
Network Emulation using Linux Network Namespaces

Daniel Schubert, Benedikt Jaeger∗, Max Helm∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ga59tek@mytum.de, jaeger@net.in.tum.de, helm@net.in.tum.de

Abstract—Testing the behaviour of computer networks can
be done with specialized testbeds but they can be expensive
and are hard to reconfigure. Therefore other methods like
network emulation are used. In an implementation of an
emulator, virtual machines can serve as network nodes.
However, a more lightweight approach is based on Linux
network namespaces. In this paper we describe fundamen-
tal emulation features of the Linux operating system that
are useful in network emulation. Furthermore, we present
Mininet, an emulator that harnesses those features. We
examine the API of Mininet and show what happens in the
background on a lower level. Finally we present data on the
performance of Mininet.

Index Terms—network emulation, virtualization, software-
defined networks, OpenFlow

1. Introduction

Computer networks are already quite complex systems
when they contain only a few nodes, with larger network
topologies their behaviour gets even more unpredictable
and so there is a need for testing. One option is to make
use of a testbed consisting of several machines connected
to each other but this approach is expensive, inflexible
and does not scale very well. Therefore, simulation and
emulation frameworks are useful especially in situations
where the effects of introducing changes to the network
have to be evaluated dynamically. These changes could
relate to a protocol, the network architecture or the address
scheme. In software defined networks where the function-
ality of the network can in principle evolve very quickly,
such a platform for rapid prototyping can be helpful.
Various prototyping environments are already available.
In many of those, virtual machines represent nodes which
then are connected into a network by virtual interfaces.
However there is a different approach that was chosen
for the open source network emulator Mininet. There
the network is built from processes running in separate
Linux network namespaces which are connected by pairs
of virtual Ethernet devices. This offers a more lightweight
way of network emulation. The remainder of this paper is
organized as follows. Section 2 gives a detailed description
of network namespaces and other emulation features of the
Linux operating system. The Mininet network emulation
platform is presented in Section 3, focussing on its API
and inner workings. In Section 4 other simulation and
emulation tools are discussed. Finally, a conclusion is
given in Section 5.

2. Linux virtualization features

In this section we explain the virtualization features
of the Linux operating system that are used for the im-
plementation of Mininet.

2.1. Linux Network Namespaces

The concept of namespaces comes in different vari-
eties in the Linux operating system. The common purpose
is to offer spaces where processes can be executed in iso-
lation of others regarding various system resources. One
of those varieties are network namespaces. They provide
processes or groups of processes with their individual
network stack including routing tables, network devices,
ports and firewall rules among other things. A new net-
work namespace can be created in different ways using the
namespace API. One way is to use the clone system call
which creates a new process. If the CLONE_NEWNET flag is
given as an argument the process is provided with a new
namespace. Another way is to use the unshare system call
from a child process again with the CLONE_NEWNET flag to
separate it from its parent. At the time of their creation
namespaces just contain a private loopback device. Phys-
ical network devices can be moved between namespaces
but they can always only belong exactly to one of them
[1] [2].

2.2. Virtual ethernet devices

In order to enable communication between different
network namespaces there exist virtual ethernet devices
(veth). They come as pairs and can be thought of as a pipe
connecting two namespaces. Using the command shown
in Listing 1 a pair of veth interfaces named <name1>
and <name2> can be created and the latter is put in the
network namespace <netns>. As a result, a connection
between the root namespace and the namespace <netns>
is established [3].

Listing 1: Shell command to create a virtual ethernet
device pair

1 ip link add name <name1 > type veth
2 peer name <name2 > netns <netns >

2.3. Control groups

Control groups (cgroups) are to some extent similar
to namespaces because they form an environment for

Seminar IITM SS 19,
Network Architectures and Services, October 2019 57 doi: 10.2313/NET-2019-10-1_11

processes with a modified view on system resources. Their
purpose is to track and limit the access of processes to
resources like cpu time, memory and devices or restrict the
number of processes that can be created. Control groups
are a hierarchical structure implemented as a pseudo-file-
system. To create a new cgroup a folder is added to that
file-system. Processes can be assigned to a cgroup by
adding their process id to the group’s cgroup.procs file. A
process can only be part of one group and is automatically
removed from any other group on its reassignment. The
actual limitation of the resources is carried out by kernel
components called controllers or subsystems which are
mounted on the file-system. The limits of a cgroup are
defined by values written in attribute files of a cgroup
folder. [4]

2.4. Traffic control

Apart from controlling the environment a process is
running in, it is also possible to influence the network
traffic between network namespaces. This is done by
influencing the handling of packets at the interfaces of
namespaces using Linux traffic control (tc). This way for
example the bandwidth of a link can be decreased [5].

