
Peer-to-Peer Matrix

Quirin Heiler, Richard von Seck∗, Jonas Jelten∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: q.heiler@tum.de, jelten@net.in.tum.de, seck@net.in.tum.de

Abstract—The current version of the Matrix network proto-
col relies heavily on the Domain Name Service and a Public
Key Infrastructure, which stands in conflict with its overall
decentralised design and makes it prone to censorship. This
paper discusses a possible adaption to the Matrix APIs,
which allows homeservers to operate in a self organized Peer-
to-Peer manner, without the loss of any security assurances
or the need for a centralized authority. The introduced
approach will be based on the GNU Name System and tries
to achieve a proper usability by allowing users to create
human meaningful names for known conversation partners.

Index Terms—matrix, p2p, gnu name system

1. Introduction

The Matrix network tries to provide a generic and
openly available service for message based communica-
tion. From the launch in 2014 [1], the network size has
grown rapidly and is confirmed to have already reached
a scale of more than one million users and 2500 home-
servers by the year of 2017 [1]. The overall concept has
thereby successfully proven to work in a real world, large
scale application. However, at the current state of the
project, the network is still inherently reliant on the use
of the Domain Name Service (DNS) and consequently
on a Public Key Infrastructure (PKI) to address and au-
thenticate its homeservers. We believe that the removal
of the dependence on these external, central authorities
would benefit the system in several ways and comply
with the projects core philosophies [2]. The key idea is
that, given the ability launch Matrix homeservers in self
a contained fashion and without having to rely on or even
pay for an external service like DNS, more users will be
able to operate their own servers, which would further
increase the desired openness and decentralization of the
network. Launching a personal homeserver comes with
the additional advantage of allowing users to privately
host their own conversations, thereby increases the control
the user has over his personal data. Ultimately it is to
mention that central authorities and DNS in particular
[3] leave room for potential censorship, which should
also be avoided when developing an open platform for
communication.

This paper will propose an adaption to the current
version of Matrix, which allows the operation of the
underlying federation of homeservers in an open, in a fully
decentralized and self controlled Peer-to-Peer (P2P) man-
ner, without the need for a central authority. Additionally,

it ensures, that our design fulfils the same standards of
security and scalability as the original system, while also
maintaining a reasonable degree of usability.

The introductory sections and the above mentioned
statics are based on the well maintained documentation on
the official matrix.org website [1], [2], [4]–[9]. The article
about the Great DNS Wall of China, was published by
Graham Lowe, Patrick Winters and Michael L. Marcus
[3], it gives an example for the possible risk of DNS
censorship. The central resource for this paper and the
fundamental bases of the proposed concept was the mas-
ter thesis of Martin Schanzenbach [10] about the GNU
Alternative Name System. The habilitation of Christian
Grothoff [11] about the GNUnet System contains the
further descriptions of the GNU Name Service (GNS),
which is the implementation of GADS, that we used in
our design.

The paper will start by giving a basic introduction
to the structure and functionalities of the Matrix network
in Section 2., before Section 3. will discuss the chal-
lenges which have to be overcome when trying to find
a suitable substitute for DNS. Section 4. and 5. give a
short overview over GNS and present the actual design
of our P2P network. The paper is concluded by a short
introduction in available alternatives to GNS (Section 6.)
and an evaluation (Section 7.) of the proposed solution.

2. Matrix

Matrix is an open standard developed by the Ma-
trix.org Foundation. It defines a set of APIs with the goal
to provide a free, globally available and decentralized
service with no single point of control, allowing users
to exchange persistent data in real time. The security
of the system and the user’s privacy is ensured through
end-to-end encryption. Even though Matrix is still under
development, there is already an implementation of the
network available. Matrix tries to provide a simple generic
interface, applicable to a variety of different use cases
like instant messaging, IoT communication or to provide
a signalling layer for webRTC based applications [4].

