
Porting ixy.rs to Redox

Simon Ellmann, Paul Emmerich∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ellmann@in.tum.de, emmericp@net.in.tum.de

Abstract—Drivers are traditionally written in C and make
up a huge part of every operating system. 66% of all
code in the Linux kernel is driver code, and the current
number of drivers and their complexity are still increasing.
However, this complexity comes at a price of decreasing
readability of the code and greater vulnerability. Some of the
problems related to drivers, especially concerning their safety
and security, can be mitigated by running drivers in user
space. This is especially beneficial on modern microkernel
architectures where the operating system can seamlessly
interact with user space drivers. A good example for such an
operating system is Redox, a Unix-like OS written in Rust.

In this paper, we implement the first 10 Gbit/s user space
network driver for Redox by porting an existing Linux imple-
mentation, ixy.rs. We evaluate the driver’s overall structure,
integration into the operating system and performance and
compare it to the original implementation and Redox’s other
network drivers. We show that our driver is many times
faster than Redox’s other drivers although it uses less unsafe
code. Our code is available as free and open source under
the AGPL-3.0 license at https://github.com/ackxolotl/ixgbed.

Index Terms—Rust, User Space Driver, Redox, Performance,
Microkernel

1. Introduction

Up until the 1940s, computers could only perform
series of single tasks. Today well known features like
scheduling, memory management and multitasking did not
exist in operating systems – as far as programs were run in
operating systems at all – until the 1960s when hardware
abstraction became prevalent. In 1969, the development
of Unix started, an operating system containing most of
its functionality inside a big kernel, thus forming one of
the first monolithic kernel architectures. The development
of Unix set a variety of standards for today’s operating
systems. Popular operating systems like Windows, macOS
and Linux-based ones like Debian or Ubuntu are still built
on monolithic or hybrid kernel architectures.

Although monolithic kernels are very common and
might be easier to implement, they are considered obso-
lete by researchers since the 1990s (see the Tanenbaum–
Torvalds debate). This is due to various flaws in their
architecture: Programming mistakes in the kernel can take
down the whole system or corrupt other processes since
every piece of software in the kernel is executed with
full privileges, development of new software is tedious
because common libraries and debuggers are missing and

maintenance of the kernel can be challenging if its com-
plexity is rapidly increasing (e.g. like the Linux kernel).

A more temporary approach to operating system de-
sign are microkernels. Unlike monolithic kernels, micro-
kernels try to minimize the amount of software running
in kernel space by moving almost all applications to user
space. This includes (but is not limited to) the following
services running in user space: Drivers, file system and
inter-process communication. Keeping the kernel small
yields various advantages: Kernel components tradition-
ally written in C can be rewritten in other programming
languages, execution of this software can be easily de-
bugged in user space and faults in user space daemons
have no impact on the overall system.

So why is all this relevant? In 2019, Cutler et al.
evaluated security bugs leading to arbitrary code execution
in the Linux kernel [1]. Of the 65 bugs published in the
CVE database in 2017 with patches available, 40 were
memory bugs that could have been prevented by using
a memory-safe language like Go or Rust. Of these 40
memory bugs, 39 were located in device drivers. Since
66% of the code in the Linux kernel is driver code [2],
the findings of Cutler et al. reveal that drivers offer a large
attack surface and many possibilities for improvement.

Rewriting drivers in memory-safe programming lan-
guages can mitigate many safety and security faults. An
example for such a driver is ixy.rs [3], a rewrite of the
simple user space network driver ixy [4] in Rust for Linux.
Unfortunately, Linux is not particularly suitable for user
space networking due to its monolithic kernel design: The
OS network stack cannot be used by user space drivers and
memory allocation for the PCIe device is only possible by
using a quirk in Linux. However, there are other operating
systems based on microkernels like Redox [5], a Unix-
like operating system written in Rust, that implement full
network functionality in user space.

In this paper, we try to combine the advantages of
a user space network driver and an operating system
based on a microkernel, both written in a memory-safe
programming language, by porting ixy.rs to Redox. The
common denominator of ixy.rs and Redox is Rust [6],
a novel programming language illustrated in Section 2.
Section 3 introduces Redox, while the following Section is
about ixy. In Section 5 we evaluate ixy on Redox, Section
6 presents related work to the inclined reader. We sum-
marize our results in Section 7 and present opportunities
for future work in the area of ixy.rs on Redox.

The main contribution of this paper is the first 10
Gbit/s network driver on Redox [7].

Seminar IITM SS 19,
Network Architectures and Services, October 2019 33 doi: 10.2313/NET-2019-10-1_07



2. Rust

Rust is a relatively new systems programming lan-
guage focusing on memory- and thread-safety. Its first
stable version was released in May 2015. While Rust
provides zero-cost abstractions like C++ and is also syn-
tactically similar, its main selling point is memory safety
due to its novel ownership system [6].

