
Optimization of Decision Trees for TCP Performance Root Cause Analysis

Marco Weiss, Simon Bauer∗, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: marco.weiss@tum.de, bauersi@net.in.tum.de, jaeger@net.in.tum.de

Abstract—Identifying the root cause for TCP throughput
limitations helps to improve network performance and user
experience. In previous work, decision trees (DTs) have been
used as a tool for TCP performance root cause analysis
(RCA) based on passive network measurements. The topol-
ogy of those trees has been designed based on the working
principles of TCP and the decision thresholds were chosen
by inspection of measured data. We present how genetic
algorithms (GAs) can be used to further optimize those DTs
by fitting their threshold values to a dataset of synthetic
network traffic with known root causes. In the next step,
machine learning algorithms, namely decision tree learning,
random forest and extremely randomized trees, are used to
build DT-based classifiers in a purely data-driven fashion. It
is shown that the classification accuracy of the hand-crafted
DTs could be improved after optimizing their thresholds with
our GA approach. However, even the optimized hand-crafted
DTs were outperformed by the machine learning approaches
with a significant margin.

Index Terms—TCP IP, decision trees, machine learning,
evolutionary computation

1. Introduction

As TCP is one of the most widely used transport layer
protocols, any TCP performance issues might directly
impact its users. RCA tools help to identify and overcome
such issues. In [1] and [2], Siekkinen et al. and Stem-
plinger developed tools for TCP performance RCA based
on passive network measurements using DTs. DTs are
an intuitive and interpretable technique that employs the
divide-and-conquer strategy for decision making. Due to
their intuitive use, it is possible to design DTs from hand
by analyzing the functionality of the underlying system.
This is especially the case for "white-box" systems like
TCP, where all internal structures and functions are in
principal known. A different approach for building DTs
comes from the field of machine learning, where the tree
structure and its decision rules are purely based on statis-
tical properties of data generated by the system. Despite
having no knowledge of the data generating process, DT
learning algorithms perform quite well in practice.

In this work, we aim to evaluate both approaches
on the same dataset. To this end, we do not only use
the dataset to train classifiers with different DT learning
algorithms, but we also try to further improve the classi-
fication performance of the existing hand-crafted DTs by
fitting their threshold values to our data. This is in fact not

trivial because common DT learning algorithms need to
have control over both the tree topology and the decision
thresholds to achieve good performance. Thus, we need
to formulate the task as a general optimization problem.
To solve it, we chose to use GAs for two main reasons:
GAs are easy to implement and they impose almost no
limitations to the optimization problem at hand, compared
to e.g. gradient-based methods that require a differentiable
objective function or linear programming that requires a
linear objective function (both is not the case for DT
optimization which is in fact NP-complete [3]).

The remainder of this paper is organized as follows:
First, related work to the fields of TCP RCA, DTs and
GAs for DT oprimization is presented in section 2. Af-
ter introducing our dataset in section 3, we present the
baseline DTs, how they can be optimized with GAs and
different machine learning approaches in section 4. The
setup and results from our experiments are presented in
section 5 before summarizing our findings in section 6.

2. Related work

In [4], Zhang et al. were the first to perform a holistic
analysis on the limiting factors of throughput in internet
connections. Based on their findings, they developed T-
RAT, a tool for RCA based on trace files. Siekkinen et
al. extend this work in [1] to overcome limitations of T-
RAT that are discussed in [5] in detail. They introduce a
set of quantitative metric, called limitation scores, which
can be inferred from TCP headers and are then used in
a DT-based RCA tool. In [2], Stemplinger extends their
approach and uses synthetic training data generated by the
Mininet network emulator to adapt the decision thresholds
to more recent congestion control algorithms.

Closely related to the work done on throughput RCA
is [6], where Jaiswal et al. aim to estimate the sender’s
congestion window size and the connection round trip
time (RTT) from passive measurements. They explicitly
demarcate their work from [4], but claim that the lim-
itating factors of a TCP connection can be determined
based on congestion window size and RTT. This work
is of particular interest because in [7] and [8], Hagos
et al. use machine learning techniques, namely random
forest, gradient boosting and recurrent neural networks,
to significantly improve prediction performance compared
to the state machine approach from [6]. Quite similar to
the machine learning part of our work is [9], where El
Khayat et al. use decision tree boosting to discriminate
between TCP package loss due to overflow or link errors
in wireless networks.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 67 doi: 10.2313/NET-2019-10-1_13



