
Quality Enhancement in Written Examinations
by Automatic Recognition of Correction Results

Arian Mehmanesh, Stephan Günther∗, Johannes Naab∗, Maurice Leclaire∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: arian.mehmanesh@tum.de, guenther@tum.de, naab@net.in.tum.de, leclaire@in.tum.de

Abstract—An examination score determined by human cor-
rectors can be erroneous in multiple ways. In this case
the focus is on errors caused by miscalculating the score
manually. The goal is to estimate a rate of exams with
calculation mistakes and determine which factors are likely
to increase this error rate when designing an exam. To
achieve this, 525 sample exams are digitized by hand with
help of an automated system detailed herein. Afterwards,
the digital exam scores are scanned for errors automatically.
Statistical analysis of these errors yields the following results:

The quote of exam points miscalculated in this sample
is determined to be 4.2%, resulting in a confidence interval
between between 2.7% and 6.4% (95% conf. level). On aver-
age, the correctors made an error when a problem has 10.4
subproblems distributed over 3.9 pages. The mean impact
of an error is 0.8% of the total credits. Considering the
time it takes to manually add the points and determine the
grade, in combination with this error rate, automated score
calculation systems for exams are proposed as a solution.

Index Terms—examinations, human error, correction, mis-
calculation, scoring

1. Introduction

Human error is unavoidable in the correction of ex-
aminations by hand. While these faults can occur by
overlooking correct answers or grading similar responses
differently, the last step of every evaluation is to sum all
points and determine the final grade. This paper focuses
on quantifying the errors made in calculating the exam
scores since they are measurable and comparable across
all forms and topics of examinations. These arithmetical
errors are also chosen because they are computationally
detectable.

To achieve this, a sample examination is analyzed in
its entirety for falsely calculated credits. This analysis
requires an optimized interface to facilitate quick acqui-
sition of the recognized scores. After the recognition of
handwritten exam scores the correctors’ faults are detected
by an automated validation algorithm.

After all errors are found, the percentage of miscal-
culated exams and by how much the error deviates from
the correct credits on average are of interest. Additionally,
relations between the error rate of a problem and the count
of its subproblems (or how many pages the problem spans,
respectively) are inspected.

The content of this paper is structured as follows: In
Section 2 a related study is presented. The dataset used
in this project is detailed in Section 3.1, followed by a
description of the software used to extract numerical score
values from exam images in Section 3.2. These values
are statistically analyzed in Section 3.3. The results of
this analysis are presented in Section 4, amounting to the
conclusion in Section 5.

2. Related work
Studies discussing errors in examinations are common,

but for comparison to this analysis they are required to
differentiate between score calculation mistakes and other
errors. Phillips & Weathers have analyzed 5017 standard-
ized tests (Stanford Achievement Test) in 1958 [1]. They
quantified and distinguished different types of errors, like
correctors not following the instructions or falsely comput-
ing the final grade based on the students total score. The
focus of this paper, the incorrect summing up of scores,
was observed aswell but referred to as "counting error".
Out of the total 5017 tests, 630 of them were miscounted
(13 %). This was the most prominent fault, causing 45 %
of all errors.

3. Methods
After the description of the dataset used for this

project, the two main parts of the methodology are de-
tailed. They consist of the interface used for recognizing
the written scores and how these determined values are
analyzed for errors.

3.1. Dataset

The analyses herein are based on a digitized endterm
examination of 2014 provided as scanned images. It was
held at the Technical University of Munich (TUM) on
the topic of "Basics in Networking and Distributed Sys-
tems" [2], consisting of 525 individual exams.

Figure 1a shows the front page of the exam, the points
noted here sum up to yield the final grade. The first
problem of the exam is demonstrated in Figure 1b, where
the scores of the subproblems are added and are written
in the top box. This result of problem 1 is carried over to
the front page (Fig. 1a).

Every exam consists of 68 score boxes, resulting in
35700 total boxes available. This examination was eval-
uated twice by the correctors, in a first and second run.
The result of the second run determines the final grade.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 53 doi: 10.2313/NET-2019-10-1_10



Name Vorname

Studiengang (Hauptfach) Fachrichtung (Nebenfach)

Matrikelnummer

Unterschrift der Kandidatin/des Kandidaten

TECHNISCHE UNIVERSITÄT MÜNCHEN
Fakultät für Informatik

Midterm
× Endterm

Wiederholung

Prüfungsfach: Grundlagen Rechnernetze und Verteilte Systeme

Prüfer: Prof. Dr.-Ing. Georg Carle Datum: 22.07.2014

Hörsaal: Reihe: Platz:

Note

I II

1

2

3

4

5

6

7

8

9

10

∑

Nur von der Aufsicht auszufüllen:

Hörsaal verlassen von : bis :

Vorzeitig abgegeben um :

Besondere Bemerkungen:

(a) Front page score boxes and total sum.

