What is Deterministic Network Calculus?

Tobias Wasner, Max Helm*, Dominik Scholz*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: mail@wasnertobias.me, helm@net.in.tum.de, scholzd@net.in.tum.de

Abstract—This paper gives a short introduction to Deter-
ministic Network Calculus. Explains how service guarantees
can be provided to error-free packet-switching networks and
the limitations of this process. Discusses alternative mathe-
matical approaches, their limitations and corresponding use
cases.

Index Terms—deterministic network calculus, worst-case
performance, guaranteed service, packet-switching network,
traffic shaping, schedulability

1. Introduction

As shown by Cruz in [1] and [2], Deterministic
Network Calculus (DNC) is used to calculate theoretical
worst-case performance guarantees for error-free packet-
switching networks of queues and schedulers.

DNC, other than Stochastic Network Calculus
(SNC), does not use probabilistic terms to characterize
performance guarantees. This means that performance
guarantees calculated using DNC will hold in any case.
This is why DNC is especially useful for hard real-time
systems, as those systems assume that missing a single
deadline results in a total system failure. [1]

In section 2 the required mathematical background
for the application of DNC will be introduced.

In section 3 the application of DNC will be explained.
In section 4 examples for limitations of the application
of DNC will be given.

In section 5 alternative frameworks will be briefly
introduced and their limitations will be compared to
those of DNC.

In section 6 the main results of this paper will be
summarized.

2. Background

In order to be able to calculate performance bounds,
certain mathematical models have to be applied to the
network, which will be described in this section.

2.1. Flows

A comprehensive introduction of the term flow is
shown by Boudec et al. in [3]. The notation of this section
of the paper is derived from Geyer in [4]. The term
flow is used to describe a unidirectional set of packets

Seminar IITM SS 19,
Network Architectures and Services, October 2019

which are being sent from a single sender to a single
receiver in a packet-switching network [4]. Cumulative
arrival functions are used to mathematically model flows.
They need to be a member of the following set: [4]

F={f:Rt 5 RT|V0O<t<s:f(t) < f(s), f(0) =0}

In the formular s is the time of the end of the flow. This
implies that every A € F is a non-decreasing strictly
positive function. A represents the amount of data being
sent by the flow in the time interval [0, t).

Furthermore, a flow has a deterministic arrival curve
« € F if its cumulative arrival function A satisfies: [4]

VO<s<t:A(t)— A(s) <alt—s)

In the formular s is the time of the beginning of the
constraint and ¢ is the the time of the end of the flow. It is
said that the flow A is constrained by « in that case [3].
The cumulative arrival function A can also be used to
describe the sending rate as DNC assumes that no packet
loss happens.

2.2. Traffic shaping

As shown by Tanenbaum in [5], traffic shaping is
needed to constrain flows. Constraining of flows is the
basis of all calculations of DNC. Traffic shaping is a tech-
nique which smooths out the traffic on the senders’ side,
rather than on the receivers’ side [5]. Two different traffic
shaping algorithms will be explained in the following.

Cummulative Arrival

Time

Figure 1: Cumulative byte arrival (solid black line) con-
strained by a token bucket arrival curve (dashed blue line)
and a leaky bucket arrival curve (dashed green line).

doi: 10.2313/NET-2019-10-1 12

2.2.1. Leaky bucket algorithm [S]. This traffic shaping
algorithm derives its name from the idea of a bucket being
constantly filled with an irregular rate of water (water
abstracts packets to be sent over the network) and with
one little hole at the bottom of the bucket (packets actually
being sent over the network).

The filling of the buffer, therefore, is expressed as the
filling of the bucket. The outflow through the little hole
is happening with a constant rate r, at least if the bucket
is not empty. Once the bucket is fully filled, any further
input will simply spill over and is therefore lost.

The rate r can either have the unit number of packets
per time frame or data size per time frame. The second
approach is useful in the case where not all packets have
a fixed data size.

2.2.2. Token bucket algorithm [S]. The content of this
bucket are tokens. A token is the allowance to send data
in the form of a certain number of packets or bytes.
If data has been sent over the network, the number of
tokens in the bucket is reduced accordingly. Tokens are
added to the bucket at a constant rate r, however, if the
bucket is full, no more tokens can be added. If the bucket
is empty, data cannot be sent out to the network, it is
necessary to wait for tokens to be added in this case.

This algorithm is more flexible in comparison to
the leaky bucket algorithm as the output rate is not fixed
and the token bucket is fully filled at the time of the
beginning of the constraint. Therefore this algorithm
allows bigger bursts to happen in comparision with the
leaky bucket algorithm. This can also be seen in Figure 1,
where different minimum rates r (slopes) are required to
constrain the given flow, due to the offset of the token
bucket algorithm.