The foundations of DTs, their extensions and learning
algorithms can be found in [10], [11]. Decision tree learn-
ing, i.e. finding the combination of optimal split dimen-
sions and thresholds, has been proven to be NP-complete
[3]. State-of-the-art decision tree learning algorithms, e.g.
classification and regression tree (CART) as implemented
in the scikit-learn machine learning library [12], use a
greedy heuristic to determine the split that maximizes the
purity of the resulting distributions or the accuracy for
every new node. In general, DTs have several advantages
as they are easy to interpret, robust to outliers and scale
well to large datasets. However, they are considered high-
variance estimators, meaning their prediction performance
might be worse than with other machine learning methods
in some cases. To deal with this issue, several extensions
to DTs have been proposed. The probably most-widely
known one is random forests by Breiman [13], where the
prediction is computed as the average of an ensemble of
different DTs. Building on that, Geurts et al. later intro-
duced extremely randomized trees (extra-trees), where the
construction of all trees in the ensemble is completely
randomized instead of using a split heuristic [14]. We
will refer to both techniques as ensemble methods in the
following.

A fundamental introduction to genetic algorithms is
given in [15]. In combination with DTs, GAs have pre-
viously been used for pre-processing, i.e. selecting the
best subset of a large feature space which is then used as
input for a heuristic-based decision tree learning algorithm
[16]. There exist also attempts to directly use GAs to
build DTs. In [17], Papagelis et al. achieved comparable
classification performance to heuristic-based approaches
when optimizing their DT with GAs. In [18], Cha et
al. used GA-based optimization to build compact, nearly-
optimal decision trees.

3. RCA Dataset

We train and evaluate all our models on the dataset
from [2]. It was generated using the network emulator
Mininet with different test setups and network topologies
to enforce different throughput limitations. In the context
of TCP performance RCA, those throughput limitations
will be referred to as the root causes. As in [1] and [2],
only bulk transfer periods (BTP), i.e. the time window in
which throughput is limited by the network connection
and not the sending application, are analyzed. After the
BTPs have been isolated from the application limited pe-
riods, five limitation scores were calculated for each BTP.
All limitation scores are based on information contained
in the TCP headers, so measurements can be obtained pas-
sively at any point in the connection [1]. In the following,
we will give a brief summary of the possible root causes
and limitation scores derived in [1], [2] and provide an
overview of the used dataset.

3.1. Root Causes

Capacity bottleneck: The throughput of a connection
can be limited by the bandwidth available at the bottleneck
link. We distinguish between unshared bottlenecks (ub),
where our connection uses the entire bandwidth of the

bottleneck link and shared bottlenecks (sb), where parts of
the bottleneck bandwidth are used for other transmissions.

Receiver window (rw): The receiver-side application
sets the size of the receiver window, i.e. the number of
possible bytes per packet, based on how fast it can process
incoming data. The receiver window can be static or dy-
namically scaled by the receiver application during trans-
mission. In the first case, a combination of small default
window size, high bandwidth and rather long transmission
times can limit the throughput unintentionally. In the latter
case, the application can limit throughput intentionally if
it cannot process incoming data fast enough.

Congestion avoidance (cw): On sender-side, the con-
gestion control algorithm tries to estimate the best sending
rate for the connection. Depending on its implementation,
there might be phases in which the throughput is solely
limited by the congestion control algorithm, e.g. at the
beginning of a connection or after the congestion window
was lowered due to detected packet loss.

3.2. Limitation Scores

Dispersion score: The dispersion score is defined as

sdisp = 1− TP

C
, (1)

where TP is the average throughput of the BTP and
C is the capacity of the bottleneck link. The dispersion
score can be used to determine whether a connection is
limited by an unshared bottleneck (sdisp ≈ 0) or a shared
bottleneck (sdisp > 0).

Retransmission score: The retransmission score is de-
fined as the ratio of retransmitted bytes to transmitted
bytes

sretr =
nretr

ntrans
. (2)

A high retransmission score is an indicator for a network
bottleneck where the link buffer is filled up until packets
are dropped and have to be retransmitted.

RTT score: The RTT score is an alternative to the
retransmission score for detecting network bottlenecks and
is defined as

sRTT =
avg(RTT )

min(RTT )
, (3)

where RTT is the round trip time measurement of a
packet, i.e. the time between sending the packet and re-
ceiving the acknowledgement. Essentially, the RTT score
indicates a bottleneck if the current RTT is higher than
the lowest possible RTT measured so far.