3. Mininet

Mininet is an emulator that aims at providing a plat-
form for rapid prototyping of large software defined net-
works consisting of hundreds of nodes. By using vir-
tualization features on the operating system level it is
very lightweight and can therefore be run on commodity
hardware. It can be used interactively through a command
line interface but there also exists a Python API that allows
for the creation of complex network structures by small
scripts. In fact almost the complete project itself is written
in Python with only some time critical parts implemented
in C [6].

3.1. Components

The components emulated by Mininet are hosts,
switches, controllers and links. Mininet hosts are simply
shell processes that have been given their own network
namespaces. Software OpenFlow switches take over the
tasks of hardware switches in real networks. By default
they run in the root namespace. Typically, controllers
are the parts that are tested and therefore beside using
emulated ones, it is possible to connect real controllers
to the virtualized network. This only requires IP-level
connectivity between the controllers and the emulated
switches. In order to connect the different nodes of the
network virtual links are used. Each link consists of a
virtual Ethernet device pair that acts like a tunnel between
two virtual interfaces of two different network namespaces
[6].

3.2. API

The Miniet API is divided into three levels of ab-
straction. The low-level API which comprises the base
classes for the nodes and links that make up the network,

the mid-level API that offers methods that help with the
construction of a network as well as with its configuration
and eventually the high-level API that provides a class
representing a reusable network topology that can be
parametrized and instantiated using the command line
interface [7].

3.2.1. Low-level API. The most interesting things for us
happen at the low-level API because there we can observe
the utilization of the operating system’s virtualization
features. In Listing 2 you can see how the most basic
network, containing only two hosts, a connecting switch
and a controller can be constructed. The resulting network
topology can be seen in Figure 1.

Listing 2: Construction of a simple network using
Mininet’s low-level API. (Modified from [7])

1 h1 = Host(’h1 ’)
2 h2 = Host(’h2 ’)
3 s1 = OVSSwitch(’s1’, inNamespace=

False)
4 c0 = Controller(’c0’, inNamespace=

False)
5 Link(h1, s1)
6 Link(h2, s1)
7 h1.setIP (’10.1/8 ’)
8 h2.setIP (’10.2/8 ’)
9 c0.start()

10 s1.start([c0])
11 print h1.cmd(’ping -c1’, h2.IP())

Figure 1: Simple network created by Mininet [6].

At this level, the base classes for the network’s com-
ponents are used directly. In Figure 2 you can see that
the classes for three of the four main components of
the network e.g. hosts, switches and controllers share a
common parent class which is an abstraction for a network
node. In the class constructor a new process is spawned
that calls a subprogram written in C to create its own
new network namespace by using the unshare system call
with the CLONE_NEWNET flag. The basic Host class which
is used in line 1 and 2 in Listing 2 does not differ from
its superclass. There are neither new fields nor any new
methods. This is different to the CPULimitedHost class
where the id of the process started during the instantiation
is moved to a cgroup file in order to control the CPU time

Seminar IITM SS 19,
Network Architectures and Services, October 2019 58 doi: 10.2313/NET-2019-10-1_11

Figure 2: Class diagramm of a part of the Node class
hierarchy.

allocated to it. In line 3 an open vSwitch is instantiated
that eventually should bridge the two hosts and in line
4 an instance of a controller is created to determine the
behaviour of the switch. In order to connect the switch
to the hosts two Link objects are used. The basic Link
object is just a pair of virtual Ethernet devices which is
created as shown in Listing 1. In line 7 and 8 the IP
adresses of the default interfaces of the hosts are set to
10.0.0.1 and 10.0.0.2 respectively. The default interface is
the one with the lowest port number. In this case it is equal
to the virtual Ethernet interfaces that were set up before
because the network namespaces of the hosts are created
empty except for a loopback interface that is not taken
into consideration here. After that the controller’s start
method is called which brings up an OpenFlow reference
controller that listens on port 6653 of the root network
namespace. In line 10 an open vSwitch is started using
the command shown in Listing 3.