1 Name:

Aufgabe 1 Fourierreihe (10 Punkte)
10Gegeben sei der in Abbildung 1.1 dargestellte, periodische Dreiecksimpuls. Dieses Signal soll im

Folgenden als Fourierreihe

s(t) =
a0
2

+

∞∑

k=1

(ak cos(kωt) + bk sin(kωt))

dargestellt werden. Die Koeffizienten für alle ganzzahligen k > 0 lassen sich, wie aus der Vorlesung
bekannt, wie folgt bestimmen:

ak =
2

T

∫ T/2

−T/2
s(t) cos(kωt) dt, bk =

2

T

∫ T/2

−T/2
s(t) sin(kωt) dt.

t

s(t)

π

−3π −2π 2π 3π−π π

Abbildung 1.1: Periodischer Dreiecksimpuls s(t)

1a)* Geben Sie einen analytischen Ausdruck für den Sendegrundimpuls an, also für das Signal s(t) im
Intervall t ∈ [−π;π].

1b)* Bestimmen Sie die Periodendauer T und Kreisfrequenz ω = 2π/T des Signals.

1c)* Bestimmen Sie den Gleichanteil a0.

Grundlagen Rechnernetze und Verteilte Systeme – SoSe 2014

(b) Problem score box with subproblems.

Figure 1: Sample pages from the studied exam.

3.2. Recognition

The optical character recognition (OCR) of the writ-
ten credits is performed manually. Automated OCR or
interpretation by a machine learning approach exceeds
the scope of this analysis. To optimize this process it is
necessary to automate the displaying of score boxes to
the reviewer and recording the recognized score for each
problem. Additionally, metadata should be tracked for
every box, such as the page on which the box was located
and the time interval it took the reviewer to recognize and
enter its numerical values. For the implementation of this
automation the programming language Python [3] is used
due to its ease of use and legibility.

The structure of the program can be reduced to the
Model-View-Controller pattern [4] which allows these
three components to be detailed separately.

3.2.1. Model. The model replicates the dataset and con-
sists of the whole ExamBatch, a single Exam and the
individual Problem which represents a score box. An
ExamBatch manages a list of Exams, whereas an Exam
stores a tree of Problems.

In the example of Figure 2, the root node of the tree is
the score box of the total exam credits. Subordinated are
Problem 1 and 2 on the front page, which are the scores of
Problem 1 and 2 carried over from the inside of the paper
exam sheet. Each Problem contains two subproblems.

The tree structure is chosen because every Problem
can have an arbitrary amount of subproblems in a generic

Total Score

Problem 1, Front Page

Problem 1

Problem 1.a

Problem 1.b

Problem 2, Front Page

Problem 2

Problem 2.a

Problem 2.b

Figure 2: An example tree of Problems.

Dashed lines indicate a score being carried over, not computed.

paper exam.
To iterate through the problems, a depth-first search

approach is used [5] as it is similar to the way a paper
exam is usually corrected.

3.2.2. View. The graphical interface for the user is kept
simple to support fast recognition.

As shown in Figure 3 of the program in execution, a
cropped score box and the user input can be seen. The
credits of the first correction pass are marked in red, the

Seminar IITM SS 19,
Network Architectures and Services, October 2019 54 doi: 10.2313/NET-2019-10-1_10



Figure 3: View of the User Interface.

second pass in green. At this stage, the user has entered
the values of both scores below the box. After this step
the software jumps to the next box immediately.

3.2.3. Controller. The responsibility of the controller is
to manage the control flow. The following pseudocode is
used to describe its algorithm.

load all exam scans into an ExamBatch
for every Exam in the ExamBatch do

repeat
display the next Problem (depth-first search)
start the timer
await user input
stop the timer
store user input and metadata

until no Problem left in Exam
store Exam as JSON file [6]

end for

Figure 4: The control flow in pseudocode.

As indicated in Figure 4, the controller basically per-
forms a slideshow of score boxes awaiting user input of
float values at every step.

3.3. Analysis

To detect miscalculations in the JSON files stored
in the recognition phase (Section 3.2), a second python
program is used. It is tasked with iterating through the
digitized exam data and recompute the scores for every
exam. If a mismatch between the calculated and the
written credits is detected, an error is recorded. Since this
task is significantly less complex than the first program,
it is not detailed further.

The main target estimation to be provided by this doc-
ument is the likelihood p of an exam being falsely graded.
Every exam can assume two states, namely being correctly
or incorrectly scored. This leads to the assumption of a
binomial distribution with parameter p. There are multiple
methods for estimating a confidence interval (CI) for a
binomial distribution. While the Wald interval method
is very prevalent in textbooks, Vollset [7] discourages
its use and recommends the Wilson score interval with
continuity correction. This method can be applied, because

the binomial distribution can be approximated by a normal
distribution for large sample sizes.