2.1. Basic functionality

The basic service provided by the Matrix network to
an outside user is comparable to ordinary chat services.
After generating an account at the Matrix homeserver

Seminar IITM SS 19,
Network Architectures and Services, October 2019 39 doi: 10.2313/NET-2019-10-1_08



of choice and acquiring a globally unique ID, users can
start to access the system. All communication in Matrix
is organized in rooms, which allow their members to
publish/retrieve persistent data among/from all other users
within. To enhance the user privacy, all room communica-
tion may optionally be end-to-end encrypted. Note how-
ever, that this communication is not limited to plain text
messages. In fact Matrix can be used exchange arbitrary
data between its users.

2.2. Network structure

While the current version of a matrix supports the use
of webSockets and even includes a CoAP based ultra-
low-bandwidth mode [4], we will focus on the default
configuration and assume that all messages sent within
the matrix network are HTTPS packages with JSON-
objects (events) as their payload [4]. Going from there,
the actual matrix network is formed between two main
entities: Clients and homeservers.

2.2.1. Client Applications. Client [8] applications are
important to the network in the sense that they represent
the entry point for all user input. Aside from that, clients
face a complete black box view of the actual Matrix
network. Once connected to the user’s homeserver, the
further communication does not differ from the usage of
contralised, server based web services. In that sense, the
client only pushes events to the server as POST messages
and stages pre-emptive GET requests to wait for answers.
The crucial point is, that different clients in Matrix do
never communicate to each other directly, even if they
share the same homeserver.

2.2.2. Homeservers. The homogenous web of home-
servers [9] is what actually makes up the network. They
are responsible for storing their users’ profile information
and room state. Therefore every homeserver of all mem-
bers of a room holds its own copy of the current room
state. Since clients will only inform their own homeserver
about new events, it is also the duty of every server to
spread these events across all other servers in the room,
while ensuring that every affected server will eventually
obtain the exact same room state. This process of merging
all incoming events of a room to a globally consistent state
is called federation [9] and because it takes a vital role in
the design of Matrix, the next section will be dedicated
to explain the underlying processes.

2.3. Federation

This section will explain the algorithms behind the
process of federation between multiple homeservers with
the help of a simple example. We will assume a network
layout as depicted in Figure 1.

Alice:serverA.com

serverA.com serverB.com

Bob:serverB.com

Figure 1: Network layout

The two users Alice:serverA.com (Alice) and
Bob:serverB.com (Bob) try to exchange messages with
the help of their respective homservers serverA (SA) and
serverB (SB). The room they are using is assumed to
be !roo:serverA.com (roo) (For more information about
the naming scheme, see section 2.4). Each server models
the room state as a directed, acyclic graph with a single
root. We assume that the room was just created, hence
the initial room state is empty (Fig. 2):

root

(a) Room state of SA

root

(b) Room state of SB

Figure 2: Initial state. Empty rooms.

Alice now pushes an event EA to her homeserver. SA

examines its state graph and adds an edge from all existing
events without an immediate child to the new event. In
our scenario this results in exactly one edge from the root
to EA. Simultaneously, Bob pushes an event EB to his
homeserver. SB reacts analogously to SA. The resulting
room state can be seen in figure 2:

root

EA

(a) Room state of SA

root

EB

(b) Room state of SB

Figure 3: Room state after receiving first packages

Both homeservers now face the task of informing their
respective counterpart about the newly received event. If
they just forwarded the incoming messages to each other
and treated the events received by other servers just like
events from their own clients, both would end up with
inconsistent versions of the state graph (Fig. 4):

root

EA

EB

(a) Room state of SA

root

EB

EA

(b) Room state of SB

Figure 4: Invalid federation. Inconsistencies marked red.

To circumvent this scenario, the servers do not only
inform their counterparts about the existence of the new
events, but also about the according parents of said event
in the state graph. This will lead to the versions of the
state graphs as depicted in figure 5.