Receiver window score: The receiver window score
srwnd quantifies how much the sender is limited by the
advertised receiver window. This is done by comparing the
number of outstanding bytes and the receiver advertised
window size over time. If the difference between both
values is small, i.e. below a certain threshold, the conges-
tion window of the sender is close to the limit set by the
receiver. The receiver window score is then calculated as
the average number of occurrences for this event over the
duration of a BTP.

Burstiness score: The burstiness score (or b-score) sb
can be used to determine whether connections with high
receiver window score are actually limited by the size of

Seminar IITM SS 19,
Network Architectures and Services, October 2019 68 doi: 10.2313/NET-2019-10-1_13



the receiver window or by a bandwidth bottleneck. When
transmitting n packages in a receiver-limited setting, a
burst of n − 1 short inter-arrival times (IAT) is followed
by a long IAT because the sender has to wait for the re-
ceiver’s acknowledgement. If the transmission is however
bandwidth-limited, the distribution of the IATs is more
even due to buffering at the bottleneck link.

3.3. Overview

The complete dataset consists of 533 measurements
that were taken during different BTPs. Each measurement
vector x = (sdisp, sretr, sRTT , srwnd, sb) ∈ R5 is labelled
with the true root cause y ∈ {cw, rw, sb, ub}. It has to be
noted that different combinations of root causes are possi-
ble in theory. In practice however, there is usually a single
dominant root cause per connection [1]. To visualize the
dataset, principle component analysis (PCA) is applied to
the normalized data. Using the first two components, the
dataset can be plotted as shown in Figure 1. It has to
be noted that the visualization captures only 66% of the
variance in the data. Nevertheless, this still gives a first
impression how the data is structured. It can e.g. already
be seen that the all measurements with y = rw can be
linearly separated from the other classes.

Figure 1: Dataset visualization using the first two com-
ponents from PCA (capturing 66% of the variance in the
data). The number in brackets indicates the number of
data points per class.

4. Methodology

In the following, different strategies will be described
to derive DTs for TCP performance RCA from the avail-
able data. As baseline, we use two hand-crafted DTs from
[1] and [2], where decision thresholds were manually
defined in [2] based on inspection of the dataset. In the
next step, we aim to improve the classification accuracy
of those trees by using GA to optimize the thresholds.
To compare the performance of hand-crafted DTs with
a purely data-driven machine learning approach, we use
DT learning, namely CART, in chapter 4.3. In chapter
4.4, we use ensemble methods, namely random forest and
extra-trees, which are expected to improve classification
performance compared to single DT learning.

disp score
<th1

retr score
>th2

rwnd
score
>th3

b-score
>th4

rwnd
score=0
&& retr
score=0

unshared bottleneck

shared bottleneck

Receiver Window

Congestion Avoidance

mixed/unknown

yes

no

yes

no

yes

no

no

yes

yes

no

(a)

disp score
<th1

rtt score
>th2

rwnd
score
>th3

rwnd
score=0
& retr
score=0

unshared bottleneck

shared bottleneck

Receiver Window

Congestion Avoidance

mixed/unknown

yes

no

yes

no

yes

no

yes

no

(b)

Figure 2: Baseline decision tree (a) and baseline RTT
decision tree (b), both taken from [2].

4.1. Fitting by Inspection

In [1], Siekkinen et al. proposed a DT based on
dispersion score, retransmission score, receiver window
score and burstiness score. In [2], the threshold values of
this DT where refined by manually analyzing the dataset
described in the previous chapter. In the following, we
will refer to this as the baseline approach. Additionally, a
modified version of the baseline tree was presented using
the RTT score instead of retransmission and burstiness
score, called baseline RTT. The trees are depicted in
Figure 2. It has to be pointed out that threshold fitting of
both trees was done using the complete dataset. For our
other approaches below, we perform a 80/20 train-test split
to measure generalization performance on unseen data.

4.2. Optimization with Genetic Algorithm

The general idea of GAs is that evolution in biology
can be seen as an optimization problem: In a population
of individuals, the ones adapted best to their environment
survive the longest and the older an individual gets the
more time it has to reproduce. Thus, the genes of the
best-fitting individuals spread while "unsuitable" genes
vanish over many generations. In a more mathematical
sense, natural selection can be seen as a search heuristic to
find the best genes (hence the name Genetic Algorithms).
To apply this heuristic, candidate solutions to the opti-
mization problem have to be encoded in chromosomes.
Their fitness is evaluated based on an objective function
and the fittest candidate solutions generate new candidate
solutions based on genetic operators [15]. In the following,
we will describe how this process can be applied to the
decision threshold optimization problem. The resulting
DTs will be referred to as optimized and optimized RTT.

