. After the
prefix is chosen, a CID is mapped to the IPv6 address
space by adding the value of the CID to the prefix. In
this example, this would result in CID 3 being mapped to
the IPv6 address fd00:abcd:ef12:3456::3 and vice-versa.

Port numbers are mapped to TCP ports without
changes if possible. Since AF_VSOCK offers 232 different
port numbers, all 216 TCP ports can be directly mapped
to vsock ports. Thus, if a service known from TCP is
offered over vsock, its well-known port number can be
reused. For example, a web server which usually listens
to TCP connections on port 80 or 443, should also be
available on the same vsock ports.

4.4.2. Forwarder Implementation. The implementation
of the generic forwarder extends the concept in Section
4.2.2 by adding a relay to the setup that can forward
traffic from TCP to vsock connections and vice-versa.
Also in this implementation socat [13] is used as a relay
software.

To add a relay to a TCP based server software, a
socket activated instance of socat is configured on the

Host (CID 2)

Samba

[::1]:445v:445

cifs

[fd00:abcd:ef12::2]:445 [fd00:abcd:ef12::2]:445

VM1 (CID 3) VM2 (CID 4)

1
socat

2

3

socat

4 5

Figure 3: Establishment of a connection using two socat
relays.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 76 doi: 10.2313/NET-2019-10-1_14



servers machine. The configured VM socket is monitored
by systemd for incoming connections. Once a client
connects to the monitored port, systemd will start a
socat instance and pass the connected vsock to it.
The socat relay will then connect to the actual server
listening on a local TCP port to establish the connection.

The client-side forwarder utilizes the address mapping
introduced in Section 4.4.1. A client, which only supports
TCP can connect to a socat relay via TCP. This relay
can then forward the connection to the destination
server via vsock. This socket activated relay is listening
on a IPv6 address corresponding to the destination
machines CID. If a client connects to a port on this
special IPv6 address, the address will be translated
into the corresponding CID. The socat relay will then
connect to the given CID and to the port and forward
traffic from the client to the server running on this address.

Figure 3 illustrates a possible scenario, where a Samba
server is running on the host machine providing a file
sharing service to VMs. If the SMB client software cifs
tries to connect to the SMB server running on the host
with CID 2, it actually connects to the IPv6 address
fd00:abcd:ef12::2 representing this CID. Once a connec-
tion arrives on this socket, a socat instance is started
via socket activation. This socat instance forwards the
connection to the host over a vsock connection. The TCP
port number is reused for VM sockets and is thus 445
for TCP as well as for vsock. When the host receives an
incoming connection on vsock port 445, it will also start
a socat relay to forward the traffic from this port to the
SMB server listening on the local host on port 445. The
connection is now established and data can be exchanged
between client and server.

4.5. Evaluation

The proposed concept was successfully tested with
SSH and worked reliably. The generic solution shown
in Section 4.4 was tested with HTTP and SMB. HTTP
was tested using a nginx web server running on a
VM and a browser on the host. The SMB test setup
included a Samba server running on the host system
and a volume mounted in a VM over the vsock forwarder.

4.5.1. Performance. The achievable throughput of the
forwarder was evaluated using the tool iperf3 with
patched-in support for vsock connections [15]. For com-
parison, also the throughput of both, a virtual network
interface and of a raw vsock connection was evaluated in
addition to the forwarder. The base system for evaluation
was a Lenovo ThinkPad T430 with a Intel Core i5-3320M
CPU clocked at 2.60 GHz. The iperf3 server was running
on a VM and the client was running on the host. In an
iperf3 run with a duration of ten seconds, the virtual
network connection achieved an average throughput of
14.2 Gbit/sec. The average throughput of a native vsock
connection was 12.9 Gbit/sec on average and thus slightly
slower than the network connection. In contrast to these
comparably high values the forwarder setup using two
socat relays only achieved an average throughput of

1.5 Gbit/sec. The considerably lower throughput may be
caused by the multiple times that data has to be copied
between buffers and the additional protocols involved.

4.5.2. Security Considerations. During development var-
ious connection scenarios were tested. As intended, we
were not able to establish vsock connections between two
VMs but only between the host and one VM. One ex-
ception is loopback connectivity. It is possible to connect
from a VM to the same VM via AF_VSOCK. While this
may be desired behaviour, it is to note that services, which
are exposed over vsock, have to be secured properly if
they should not be accessible from the VM itself. An
example scenario would include a VM that should be
configured via SSH over vsock. For configuration, a client
must be able to connect as root over this SSH interface.
Other than for configuration, the VM is operated by a
untrusted user, who should not have root access to the
machine. Because of the loopback connectivity, the user
can connect to the local SSH server over vsock, which
makes it necessary that the access is secured properly
with a password or preferably with public keys. Without
loopback connectivity, the SSH server would only be
accessible from the host machine an thus could not be
used by the user working on the VM. This might give
the opportunity to omit authentication for SSH connection
form the vsock interface, since it could only be access
from the host machine. Loopback connectivity was ex-
plicitly removed by Google for ChromeOS [16] to prevent
applications from connecting to other applications on the
same machine. Loopback connectivity is present in the
mainline Linux kernel and removing it would require a
patched kernel.