Now each server holds a consistent copy of the room
state and can pass the newly received events to their
clients. However, this approach might not always be suf-
ficient, as two messages in independent branches of the
event graph might contain competing events. Imagine the
events EA and EB in our example would both be attempts
to rename the room to different names. To maintain a

Seminar IITM SS 19,
Network Architectures and Services, October 2019 40 doi: 10.2313/NET-2019-10-1_08



root

EA EB

(a) Room state of SA

root

EA EB

(b) Room state of SB

Figure 5: Invalid federation. Consistent room states.

consistent room state, these events have to be handled
identically at every involved homeserver. Specifically for
situations like this, Matrix features so called room versions
[5], which define a set of deterministic algorithms to
resolve such situations. Different room versions can be
applied to every room.

Note that the federation algorithm only ensures even-
tual consistency, but in no way the stability or immutabil-
ity of any section of the graph, since new messages might
have been delayed on their way through the network,
they can reference any node in the state graph as their
predecessor [5].

2.4. Discovery

As we already stated out, connections in the Matrix
network are only established from client to server or from
server to server. Therefore no network entity will ever
have to resolve the IP address of a client before being able
to build up a new connection. Servers on the other hand
need to provide a static identifier as their name. This name
can be either a static IP/Port-combination or a domain
name with an according DNS Service record [9], [12].
User- and room-IDs are a triplet of three different values,
containing: The address of a homeserver responsible for
this user/room; A name which is locally unique within
the scope of the homeserver; A specifier for the type of
the address (i.e. room or user). This structure ensures
that you will always be able to deduce the name, and
with the help of DNS ultimately the IP-address of the
server, responsible for a certain user or room, from the
corresponding ID. To illustrate the concrete format, we
will again look at the room from the example in section
2.3: !roo:serverA.com. In this case, "!" declares the type
of the address and states out that it belongs to a room,
while "roo" resembles the specific name of the entity and
"serverA.com" is the address of the server where it was
first allocated.

2.5. Third Party Integration

A key property of Matrix is that it does not simply
provide a substitute for existing messaging platforms, but
it creates possibilities to interoperate Matrix with other
third party services.

2.5.1. Identity Service. The Matrix Identity Service API
[7] allows users to create mappings from third-party iden-
tifiers like email addresses or phone numbers to Matrix
IDs. These associations are managed by the so called
identity servers. Other Matrix users can consult the iden-
tity servers to resolve a stored mapping, which allows

to lookup a user’s unknown Matrix ID from an already
known third-party address. To ensure that users can only
setup associations from third-party IDs that they actually
own, the identity server provides a challenge which can
only be solved by the owner of the given ID. In the
scenario of creating a mapping from an email address
to a matrix ID, the identity server would send an email
containing a token to the given address. This token is then
required to confirm the association.

2.5.2. Bridging. Matrix provides a whole variety of func-
tionalities for the exchange of messages with third party
services (e.g. email, facebook messenger, telegram, what’s
app, ...). So called Bridges [6] take the role of mediating
between Matrix and third parties. Bridges can be designed
as simple virtual users (bridge bots) [6], which take all
received messages from one service and forward it to the
other. More sophisticated approaches like Server-Server-
Bridges [6] can be able to interconnect Matrix with other
federated protocols (e.g. SMTP, SIP), by taking part in
both server federations (matrix & third-party) and take the
role of a general gateway between the two services. The
overall advantage of Bridging is that it allows the usage
of Matrix as a unified interface to communicate with arbi-
trary internet users, independent of what communication
services they use.

3. Challenges

The central idea for our design of a P2P matrix is
to keep the overall network structure and communication
logics of matrix untouched and to only make minimal
changes to the system. To achieve this, our approach will
focus specifically on finding a reasonable P2P substitute
for the DNS based naming system of Matrix. This section
investigates the challenges and limitations, which arise
when trying to build a fully decentralized naming system.
Note that the considerations in the upcoming paragraph
are based on [10] and are only applied to the context of
Matrix.