2.3. Servers and service curves

A®pB

\A'k

data (kB)
w

10
time (s)

Figure 2: Visualization of the service curve concept [6].

Every single node in a network has a queue and a
scheduler, which is an algorithm which decides which
packet will be sent next, in case there are multiple packets
in the queue waiting to be transferred. The term server
is used to describe a whole network or certain parts
of a network, e.g. a link, a scheduler or a traffic shaper. [4]

Given a deterministic arrival curve A, a server is
characterized by its deterministic service curve 3, such

Seminar IITM SS 19,
Network Architectures and Services, October 2019

62

that the output curve A* of a flow after traversing the
server is defined as: [4]

A0 2 inf {A()+5(t—9)} = 484

This definition is illustrated by Bemten et al. in [6],
correspondingly Figure 2.

As the departure of some data cannot occur before its
arrival it is implied that V¢ > 0 : A(t) > A*(¢).

3. Application

In this section the application of DNC will be ex-
plained.

3.1. Service guarantees

DNC provides two different kinds of service guaran-
tees, namely delay bounds and backlog bounds. Both will
be introduced in the following.

3.1.1. Delay bounds. The virtual delay d at time ¢ is
defined by the following equation: [3]

a(t) = inf {A(t) < A% (¢ + 7))

The term delay bound corresponds to the maximum time
that incoming data has to wait before being processed by
the server. In mathematical terms this can be expressed
using the following equation: [4]

AT(t) — At —s) < b;gg{d(t)}

3.1.2. Backlog bounds. The backlog b at time ¢ is defined
by the following equation: [3]

b(t) = A(t) — A*(1)

The term backlog bound corresponds to the maximum
amount of data that will have to wait before being pro-
cessed by the server. In mathematical terms this can be
expressed using the following equation: [4]

Alt) = A°(1) = sup{b(t)}

3.2. Generalized Processor Sharing

Generalized Processor Sharing (GPS) is the ideal form
of per flow queuing. Per flow queuing provides isolation
of flows and therefore service guarantees differentiated
per flow. Numerous practical implementations of GPS
have been proposed in the literature. Each differs in
their provided service guarantees and their implementation
complexity. Practical implementations of GPS will be
introduced in the following. [3]

3.2.1. Practical Generalized Processor Sharing. Prac-
tical Generalized Processor Sharing (PGPS) implements
GPS using one First In First Out (FIFO) queue per
flow [3]. Each queue is assigned a priority [4]. Based
on the assigned priority the available bandwidth is shared
accordingly [4].

doi: 10.2313/NET-2019-10-1 12

3.2.2. Guaranteed Rate Schedulers. All practical imple-
mentations of GPS fit in the framework Guaranteed Rate
Schedulers (GRS). This approach considers a server with
FIFO-scheduling and a constant bit rate r. [3]
Furthermore, T; is defined as the arrival time, T as the
departure time and /; as the length in bits of the ith packet,
ordered by arrival time [3].

Assuming 77 > 0, where T7 is the arrival time of the
packet which arrived earliest, the definition of 7 is the
following: [3]

w0 ifi=0
©T max{T;, T b+ ifi>0

This means that packet ¢ starts its service at
maz{T;,T}_,} and ends at maz{T;, T{_,} + 4 [3].

3.3. Schedulability

Networks are not usually built in the way that a
single piece of hardware is being exclusively used by one
single flow. Quite the opposite, it is extremely common
that a single node in a network has to handle transfers
for multiple flows in parallel. Schedulability enables that
service guarantees can still be made in that case. This is
done in the following way: [3]

When a node is affected by a new flow it has to
reserve two kinds of resources locally: bandwidth and
buffer size. In order to be able to reserve those resources
the quantity has to be determined. To calculate the
needed bandwidth and buffer size we have to keep the
service curve and the arrival curve constraints of the
flow in mind. The most general framework which is
making those calculations possible is named Service
Curve Earliest Deadline First. [3]

3.3.1. Earliest Deadline First. The concept of Earliest
Deadline First (EDF) schedulers assumes that there is
a list for every corresponding flow which contains the
arrived packets which are waiting to be transferred further.
Furthermore, a deadline D] is allocated to every nth
packet of every tth flow. [3]

At every time slot the scheduler picks one packet with
the earliest deadline out of all packets independent of the
flow. This general concept contains no further assumption
of how the deadline is mathematically allocated. For that
reason multiple concepts of other scheduler types - e.g.
FIFO - can be fit in this concept as well. [3]

3.3.2. Service Curve Earliest Deadline First Sched-
ulers. As shown in subsection 3.3.1 EDF schedulers
assume that there is a deadline allocated to every packet.
Service Curve Earliest Deadline First (SCEDF) schedulers
allocate the deadlines for every packet in that way that
every ith flow does have §; as a service curve. [3]

3.4. Time Analysis Methods

It is explained in section 3.1 how service guarantees
can be calculated for individual servers. The Time Anal-
ysis Model enables to calculate delay bounds for flows
which traverse multiple servers.