The first step is to define the encoding of candidate so-
lutions. Compared to other approaches e.g. in [17] where a
candidate solution has to encode a complete tree topology,

Seminar IITM SS 19,
Network Architectures and Services, October 2019 69 doi: 10.2313/NET-2019-10-1_13



our encoding is rather simple because we only want to
optimize the decision thresholds for a fixed topology. In
accordance with the notation of Figure 2, we have candi-
date solutions in the form of cbase = {th1, th2, th3, th4}
and cbaseRTT = {th1, th2, th3}, where ∀j thj ∈ Tj
and Tj denotes the set of possible threshold values for
the j-th dimension of the input vector. Using a set of
discrete threshold values instead of real-valued numbers
drastically reduces the search space without affecting the
training accuracy of the candidate solutions. Analogously
to heuristic-based DT learning [11], the threshold sets for
a given training dataset D are obtained by Tj = {xj : x ∈
D}.

After the encoding has been defined, a start population
is created by generating npop individuals with random
values from the threshold sets. To evaluate the fitness
of a candidate solution, accuracy on the training dataset
is used. Selection is done in an elitist way: The best
nelit individuals are kept for the next generation without
any changes. On the remaining npop − nelit individu-
als, crossover and mutation can be applied. In original
GA implementations, one or more crossover points are
chosen at which the parent chromosomes are split and
exchanged between both partners to maintain so-called
building blocks [15]. In our implementation however,
the order of the elements is completely arbitrary and
not meaningful, so we do not need to maintain any
building block structures in the solution. Therefore, we
choose parameterized uniform crossover with probability
of 50%, which essentially means that the elements in the
offspring chromosome are randomly chosen from both
parents. For every offspring, the event mutation happens
with a configurable probability. In case of mutation, one
element cj of the chromosome is replaced by a random
element in Tj . In nature, mutation can only happen during
reproduction. This does of course not apply to a virtual
implementation of such genetic operators, so it is possible
to apply mutation to any individual and not only to new
offsprings. In Figure 3, graphical examples for the genetic
operators described above are given.

Starting with the initial population, optimization is
an iterative process where every iteration corresponds to
a new generation. After a fixed number of generations,
i.e. when convergence is expected based on experiments
presented in the next section, the best candidate solution
of the final generation is returned. To avoid converging to
a local minimum, GAs try to maintain a set of good, but
possibly very different solutions. Random mutation also
helps solution candidates to overcome local minima. The
effectiveness of those concepts highly relies on a suitable
combination of hyperparameters, primarily the population
size and the probabilities for crossover and mutation. We
tune those hyperparameters by comparing the results from
multiple runs of GA optimization to the actual global
optimum obtained from brute force calculations. Detailed
setup and results of those experiments can be found in
section 5.1.

4.3. Decision Tree Learning Algorithm

For DT learning, we use the DT classifier class from
scikit-learn [12]. It uses the CART algorithm and the best
split is chosen based on the Gini score, a measurement

Figure 3: Schematic visualization of genetic operators.
White boxes with rounded corners represent candidate
solutions with four genes (squares on the left) and a fitness
score (right). Red and blue color indicate the origin of
a gene during crossover. After mutation, one gene in the
offspring is replaced by a random value from the threshold
set (green color). The dashed line indicates that depending
on the implementation, mutation is also possible for indi-
viduals that are not the result of a crossover operator. For
clarity, only a single crossover operation is shown and
only one individual is passed to the next generation. In
practice, both has to be done multiple times to keep the
population size constant.

for the impurity of a distribution. As pointed out in the
scikit-learn documentation, the training algorithm is bi-
ased towards the dominant classes when training a DT on
an unbalanced dataset, i.e. data with an uneven distribution
of class labels. To overcome this issue and still make use
of the complete dataset, each class is weighted with the
reciprocal of its relative occurrence. Before training the
tree on the complete training dataset, we perform grid
search with K-fold cross validation to find the set of
hyperparameters that performs best on the test data. A
good selection of hyperparameters is mainly important to
prevent overfitting. Without any limitations, the tree can be
grown until every leaf node is pure, thus giving a training
accuracy of 100 % but bad generalization performance.
We tune the following hyperparameters to control growth
of the tree: Maximum depth, maximum number of leaf
nodes, minimum impurity decrease and minimum number
of samples for a split.