Zooko’s trilemma [13] is a hypothesis by Zooko
Wilcox-O’Hearn, which suggests that there is always a
trade off between three different special properties regard-
ing the name system of a network protocol. To be more
precise, these properties are decentralisation, memorabil-
ity and security. Their meaning will be explained on the
example of the current version of matrix:

Memorability. Matrix allows every user to freely
pick a desired server name in the form of a web domain.
As we expect that most users will prefer to pick simple
and concise names, we can assume that these names are
easily memorable.

Decentralisation. The name resolution process for
server names is based on DNS, which is a fairly decen-
tralised system. However, pure DNS does not impose any
security features [10] like cryptographic authentication.

Security. To close this gap of security and to enable
users to verify the authenticity of a DNS reply, additional
mechanisms like TLS certificates [14] or the DNS Secu-
rity Extension [15] are required, both of which rely on
a Public Key Infrastructure (PKI) to issue, revoke and
verify cryptographic certificates. The resulting hierarchy

Seminar IITM SS 19,
Network Architectures and Services, October 2019 41 doi: 10.2313/NET-2019-10-1_08



of certificates, leads to a centralisation of trust [13], which
originates from one or multiple trusted third parties. This
means that in compliance with Zooko’s trilemma, the gain
in security is bought by sacrifices in decentralisation.

These considerations lead us to the following conclu-
sion for the design of a P2P based Matrix system: If we
want to no longer be reliant on a central, trusted third
party, while also keeping Matrix resilient to adversaries,
we will have to make sacrifices on the memorability
of identifiers in order to increase the decentralisation of
the network. However, keeping up a certain degree of
memorability will be necessary for the usability of the
system. The GNU Alternative Domain System (GADS)
[10], is a fully decentralized naming system which was
developed on exactly these considerations. The upcoming
section will give a brief introduction into the GNU Nam-
ing System (GNS), which is a concrete implementation of
GADS and part of the GNUnet alternative network stack.

4. GNU Name System

In GNS, every user is identified by a private-public
key pair (Kuser

priv ,K
user
pub ) and manages its own root zone.

The ID (fingerprint) of a user’s root zone is generated
by hashing the public key of a user with SHA256 [16]
(BASE32 [17] notation), it is considered globally unique.
Zone files are comparable to their DNS counterpart and
contain, among others, PKEY-records (reference the fin-
gerprint of another zone file) and A/AAAA-records (for
IPv4/IPv6). Each record of a zone file has a locally unique
(A and AAAA records with the same name are allowed)
name, picked by the owner of the zone. By creating
additional key pairs, a single user can create and manage
multiple zones. Users may sign their local zone files with
the corresponding private key and make them publicly
available for the network with the help of a censorship
resistant Distributed Hash Table (DHT).

4.1. Name Resolution

The example network in figure 6 will be used to
illustrate the address resolution process of GNS:

DHT

Alice

(Bob,PKEY,A3BY)

LZAlice (QZ2E)

(srv,A,1.3.3.7)

PZBob (A3BY)

Figure 6: GNS example network state.

Bob wants to use his public zone file PZBob with
the fingerprint A3BY to advertise his server with the IP
address "1.3.3.7". Therefore he creates an A record named
"srv" in his zone file and uploads it into the DHT under
its fingerprint "A3BY". Alice talked to Bob the other day
and now she knows his zone’s fingerprint. If Alice wants
lookup the address of Bob’s server, she has two equivalent
options:

4.1.1. .zkey zone. With Bob’s fingerprint in hand Alice
can directly lookup Bob’s server, analogously to DNS
lookups by passing "srv.A3BY.zkey" to her GNS resolver.
The ".zkey" Top Level Domain (TLD) is used to indicate
that she wants to start the name resolution at the root of the
global namespace. Thus the resolver will start by looking
up Bob’s zone file in the DHT, based on the identifier
"A3BY" and afterwards retrieves the A record with name
the name "srv".