Seminar IITM SS 19,
Network Architectures and Services, October 2019

63

3.4.1. Total Flow Analysis. As shown by Heidinger
in [7], this method of calculating delay bounds is done
in the following way: The delay bounds are calculated
per traversing node and then added up. For that reason
this method is also known as node-by-node analysis.
The problem with this method is that the delay bounds
will be calculated overly pessimistic, because bursts are
not only paid at the first traversing node, but at every
traversing node. [7]

3.4.2. Separate Flow Analysis. This method of calcu-
lating delay bounds is done in the following way: The
service curves are calculated per traversing edge, added
up and then the horizontal deviation is used as a delay
bound. [7]

In that way bursts will be only paid at the first traversing
node. The problem with this method is that the delay
bounds will be calculated overly pessimistic, if a flow is
multiplexed several times. [7]

3.4.3. Pay Multiplexing Only Once. As shown by
Schmitt et al. in [8], with this method overly pessimistic
calculations of delay bounds do not happen, if a flow
is multiplexed several times. This method is based on
separate flow analysis as shown in section 3.4.2.

4. Limitations

In this section the limitations of the application of
DNC will be explained.

4.1. Cyclic dependencies

As shown by Schigler et al. in [9], cyclic dependencies
in dataflows can not be modeled using DNC without any
modifications. This problem is still under active research
and there is already an approach named Cyclic Network
Calculus (CyNC) which aims to support that use case, but
has not yet produced correct results in every case [9].
CyNC is based on DNC but extends the theoretical basis.
Several modifications of DNC are already proposed and
even more are needed in the future to fully support this
application area. [9]

4.2. Feedback loops

One might think that protocols which include feedback
loops - e.g. TCP - cannot be modeled using DNC. In fact,
this assumption has been proven wrong, as Baccelli et
al. have shown in [10] that TCP can be modeled using
max-plus algebra. However this is not a common use case
for DNC, because the used traffic shaping in DNC is
about regulating the average rate and burstiness of data
transmission whereas the sliding window protocols, such
as TCP, only limit the amount of data in transit at once [5].

4.3. Overprovisioning

DNC aims to determine the actual worst case which
can be seen in Figure 3. Practically the calculation of
overly pessimistic upper bounds can be observed fre-
quently using DNC as shown by Fidler in [11]. However,

doi: 10.2313/NET-2019-10-1 12

Maximal Actual Upper
> observed worst bound
'z delay case |
)
& [[\
I I I End-to-end
T T Ll
Observable Rare over _, delay
events events provisioning

Figure 3: Visualization and naming of delay bounds. [4]

determining the exact actual worst-case is NP-hard [4].
For systems which are not of the type hard real-time -
e.g. best-effort or soft real-time systems - those overly
pessimistic calculations of the actual worst case can easily
make the calculations of DNC worthless. Even if the
actual worst case is not calculated overly pessimistic it
still may be attained rarely and may not even have the
effect of breaking the whole system as silently assumed
by DNC. [11]

5. Alternative approaches

In this section alternative approaches to calculate per-
formance guarantees will be briefly introduced and their
limitations will be compared to those of DNC.

Figure 4 provides a broad overview of the different use
cases of several alternative approaches. Some approaches
will be explained further in the following subsections.

Model Checking
[Real-Time Calculus
Trajectory Approach
| Deterministic
{_ Network Calculus

‘ Schedulability Analysis
Simulation : .
4 : Criticality

BestEffort Soft and Firm RealTime ~ Hard Real-Time

Accuracy / Tightness

Stochastic
Network Calculus

Queuing Theory

Figure 4: An overview of the use cases of several alter-
native approaches [4].

5.1. Stochastic Network Calculus

As described in section 4.3, DNC is not designed to
model systems which are not of the hard real-time type.
SNC characterizes performance bounds in probabilistic
terms [1], which makes it more suitable to model firm
or soft real-time systems [4].