5. Conclusion

This paper gave a short introduction to the virtio-
vsock technology. We showed, that virtio-vsock provides
a reliable and user-friendly communication mechanism
for VM setups. We were able to enable vsock support
for different services using inetd-style socket activation.

Even though socket activation worked for all tested
services, we would like to see native support for
AF_VSOCK connections in the future, as it might out-
perform the shown implementation using two socat re-
lays. Native support would also make it easier to use
network applications between hosts and VMs, with zero-
configuration. So far, desirable features such as support
for NFS are not part of the mainline Linux kernel, which
would require building a custom kernel. Together with
the security considerations in Section 4.5.2, it has to be
considered if this effort is worth the benefits gained in
features and security. Future research should investigate,
if it is possible to increase the throughput of the forwarder-
setup, possibly by investigating if a specifically developed
and tuned forwarder would perform better than socat.

References

[1] S. Hajnoczi, “virtio-vsock Zero-configuration host/guest com-
munication,” Accessed on: 2019-06-05. [Online]. Available:
https://vmsplice.net/~stefan/stefanha-kvm-forum-2015.pdf

Seminar IITM SS 19,
Network Architectures and Services, October 2019 77 doi: 10.2313/NET-2019-10-1_14



[2] man 7 vsock, Accessed on: 2019-08-26. [Online]. Available:
http://man7.org/linux/man-pages/man7/vsock.7.html

[3] “virtio_vsock.h (kernel version 5.2),” Accessed on: 2019-06-01.
[Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/include/uapi/linux/virtio_vsock.h?h=v5.2

[4] A. He, “Introduce VM Sockets virtio transport,” LWN.net,
2013, Accessed on: 2019-06-01. [Online]. Available: https:
//lwn.net/Articles/556550/

[5] S. Hajnoczi, “Add virtio transport for AF_VSOCK,” LWN.net,
2016, Accessed on: 2019-06-01. [Online]. Available: https:
//lwn.net/Articles/695981/

[6] A. King, “VSOCK: Introduce VM Sock-
ets,” Accessed on: 2019-09-01. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=d021c344051af91f42c5ba9fdedc176740cbd238

[7] S. Hajnoczi, Features/VirtioVsock, Accessed on: 2019-06-09.
[Online]. Available: https://wiki.qemu.org/Features/VirtioVsock

[8] “libvirt: Releases,” Accessed on: 2019-06-09. [Online]. Available:
https://www.libvirt.org/news.html

[9] A. Shah, Features/VirtioSerial, Accessed on: 2019-06-12. [Online].
Available: https://fedoraproject.org/wiki/Features/VirtioSerial

[10] Documentation/Networking, Accessed on: 2019-06-12. [Online].
Available: https://wiki.qemu.org/Documentation/Networking

[11] S. Hajnoczi, “NFS over virtio-vsock Host/guest file sharing for
virtual machines,” Accessed on: 2019-06-22. [Online]. Available:
https://vmsplice.net/~stefan/stefanha-connectathon-2016.pdf

[12] “Systemd NEWS,” Accessed on: 2019-06-13. [Online]. Available:
https://github.com/systemd/systemd/blob/v233/NEWS#L303

[13] man 1 socat, Accessed on: 2019-08-26. [Online]. Available:
https://linux.die.net/man/1/socat

[14] R. Hinden and B. Haberman, “Unique Local IPv6 Unicast Ad-
dresses,” Internet Requests for Comments, RFC Editor, RFC 4193,
October 2005.

[15] S. Garzarella, “iperf,” Accessed on: 2019-08-27. [Online].
Available: https://github.com/stefano-garzarella/iperf-vsock

[16] “Chrome OS source: virtio_transport.c,” Accessed
on: 2019-06-22. [Online]. Available: https:
//chromium.googlesource.com/chromiumos/third_party/kernel/
+/refs/heads/chromeos-4.4/net/vmw_vsock/virtio_transport.c#188

Seminar IITM SS 19,
Network Architectures and Services, October 2019 78 doi: 10.2313/NET-2019-10-1_14