4.1.2. .gnu zone. Unfortunately, the real fingerprint of
a zone is way more complex than in our simple 4-digit
example and therefore difficult to memorize. Luckily on
the other hand, Alice has inserted a PKEY record named
"Bob", which contains Bob’s fingerprint in her local zone
file LZAlice. She can now tell her resolver that it should
start the address resolution process from LZAlice, by
picking the ".gnu" TLD. The full GADS link would
therefore be "srv.Bob.gnu". The resolver would now start
by searching for entries in LZAlice named "Bob". Since
"Bob" is a PKEY record the resolver will retrieve the
contained finger print. The rest of the resolution process
will then happen analogously to the ".zkey"-method.

In contrast to ".zkey"-addresses, which are valid glob-
ally, ".gnu"-addresses are only valid for a specific user, but
at the same time allow the user to organize known own
addresses by creating meaningful and easily memorable
aliases.

5. P2P Matrix

This section presents our actual concept for establish-
ing a fully decentralized, self organized, GNS based Ma-
trix homeserver network (P2P Matrix). As a prerequisite
we will assume that all clients and homeservers take part
in the GNUnet system and thereby grant access to the
GNS, while also providing bandwidth and storage for the
GNS DHT.

5.1. Identification

We found that even in the current version of Matrix,
it can be difficult to remember the address of a known
user, because you do not just have to provide the actual
username (which is possibly rather cryptic), you also need
to know the name of the user’s homeserver, which usually
does not stand in any relation to the user. By introducing
IDs that are created from public keys and therefore hard
to remember, we expect this problem to get even more
immediate. To address this issue, we want to minimize
the contact a user has with these cryptographic identifiers
and instead encourage the creation of personal aliases (pet
names) for our system.

5.1.1. Homeserver IDs. Homeservers in P2P Matrix
maintain a public GNS zone (Zserver). They are iden-
tified by their zone’s fingerprint (Fserver). This zone
has to contain at least one A/AAAA record called
"matrix", storing the IP address of the server. Every
server can therefore be routed globally, by querying "ma-
trix.FINGERPRINT_OF_THE_SERVER.zkey".

Seminar IITM SS 19,
Network Architectures and Services, October 2019 42 doi: 10.2313/NET-2019-10-1_08



5.1.2. Users IDs. When a user allocates a new account
at a homeserver H. H will generate a public-private
key pair (Kuser

priv ,K
user
pub ) and publish a new zone file

Zuser with the according fingerprint Fuser. Zuser ini-
tially contains only one PKEY entry, which is called
"home" and points to ZH . Similarly to servers, users
can now be globally identified by this fingerprint and
their homeserver can be resolved by querying "ma-
trix.home.FINGERPRINT_OF_THE_USER.zkey".

5.1.3. Room IDs. Similarly to user IDs, a room will
also be associated with the fingerprint of a zone file
containing a single PKEY entry pointing to the zone file
of the server, which initially allocated the room (root).
To distinguish room zones from user zones, this entry
has to be called "root". As a result, the root server of
a given room can now be looked up by querying "ma-
trix.root.FINGERPRINT_OF_THE_ROOM.zkey".

5.2. Contact List

As already stated out in the preceding sections, every
GNS user maintains at least one local zone file, which can
be used to generate human readable mappings to known
resources. Of course a user could now create mappings to
known contacts in a private zone file at the client side, but
since all the data in Matrix is stored at the homeservers
and should be available even if the client logs in from
another device, this approach would be rather insufficient.

"Remote local zone file". To address this issue,
we will expand the Matrix client-server interface, by
operations which allow a user to read and manipulate
the Zuser file, stored at its homeserver. The user can
therefore create easy to remember aliases which will then
be resolved locally by the homeserver. The following
example illustrates this concept (figure 7):

HAliceAlice

(home, PKEY, ZHAlice
)

(bob,PKEY,ZBob)

ZAlice (QZ2E)

Figure 7: Example remote local zone file

Alice already knows Bob’s ID and set a PKEY record
named "bob" in her "remote local zone file" ZAlice, lo-
cated at her homeserver HAlice. From this point on Alice
will no longer need to specify Bob’s ID when talking to
her homeserver. Because the server knows that it is talking
to Alice, which is identified by her zone file fingerprint
ZAlice, it can resolve the address of Bob’s homeserver
by looking up "matrix.home.bob.ZAlice.zkey". The GADS
resolver will realise, that the zone file ZAlice is already
present locally and will not have to resolve this first zone
over the network. Bob’s ID on the other hand can be read
directly from the according PKEY entry in ZAlice.