Listing 3: Shell command to start an open vSwitch
1 ovs -vsctl add -br <name >
2 -- set bridge <name >
3 controller =[<controllerIds >]
4 -- add -port <name > <intf >

Line 1 in Listing 3 shows the basic command to
add a bridge called <name>. In line 2-3 the controllers
responsible for the switch’s behaviour are set and in line 4
an interface is added to the bridge. Line 4 is executed two
times in this example adding the two different interfaces
that have been created during the instantiation of the two
links between the switch and the hosts. Finally, in line
11 of Listing 2 host h2 is pinged from host h1. The cmd
method of the Node superclass takes a list of arguments
that are combined to a string and run in the shell of the
respective node [8].

3.2.2. Mid-level API. If we want to build the same simple
network using the mid-level API we can use the code that
is shown in Listing 4.

Listing 4: Command to start an open vSwitch
1 net = Mininet ()
2 h1 = net.addHost(’h1’)
3 h2 = net.addHost(’h2’)
4 s1 = net.addSwitch(’s1’)
5 c0 = net.addController(’c0’)
6 net.addLink(h1, s1)
7 net.addLink(h2, s1)

8 net.start()
9 print h1.cmd(’ping␣-c1’, h2.IP())

10 net.stop()

When we compare it to the code written using the
low-level API we can see some differences. First of all
there is a Mininet object which is an abstraction of the
network. The network can be started and stopped as a
whole as done in line 8 and 10 respectively. Therefore, it
is not necessary to start switches or controllers separately.
Furthermore, there is no need to manually set IP addresses
of interfaces.

3.2.3. High-level API. In the high-level API there is a
Topo class that represents a reusable network topology
that can be parametrized. This class contains a build
method that can be overwritten which orchestrates the
creation of a network in essentially the same way as in
the mid-level API. A Topo object can be handed to the
Mininet constructor as a parameter or can be used as an
argument for the command line interface.

3.3. Evaluation of Performance and Accuracy

The inventors of Mininet themselves published a re-
port where they compared the bandwidths that were mea-
sured in small networks in the emulator with those of
equivalent topologies on a testbed with eight machines.
They observed similar TCP results but the results of the
emulator were more repeatable and consistent [9].

In a larger study Isaia and Guan [10] examined
Mininet with regard to nine different performance cate-
gories, including setup time, teardown time, CPU usage,
CPU cores load balancing, RAM usage, initial ping delay
(IPD), average ping delay, no response failure rate and fair
share of resources. Setup and teardown time describe how
long it takes to create and destruct a given network topol-
ogy. To evaluate the CPU usage they took two different
measures: the initial CPU usage which is the CPU load
after creating the network but before starting to send data
across it and the CPU usage during experimentation which
is the average CPU load during a specified experiment. For
measuring the CPU cores load balancing, an experiment is
divided into time intervals. For each of them the standard
deviation of core usage is calculated and finally the aver-
age is taken. It is a measure of how well the CPU load
can be distributed to different cores which is important
for scalability. The initial ping delay is the time it takes to
ping a node at the start of an experiment. It is significantly
larger than at later time points because at the beginning
the OpenFlow switches do not contain the necessary flow
table rules which first have to be added by a controller.
Therefore, in the average ping delay measure the IPD is
excluded. No response failure rate is the percentage of
unsuccessful ping commands. Fair share of resources in
that study was calculated as the coefficient of variation
of ping delay between all the hosts when performing a
ping command simultaneously. Five different setups with
their own network topologies and communication patterns
have been tested in 4 different network sizes and each
experiment was done 30 times on two different systems
that differed in the number of cores, the amount of RAM
and the size of the hard disk. The setups covered various

Seminar IITM SS 19,
Network Architectures and Services, October 2019 59 doi: 10.2313/NET-2019-10-1_11

bottlenecks in network communication. The data gener-
ated from the experiments showed that the setup time of a
network is strongly influenced by the number of switches.
In a network of 1000 hosts and one swith the setup time
was under ten seconds whereas in a network comprised
of two hosts and 1000 switches it reached almost four
minutes. But setup time did not always increase linearly
with the size of the network and there was no benefit
from using the more powerful system. The authors of the
study also stated that CPU usage is generally good and
that load balancing worked well being positively effected
by the number of switches. The initial ping delay is very
large compared to the average ping delay and it grows
as the number of nodes in the network increases. This is
natural because when a connection is used for the first
time the forwarding rules have to be added to the switch
by a controller. The no response failure rate played a role
in larger networks or when the path of a ping packet was
long. The fair share of resources measure also gets worse
with an increasing number of network nodes. [10]