Let p̂ = 22
525 be the realisation of p in this sample,

n = 525:

np̂(1 − p̂) ≥ 9

≈ 21 ≥ 9 (1)

As shown in the Equation (1) our sample is large enough
for this continuity correction [8]. The Wilson score inter-
val with continuity correction is determined by [9]:

L =
2np̂ + z2 − 1 − z

√
z2 − 2 − 1/n + 4p̂(n(1 − p̂) + 1)

2(n + z2)

U =
2np̂ + z2 + 1 + z

√
z2 + 2 − 1/n + 4p̂(n(1 − p̂) − 1)

2(n + z2)
(2)

Where L is the lower and U the upper bound of the
confidence interval. For a confidence level of 95% the
value z is the 1 − 1−0.95

2 quantile of the standard normal
distribution (Φ is its cumulative distribution function):

z = Φ−1(1 − 1 − 0.95

2
)

= 1.96

Equation (2) is later used for the computation of the
CI.

In an attempt to interpret the nature of the mistakes
made by the correctors, the errors are further dissected.
The following attributes of an error are averaged:

1) amount of subproblems that had to be added
2) number of pages the mistake was distributed over
3) absolute offset of the noted score versus the

correct one

Finally, the average time needed to recognize a score
box or a whole exam is determined. This assesses the
effort of a human reading score boxes.

4. Results

The confidence interval of the likelihood of an exam
being wrongly corrected is between 2.7% and 6.4% with
a mean estimate of 4.2%.

On average, an error is based on 10.5 subproblems
that were erroneously added. Furthermore, these values
were generally added over 3.9 pages (requiring avg. 1.6
physical page turns). Errors deviate from the correct score
by 0.7 points (0.8% of the total score).

All 22 detected errors result from falsely summing
subproblem points to a problem, none were made adding
the credits on the front page. The score of a Problem was
never incorrectly carried over to the front page.

Recognizing a single score box takes about 1.6 sec-
onds, resulting in 85 seconds total per exam. Since a
program to facilitate recording of credits is used, these
time measures do not include:

1) flipping through the pages
2) localizing score boxes
3) computing the addition

Seminar IITM SS 19,
Network Architectures and Services, October 2019 55 doi: 10.2313/NET-2019-10-1_10



4) fixing own mistakes in this process
Thus the measured time of over 12 hours total is signifi-
cantly lower than the time required by a human correcting
paper exams by hand.

5. Conclusion and future work

Concerning the rate of falsely added exam scores, an
interval of 2.7% to 6.4% is high (95% CI). Assuming
this value is representative for all university exams and a
student participates in four exams on average per semester,
from 48% to 80% of bachelor students have at least one
of their exam credits miscalculated. Although the impact
of 0.8% of the score in these errors seems to be low, exam
grading is discrete. This leads to such a deviation having
either no effect or result in a significant grade change.

The results of this study indicate that exams containing
problems with many subproblems or problems which are
distributed over several pages are more prone to error.
Further research is needed to validate this claim.

Recognizing all credit values of an exam took 85
seconds, so the total time required for evaluating all exams
amounts to over 12 hours. As explained in Section 4,
correcting a paper exam without the tools for automation
described herein takes significantly longer.

There is a solution for minimizing computational er-
rors and drastically decreasing the required time to eval-
uate exams. Phillips & Weathers have already pointed
out in 1958 that "An alternative would be to have all
standardized tests machine-scored" [1]. Automating the
recognition and addition of exam scores in the present

and future is inevitable and extended research to enhance
such software is recommended.

References

[1] B. N. Phillips and G. Weathers, “Analysis of errors made in scoring
standardized tests,” Educational and Psychological Measurement,
vol. 18, no. 3, 1958.

[2] G. Carle, “Vorlesung Grundlagen Rechnernetze und Verteilte
Systeme,” https://www.net.in.tum.de/teaching/ss14/vorlesungen/
vorlesung-rechnernetze-und-verteilte-systeme/index.html/, 2014,
[Online; accessed 12-June-2019].

[3] Python Software Foundation, “Python language reference, version
3.7,” https://docs.python.org/3.7/, 2019, [Online; accessed 17-June-
2019].

[4] G. E. Krasner and S. T. Pope, “A cookbook for using the model-
view controller user interface paradigm in smalltalk-80,” J. Object
Oriented Program., vol. 1, no. 3, pp. 26–49, Aug. 1988.

[5] K. Mehlhorn and P. Sanders, Algorithms and Data
Structures: The Basic Toolbox. Springer, Oct. 2007.
[Online]. Available: https://people.mpi-inf.mpg.de/~mehlhorn/ftp/
Mehlhorn-Sanders-Toolbox.pdf

[6] ECMA International, “The json data interchange syntax,”
http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-404.pdf, Dec. 2017, [Online; accessed 18-June-2019].

[7] S. E. Vollset, “Confidence intervals for a binomial proportion,”
Statistics in Medicine, vol. 12, no. 9, pp. 809–824, 1993.

[8] M. Sachs, Wahrscheinlichkeitsrechnung und Statistik. Hanser Fach-
buchverlag, Sep. 2003.

[9] R. G. Newcombe, “Two-sided confidence intervals for the single
proportion: comparison of seven methods,” Statistics in Medicine,
vol. 17, no. 8, pp. 857–872, 1998.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 56 doi: 10.2313/NET-2019-10-1_10