Note again, that GNS also allows users to create
private records in their local zone files, which will not
be published. As Alice probably does not want to share
all her contacts with the entire network, she would be able
to only set private records in ZAlice (excluding the home
record). Nevertheless, since the homeserver only performs
local lookups on her zone file, this change would not
impair the overall functionality.

By the introduction of the "remote local zone file",
we enable users to maintain a listing of known IDs and
rename them to locally unique and easily memorable
aliases, which can be accessed even when accessing the
homeserver from different devices. While the above ex-
ample only mentioned user IDs, the concept works for
room IDs analogously.

6. Alternatives to GNS
The concept of introducing a fully decentralized al-

ternative for DNS is not entirely new to the domain
of P2P networking. To serve as a bases for upcoming
comparisons, this section will introduce two well known
P2P alternatives to our GNS based approach.

6.1. TOR

".onion"-addresses are used by the TOR [18] net-
work to advertise hidden services. Conceptually, they are
comparable to GADS ".zkey"-addresses, they follow the
form "CRYPTOGRAPHIC_IDENTIFIER.onion" and are
advertised over a Distributed Hash Table. Note, that each
such DHT entry does not contain a full zone file, but
only an individual IP address. ".onion"-addresses do not
provide a way for users to create human memorable
aliases. In that sense, they might be considered a minimal
archetype of P2P naming systems.

6.2. Invisible Internet Project

The Invisible Internet Project [19] (I2P) differentiates
between two address types. The basic type works similar
to the aforementioned ".onion"-addresses, with the only
difference that the top level domain is ".i2p" instead.
The second type are locally valid aliases, which can be
set by the user and are being stored in the so called
address book. Aside from being able to manually read
and write entries to their own address book, users can
also subscribe to public address book files of other users.
The latter feature allows users to discover new addresses
without ever coming in contact with the underlying cryptic
identifiers.

7. Evaluation
This section evaluates the P2P matrix design, estab-

lished in Section 5, against the initially proclaimed prop-
erties of security, usability and scalability.

7.1. Security

The presence of malicious notes in open P2P networks
is an unpleasant, yet unavoidable truth. Consequently, it
is vital for our system to prove resilience against a variety
of different attacks.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 43 doi: 10.2313/NET-2019-10-1_08



7.1.1. Authenticity.
Secure Addresses. Since Matrix can be used to

exchange highly confidential data, the naming system has
to allow users and servers to safely authenticate their
communication partners. This is ensured in the original
Matrix with the help of cryptographic certificates, which
are issued by an external certification authority. All of the
introduced P2P naming systems on the other hand do not
require such certificates, since the information necessary
for validating cryptographic signatures of a domain owner
is already contained in the cryptographically generated
domain itself. In that sense, GNS/TOR/I2P addresses can
be considered secure by design [10]. To put this into
the perspective of the previous considerations on Zooko’s
trilemma: The described P2P services are sacrificing the
memorability of their domains to achieve a high level of
security and decentralization. TOR hidden services de-
mand similar authenticity assurances as ordinary websites.
The large scale deployment of TOR and its hidden services
can therefore be considered a proof of this concept of self
certifying addresses.

Fuzzy fingerprinting. The preceding considerations
about authenticity in ".onion"-addresses are based on the
assumption that every address is bound to a globally
unique key pair and can therefore not be claimed by
any entity other than the actual owner of said key pair.
However, this assumption does no longer hold for par-
tially matching addresses. As a result, it is a practice
for attackers to generate ".onion"-addresses with a similar
appearance to an actual address [20]. The aim of this
attack is to abuse the user’s laziness, when comparing
the attacker’s address to the original and thereby trick
the user into inadvertently accessing the attackers address.
Notice that this attack becomes increasingly effective if
the user frequently accesses the same service and assumes
to recognise its correct address by just quickly skimming
it.