It has to be noted that in contrast to our baseline
trees, the scikit-learn DT implementation does not output
mixed/unknown as possible root cause. The classifiers al-
ways predicts the most likely class, i.e. the one dominating
the distribution in the leaf node - a class which is not in
the training dataset cannot be predicted. If a classification
as mixed/unknown is desired, a discrimination based on
the likelihood of the predicted class could be a possible
solution.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 70 doi: 10.2313/NET-2019-10-1_13



4.4. Ensemble Methods

The scikit-learn library [12] also provides implemen-
tations of random forest and extra-trees that we use here.
The most important hyperparameters for both methods
are the number of trees in the ensemble and the num-
ber of features that are considered for every split. For
every tree that is built within the ensemble, the same
hyperparameters for DT learning apply as discussed in
the previous section. In contrast to a single DT however,
it is recommended to grow all trees to full size because
generalization is essentially achieved by averaging over
all trees in the ensemble.

5. Experiments

In the following, two different experiments are pre-
sented. First, it is shown on small subsets of the dataset
that our GA optimization converges to a nearly-optimal
solution with a high probability using a suitable set of
hyperparameters. In the second experiment, DT learning
and ensemble methods are trained on the dataset and
compared to the accuracy of the hand-crafted DTs.

5.1. Convergence of Genetic Algorithm

As motivated in section 4.2, we want to obtain a good
set of hyperparameters for our GA-based DT optimization.
To this end, we create 3 subsets by randomly sampling
10% of the training dataset. We use a brute-force ap-
proach to obtain the parameter sets of the baseline and
the baseline RTT tree that maximize the training accu-
racy on every subset. The resulting accuracies, marked
as horizontal dashed lines in Figure 4, are then used as
benchmark for the GA-based optimization. To account for
the reduced search space by using only 10% of the data,
we scale down the population size to 30. We run the GA
10 times per subset and per DT with different random
seeds and show the average best-of-generation fitness in
Figure 4. It can be seen that the GA converges to a nearly-
optimal solution with high probability, while its average
training time is faster than the brute-force approach by
approximately factor 100. Due to the reduced number of
threshold parameters, optimization of the baseline RTT
tree with 3 parameters converges in fewer generations
than the baseline tree with 4 parameters. Based on tuning
the GA hyperparameters to good convergence, we use a
crossover probability of 0.5, mutation probability of 0.2
and an elitism ratio of 0.1. We found that a population
size of 100 is good compromise between final accuracy
and training time on the complete dataset.

5.2. Comparison to Decision Tree Learning Algo-
rithm and Ensemble Methods

As described in section 4.3, we perform grid-search
and K-fold cross validation to determine the best hyper-
parameter set for the DT learning algorithm. As it can be
seen in Figure 5, overfitting is in fact not a problem in
our case. Although training accuracy is at 100%, there is
no significant decrease of validation accuracy. This could
be an indicator that there might not be significant noise

Figure 4: Best-in-generation accuracy of DTs optimized
with GA compared to upper boundary (dashed line) for 3
small training data subsets.

Figure 5: Training accuracy (blue) and validation accuracy
(orange) of the DT learning algorithm as function of
maximum depth.

in the synthetic training data. However, a more detailed
analysis of this phenomena is required.

For our final evaluation, we use a maximum depth
of 15. It has to be noted that a smaller tree, e.g. with
depth of 5, achieves only slightly worse performance. In
Figure 6, the resulting DT is shown up to a depth of 2
for the sake of readability. It can be seen that the first
split separates all points of class rw in the training set
from the other classes as expected from Figure 1. This
leads to a missclassification rate of 0% for class rw on
the training data. The hand-crafted DTs, which have a
missclassification rate of over 34% for this class [2], could
maybe be improved by also performing the split on srwnd

first.

Figure 6: DT fitted to the training data shown up to a
depth of 2.

Training of both ensemble methods as implemented
in the scikit-learn library is comparable straight forward
using the default hyperparameters. The final accuracies of

Seminar IITM SS 19,
Network Architectures and Services, October 2019 71 doi: 10.2313/NET-2019-10-1_13



all presented approaches are listed in Table 1. It has to be
noted that the accuracy of both baseline trees is somewhat
biased. On the one hand, the decision thresholds were
determined using the complete dataset, whereas all other
approaches are tested on unseen data. On the other hand,
the baseline trees and their GA-optimized versions output
classifications of type mixed/unknown, which might be
useful in some cases in practice, but is always considered
a wrong prediction when calculating accuracy.