4. Related work

Apart from Mininet there exist other tools to simulate
or emulate computer networks. Simulators try to mimic
the behavior of a system model in a more abstract way
whereas with emulators the same code can be executed as
in the real system. A disadvantage of emulators may be
that they run slower than the actual hardware and therefore
are not always able to reproduce a realistic timing. In
simulators the execution is more flexible and can even be
faster then in the real system [11]. On the side of the sim-
ulation tools, there is ns-3, an open source discrete-event
simulator that was mainly created to support education and
research [12]. Others are fs-sdn [13], which as Mininet is
targeted at SDN prototyping and the commercial EstiNet
X Simulator [14]. An example for network emulation
is Mahimahi, a record-and-replay tool that can be used
for recording traffic from HTTP-based applications. Later
Mahimahi can replay the traffic emulating the network
structure that produced it. Linux network spaces are used
here as well [15].

Although hundreds of nodes can be emulated on a
single machine with Mininet at some point the resources
come to an end where it is not possible to make the
network larger. To handle this problem Blankstein et al.
developed a distributed version of Mininet where the
topology of a virtual network is split between multiple
computers automatically [16]. This approach has now also
been followed by the Mininet community and there is a
cluster edition prototype available in the repositiory.

5. Conclusion

In this paper we explained fundamental emulation
features of the Linux operating system that are useful
in network emulation including network namespaces, vir-
tual Ethernet devices, control groups and traffic control.
Furthermore we presented the Mininet emulator, which is
based on those features, and described the implementation
of its main components. We examined Mininet’s API
that is divided into three abstraction levels and inspected

how it interacts with the operating system to create a
simple network. Finally we presented data on performance
and accuracy of Mininet and mentioned other tools for
network simulation and emulation.

References

[1] “namespaces(7) - linux manual page,” http://man7.org/linux/
man-pages/man7/namespaces.7.html, [Online; accessed 2019-06-
11].

[2] network_namespaces(7) - linux manual page. [On-
line]. Available: http://man7.org/linux/man-pages/man7/network\
_namespaces.7.html

[3] veth(4) - linux manual page. [Online]. Available: http://man7.org/
linux/man-pages/man4/veth.4.html

[4] “cgroups(7) - linux manual page,” http://man7.org/linux/
man-pages/man7/cgroups.7.html, [Online; accessed 2019-06-
13].

[5] tc(8) - linux man page. [Online]. Available: https://linux.die.net/
man/8/tc

[6] B. Lantz, B. Heller, and N. McKeown, “A network in
a laptop: Rapid prototyping for software-defined networks,”
in Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, ser. Hotnets-IX. New York, NY,
USA: ACM, 2010, pp. 19:1–19:6. [Online]. Available: http:
//doi.acm.org.eaccess.ub.tum.de/10.1145/1868447.1868466

[7] mininet. Introduction to mininet. [Online]. Available: https:
//github.com/mininet/mininet/wiki/Introduction-to-Mininet#api

[8] ——. Mininet sourcecode. [Online]. Available: https://github.com/
mininet/mininet

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Mininet performance fidelity benchmarks,” 2012.

[10] P. Isaia and L. Guan, “Performance benchmarking of sdn exper-
imental platforms,” in 2016 IEEE NetSoft Conference and Work-
shops (NetSoft), June 2016, pp. 116–120.

[11] C. Seifert, S. Reißmann, S. Rieger, and C. Pape, “Evaluation
von virl, gns3 und mininet als virtual network testbeds in der
hochschullehre,” in 11. DFN-Forum Kommunikationstechnologien,
P. Müller, B. Neumair, H. Reiser, and G. Dreo Rodosek, Eds.
Bonn: Gesellschaft für Informatik e.V., 2018, pp. 103–112.

[12] T. Henderson and M. Lacage. Network simulator 3. [Online].
Available: https://www.nsnam.org

[13] M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation
for sdn prototyping,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM,
2013, pp. 31–36. [Online]. Available: http://doi.acm.org.eaccess.
ub.tum.de/10.1145/2491185.2491202

[14] EstiNet. Estinet. [Online]. Available: https://www.estinet.com/ns/

[15] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein,
J. Mickens, and H. Balakrishnan, “Mahimahi: Accurate record-and-
replay for HTTP,” in 2015 USENIX Annual Technical Conference
(USENIX ATC 15). Santa Clara, CA: USENIX Association,
2015, pp. 417–429. [Online]. Available: https://www.usenix.org/
conference/atc15/technical-session/presentation/netravali

[16] A. Blankstein, S. A. Erickson, and M. Melara, “Mininet clustering,”
2013.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 60 doi: 10.2313/NET-2019-10-1_11