While an attacker could still try to perform a similar
attack in our P2P Matrix, it is expected to be way less
effective. A custom pet name system like in GNS or I2P,
helps to minimize the risk for users to fall for this attack,
since it enables the user to access the given address with-
out the need of constantly supplying its cryptic and easily
mistakable identifier, thus avoiding the risk to mistake it
with a similarly looking ID [10].

7.1.2. Censorship. The strong authenticity assurances of
GNS, combined with the randomized routing algorithm
and the redundant storage of entries of its R5N [21], [22]
based DHT make it difficult for attackers to manipulate
or deny access to other user’s zone files [11], [21]. This
property makes P2P Matrix resilient to potential censor-
ship by manipulation or denial of its naming system.

7.2. Usability

An important goal of our design was to maintain a
high level of usability by minimizing the exposure a user
has with the cryptographic GNS IDs, yet providing an
understandable naming scheme. As a result, every Matrix
entity can be addressed with only a single GNS ID, while
the corresponding addresses of an entities homeserver (see

sections 5.1.2 & 5.1.3), provide the same information
as addresses in the original Matrix, as they: Provide a
globally unique identifier for the entity; Resolve to the
IP address of the responsible homeserver; Hold type in-
formation (i.e. "home" for users/ "root" for rooms). This
structure even yields advantages to the current version of
Matrix, where users have to memorize pairs of arbitrarily
chosen server and user/room IDs. The introduced pet name
system allows users to setup easily memorable aliases for
already known conversation partners and further enhances
the usability.

However, this simplification will not improve the over-
all discovery of previously unknown users/rooms. Espe-
cially the field of verbally exchanging ID information is
expected to suffer from the newly introduced, hard to
memorize GNS identifiers. The impact of this problem
could be reduced by encouraging to exchange public key
information with the help of mobile devices and tech-
nologies like QR-codes or by using the Matrix Identity
Service to create mappings from third party addresses (e.g.
email) to Matrix IDs. While the latter option would allow
users to reach a user experience comparable to the current
version of Matrix, it can not be considered an optimal
solution, since P2P Matrix is aimed to function without
the dependence on third party services.

7.3. Scalability

An important aspect, which is yet to be covered is the
question whether GNS yields the ability to work in real
world, large scale environments. R5N is an extension of
the Kademlia [23] algorithms and inherits the capabilities
of dealing with the dynamics of leaving and joining peers
in large scale networks [24] (churn). The R5N routing
algorithm allows looking up and depositing zone files in
the time complexity O(√n ∗ log n) [21](where n is the
number of peers in the network), thus manages to maintain
efficient lookups, even in large scale networks.

8. Conclusion and Future Work

The central goal of the Matrix network to build a
decentralized platform for communication which gives the
user maximum control over his personal information align
with the benefits which would arise from rebuilding matrix
into true P2P system, which does not rely on central
authorities. This paper introduced the design for such a
P2P matrix, which utilizes the GNU Naming System as
a secure and scalable alternative to the Domain Name
System to create a simple, hierarchical naming scheme.
Even though the approach focused heavily on the use of
a pet name system to maintain a high usability, the effects
of using "randomly generated" IDs will be noticeable by
the users (especially without making use of 3rd party IDs
and the Matrix Identity Service), as it will become more
difficult to discover new users within the network.

A proposal for a future extension of the introduced
design could be to reduce this problem by allowing users
to find new contacts within Matrix itself. Following a
simple "friends-of-friends" logic it can be assumed that
users are likely to interact with the contacts of their

Seminar IITM SS 19,
Network Architectures and Services, October 2019 44 doi: 10.2313/NET-2019-10-1_08



own contacts. Users could be allowed to subscribe to the
contact list of other users in the style of I2P address books,
in order to automatically accumulate new contacts without
relying on cryptographic identifiers at all.