5.2. Queuing theory

As shown by Lipsky in [12], this approach uses proba-
bilistic terms to characterize performance bounds, as well
as SNC. Furthermore, it does not analyze the worst-case,
as DNC or SNC does, but the average-case [12], which
makes it more suitable to model best-effort systems [4].

6. Conclusion and future work

In this paper we have shown how Deterministic
Network Calculus can be used to calculate theoretical

Seminar IITM SS 19,
Network Architectures and Services, October 2019

64

worst-case performance guarantees for error-free packet-
switching networks of queues and schedulers.

In section 2, we started to define the term flow, which
is used to describe a unidirectional set of packets which
are being sent from a single sender to a single receiver.
We showed what it means that a flow is constrained and
how constrains of flows can be calculated.

In section 3, the concept of servers and service curves,
delay bounds and backlog bounds have been defined and
explained. We put all concepts together and showed how
service guarantees can be calculated even when multiple
traversed servers and active flows are involved.

In section 4, we have shown what the limitations of the
application of DNC are.

In section 5, we briefly introduced alternative approaches
to calculate performance bounds and compare their
limitations and corresponding use cases.

Overall we have seen that the analysis of the network is
bound to the exact requirements of each individual flow.
Therefore the exact requirements have to be known in
beforehand to be able to calculate performance bounds
using DNC. Therefore the constructed network is bound
to the initial planned use case, also in terms of hardware.
That fact makes the use cases of DNC inflexible. The
effort of defining those exact requirements and making
the calculations is only worth it in special real-world
applications.

On one hand, the calculated performance guarantees of
DNC can be valuable whenever the criticality is high,
e.g. when even lives are at stake. On the other hand,
the calculations of DNC assume that the network is
error-free, which means that a single point of failure
could break calculated performance guarantees partly or
even fully. This problem still has to be taken into mind.
One real-world application is the validation of embedded
networks inside the Airbus A380 and A350 [4].

References
[11 R. L. Cruz, “A calculus for network delay. i. network elements

in isolation,” IEEE Transactions on Information Theory, vol. 37,
no. 1, pp. 114-131, Jan 1991.

——, “A calculus for network delay. ii. network analysis,” IEEE
Transactions on Information Theory, vol. 37, no. 1, pp. 132-141,
Jan 1991.

J. Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2003.

F. Geyer, “Quality-of-service and network calculus,” 2019,
[accessed 20-May-2019]. [Online]. Available: https://acn.net.in.
tum.de/slides/190205_chap12_QoS_Network_Calculus.pdf

A. Tanenbaum, Computer Networks, ser. Computer Networks.
Prentice Hall PTR, 2003, no. S. 3.

A. V. Bemten and W. Kellerer, “Network calculus: A
comprehensive guide,” 2016, [accessed 23-June-2019]. [Online].
Available: https://mediatum.ub.tum.de/doc/1328613/1328613.pdf
E. Heidinger, “Worst case analysis - network calculus,” 2012,
[accessed 20-May-2019]. [Online]. Available: https://www.net.in.
tum.de/pub/systemperformanz/ss2012/skript/networkcalculus.pdf

(2]

(3]

(4]

(5]

(6]

(7]

[8] J. B. Schmitt, F. A. Zdarsky, and 1. Martinovic, “Improving per-
formance bounds in feed-forward networks by paying multiplexing
only once,” in 14th GI/ITG Conference - Measurement, Modelling
and Evalutation of Computer and Communication Systems, March

2008, pp. 1-15.

doi: 10.2313/NET-2019-10-1 12

[9] H. Schigler, J. J. Jessen, J. D. Nielsen, and K. G. Larsen, “Net- [11] M. Fidler, “Survey of deterministic and stochastic service curve
work calculus for real time analysis of embedded systems with models in the network calculus,” IEEE Communications Surveys
cyclic task dependencies,” in Computers and Their Applications. Tutorials, vol. 12, no. 1, pp. 59-86, First 2010.

Citeseer, 2005, pp. 326-332. [12] L. Lipsky, Queueing Theory - A Linear Algebraic Approach,

[10] F. Baccelli and D. Hong, “Tcp is max-plus linear and what it 2nd ed. Berlin Heidelberg: Springer Science & Business Media,
tells us on its throughput,” SIGCOMM Comput. Commun. Rev., 2008.

vol. 30, no. 4, pp. 219-230, Aug. 2000, [accessed 23-May-2019].
[Online]. Available: https://doi.acm.org/10.1145/347057.347548

Seminar IITM SS 19,

Network Architectures and Services, October 2019 65 doi: 10.2313/NET-2019-10-1_12