Method Train Time Accuracy Improvement
Baseline - 0.73 -
Baseline RTT - 0.70 -
Optimized 46.2s 0.79 8.2%1

Optimized RTT 44.2s 0.75 7.1%2

DT learning < 0.1s 0.92 26.0%1

Random Forest 0.1s 0.93 27.4%1

Extra-Trees 0.1s 0.94 28.8%1

TABLE 1: Train times on 1.6 GHz Intel Core i5, final ac-
curacies on test data and relative improvement compared
to the respective baseline tree accuracy.
1 Compared to baseline tree.
2 Compared to baseline RTT tree.

6. Conclusion and Future Work

The main goal of this work was to optimize existing
decision trees for TCP performance RCA on a given
dataset. With GA-based optimization, we were able to
improve their classification accuracy by up to 8%. We
could show for small subsets of the data that the GA-based
optimization of DTs converges to a near-optimal solution
with high probability. It can therefore be assumed that
the performance of the baseline DTs is limited by their
design. Consequently, we used DT learning to optimize
not only the decision thresholds of the DT but also its
topology. By doing so, we could improve classification
performance by 26% compared to the baseline trees. With
ensemble techniques, namely random forest and extra-
trees, we achieved marginally better performance than
with DT learning. However, it has to be considered that
interpretability and explainability of the predictions de-
crease significantly with more complex methods compared
to the original DTs: To explain why a certain prediction
has been made, it is in practice possible to trace every
step in a DT of depth 5. For an ensemble consisting of
100 full-grown DTs, this is very likely not the case. If
it is however desired to further increase the prediction
accuracy, the machine learning approach could be taken
even further in future work: Instead of using hand-crafted
features as input for classification, i.e. the limitation scores
in our case, classifiers like neural networks could be
trained directly on the temporal data extracted form the
TCP header files.

References

[1] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and D. Collange,
“A root cause analysis toolkit for tcp,” Computer Networks, vol. 52,
no. 9, pp. 1846–1858, 2008.

[2] L. J. Stemplinger, “Tcp flow performance root cause monitoring,”
Bachelor’s Thesis, Technical University of Munich, 2019.

[3] S. K. Murthy, “Automatic construction of decision trees from
data: A multi-disciplinary survey,” Data mining and knowledge
discovery, vol. 2, no. 4, pp. 345–389, 1998.

[4] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the char-
acteristics and origins of internet flow rates,” in ACM SIGCOMM
Computer Communication Review, vol. 32, no. 4. ACM, 2002,
pp. 309–322.

[5] M. Siekkinen, “Root cause analysis of tcp throughput: Method-
ology, techniques, and applications,” in PhD thesis, Institut Euré-
com/Université de Nice-Sophia Antipolis, Sophia Antipolis, 2006.

[6] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring tcp connection characteristics through passive measure-
ments,” in IEEE INFOCOM 2004, vol. 3. IEEE, 2004, pp. 1582–
1592.

[7] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure, “A machine
learning approach to tcp state monitoring from passive measure-
ments,” in 2018 Wireless Days (WD). IEEE, 2018, pp. 164–171.

[8] ——, “Recurrent neural network-based prediction of tcp trans-
mission states from passive measurements,” in 2018 IEEE 17th
International Symposium on Network Computing and Applications
(NCA). IEEE, 2018, pp. 1–10.

[9] I. El Khayat, P. Geurts, and G. Leduc, “Improving tcp in wireless
networks with an adaptive machine-learnt classifier of packet loss
causes,” in International Conference on Research in Networking.
Springer, 2005, pp. 549–560.

[10] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.

[11] K. P. Murphy, Machine Learning. A Probabilistic Perspective. The
MIT Press, 2012.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[13] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5–32, 2001.

[14] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized
trees,” Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[15] M. Mitchell, An Introduction to Genetic Algorithms. The MIT
Press, 1996.

[16] J. Bala, J. Huang, H. Vafaie, K. DeJong, and H. Wechsler, “Hybrid
learning using genetic algorithms and decision trees for pattern
classification,” in IJCAI (1), 1995, pp. 719–724.

[17] A. Papagelis and D. Kalles, “Ga tree: genetically evolved decision
trees,” in Proceedings 12th IEEE Internationals Conference on
Tools with Artificial Intelligence. ICTAI 2000. IEEE, 2000, pp.
203–206.

[18] S.-H. Cha and C. C. Tappert, “A genetic algorithm for constructing
compact binary decision trees,” Journal of pattern recognition
research, vol. 4, no. 1, pp. 1–13, 2009.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 72 doi: 10.2313/NET-2019-10-1_13