To actually find out how our design works in a real
world application and whether it resembles an improve-
ment to the current state of Matrix, it would be the next
logical step to actually build and test a minimal prototype.
Since both services follow a similar internal structure, it
should even be rather simple to create a Server-Server-
Bridge between the official version of Matrix and a P2P
prototype to run them in full interoperability.

References

[1] “Matrix statistics,” https://web.archive.org/web/
20190515055721/https://matrix.org/blog/2017/07/07/
a-call-to-arms-supporting-matrix/, accessed: 2019-05-15.

[2] “Matrix manifesto,” https://web.archive.org/web/20190808012751/
http://matrix.org/foundation/, accessed: 2019-08-08.

[3] G. Lowe, P. Winters, and M. L. Marcus, “The great dns wall of
china,” MS, New York University, vol. 21, p. 1, 2007.

[4] “Matrix Main Page,” https://web.archive.org/web20190620111226/
http://matrix.org/, accessed: 2019-06-20.

[5] “Matrix specification,” https://web.archive.org/web/
20190611230822/https://matrix.org/docs/spec/, accessed: 2019-06-
11.

[6] “Matrix Types of Bridges,” https://web.archive.org/
web/20190803182830/https://matrix.org/docs/guides/
types-of-bridging/, accessed: 2019-06-20.

[7] “Matrix Identity Service,” https://matrix.org/docs/spec/identity_
service/r0.2.1, accessed: 2019-08-08.

[8] “Matrix client-server-api,” https://web.archive.org/web/
20190808012751/https://matrix.org/docs/spec/client_server/r0.5.0,
accessed: 2019-08-08.

[9] “Matrix server-server-api,” https://web.archive.org/web/
20190808012750/https://matrix.org/docs/spec/server_server/r0.1.3,
accessed: 2019-08-08.

[10] M. Schanzenbach, “Design and implementation of acensorship
resistant and fully decentralizedname system,” 2012.

[11] C. Grothoff, “The gnunet system,” Ph.D. dissertation, 2017.

[12] A. Gulbrandsen and L. Esibov, “A dns rr for specifying the location
of services (dns srv),” 2000.

[13] “Zooko’s trilemma,” https://web.archive.org/web/20040616080110/
http://zooko.com/distnames.html, accessed: 2019-08-28.

[14] P. Saint-Andre and J. Hodges, “Representation and verification of
domain-based application service identity within internet public
key infrastructure using x. 509 (pkix) certificates in the context of
transport layer security (tls).” RFC, vol. 6125, pp. 1–57, 2011.

[15] M. Larson, D. Massey, S. Rose, R. Arends, and R. Austein, “Dns
security introduction and requirements,” 2005.

[16] T. Hansen, “Rfc 6234-us secure hash algorithms (sha and sha-based
hmac and hkdf),” 2011.

[17] S. Josefsson, “The base16, base32, and base64 data encodings,”
2006.

[18] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker,
“Shining light in dark places: Understanding the tor network,”
in International symposium on privacy enhancing technologies
symposium. Springer, 2008, pp. 63–76.

[19] F. Astolfi, J. Kroese, and J. Van Oorschot, “I2p-the invisible
internet project,” Web Technology Report, 2015.

[20] “Fuzzy Fingerprints - Attacking Vulnerabilities in the
Human Brain,” https://github.com/vanhauser-thc/THC-
Archive/blob/master/Papers/ffp.pdf.

[21] N. S. Evans and C. Grothoff, “R5n: Randomized recursive routing
for restricted-route networks,” in 2011 5th International Confer-
ence on Network and System Security. IEEE, 2011, pp. 316–321.

[22] C. Grothoff, “The gnunet dht.”

[23] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” in International Workshop
on Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[24] Z. Ou, E. Harjula, O. Kassinen, and M. Ylianttila, “Performance
evaluation of a kademlia-based communication-oriented p2p sys-
tem under churn,” Computer Networks, vol. 54, no. 5, pp. 689–705,
2010.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 45 doi: 10.2313/NET-2019-10-1_08