2.1. Type System

Rust is statically typed, i.e. the types of all variables
and functions are checked at compile time. Functions
have to be annotated by programmers explicitly, types
of variables can be inferred in most cases by the Rust
compiler. The type system provides “traits”, i.e. interfaces
that can be implemented by multiple types similar to type
classes in Haskell, and generic parameters to allow for
inheritance and ad hoc polymorphism.

2.2. Memory Management

Rust’s core feature is its unique ownership system
which enforces Rust’s guarantees of memory safety and
data-race freedom. While many programming languages
make use of garbage collectors, Rust ensures at compile
time that memory is allocated, handled and freed correctly.
This yields two major advantages compared to garbage
collection:

1) Memory handling, especially cleanup of re-
sources, is deterministic.

2) There are no performance issues for real-time
applications caused by garbage collection.

Unlike in C or C++, it is not possible in (safe) Rust to
build a program leading to undefined behaviour by free-
ing memory twice, accessing dangling pointers or other
operations violating memory safety due to the additional
rules that Rust enforces on memory handling. Since Rust
verifies memory safety at compile time and not at runtime,
there is no size or performance overhead in compiled
programs [8].

2.3. Ownership

The ownership system of Rust ensures that every value
in Rust has a unique owner and that the scope or lifetime
of a value depends on the scope/lifetime of its owner, i.e. if
the owner of a value goes out of scope the value is freed
(similar to Resource Acquisition Is Initialization (RAII)
from C++) [6]. Ownership can be transferred between
variables, values are either copied or moved in memory
depending on whether the value is stored on the stack (and
it is thus cheap to copy the value) or it is stored on the
heap. Where a value is placed in memory usually depends
on whether the size of a value is known at compile time
or not. Values can be passed to functions by immutable
or mutable references, or by value. As long as there is a
reference to a value, the value cannot be moved (to in-
hibit dangling pointers). There can be multiple immutable
references to a value or a single mutable reference. While
a mutable reference to a value exists, i.e. the value is

borrowed mutably, the value can only be modified through
that reference and not through its owner to prevent data
races.

2.4. Safe and Unsafe

The ownership system of Rust is very powerful. How-
ever, static analysis is quite conservative and still subject
to limited decision capabilities. There are valid programs
that are rejected by the compiler when the compiler is
unable to decide whether the code upholds the required
guarantees. This is always the case for programs that

• call foreign functions (e.g. from libc),
• dereference raw pointers,
• access and modify mutable static variables or
• call unsafe functions or implement unsafe traits.

These features can be used inside an unsafe block. In
unsafe code the developer has to ensure that the program
obeys the memory guarantees of Rust. Unsafe code in
Rust is nothing unusual, e.g. many parts of the Rust
standard library make use of unsafe code. Nevertheless, by
verifying parameters before and return values after unsafe
code, developers ensure that the unsafe operations are
actually safe, thus forming safe wrappers around unsafe
code.

3. Redox

Redox is an operating system written in Rust. It was
published in 2015 by Jeremias Soller, is actively main-
tained since then and has received over 2,000 contributions
by more than 70 developers. Similar to the Rust program-
ming language, Redox focuses on safety, reliability and
eventually performance [5]. To achieve these goals, the
Redox developers opted for a microkernel architecture
similar to MINIX [9]. Redox’s developers try to “gen-
eralize various concepts from other systems, to get one
unified design” [10], namely concepts from Plan 9 [11],
Linux and BSD.

3.1. Everything is a URL

Redox generalizes Unix’s “everything is a file” with
its concept of “everything is a URL” [10], i.e. URLs,
schemes and resources are used as communication primi-
tives between applications. URLs model segregated virtual
file systems that can be arbitrarily structured. They con-
sist of two parts separated by a colon, the scheme (e.g.
file) and a reference part (e.g. /usr/bin/ping). URLs
identify resources like genuine files in the filesystem,
websites, hardware devices and other primitives. Schemes
are created by the kernel or user space daemons. They are
registered by opening the name of the scheme in the root
scheme (which defaults to empty), i.e. to create the file
scheme a process has to open :file with the CREATE flag.
Accesses to a URL are processed by the scheme-registrar
which returns a handle to the requested resource, e.g. a
file descriptor. Resources behave either file- or socket-like,
i.e. reads and writes are buffer- or stream-oriented.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 34 doi: 10.2313/NET-2019-10-1_07



3.2. Drivers in Redox

As is to be expected with a microkernel architec-
ture, drivers in Redox operate as user space daemons.
PCI drivers are launched on boot by Redox’s PCI driver
manager, pcid which in turn is launched by Redox’s
init process. pcid parses a configuration file associating
PCI device vendors and classes with Redox’s drivers and
their command line parameters, i.e. name of the device,
location of Base Address Registers (BARs), etc. Drivers
have to implement various functions like open, read,
write, close, etc. to communicate with other applications
via Redox’s URL API. Network drivers have to register
the network scheme.

Communication between other user space programs
and the driver is handled via socket-like resources.

4. ixy

ixy is a light-weight user space network driver writ-
ten for educational purposes [4]. It is a custom re-
implementation of Intel’s ixgbe driver for 10 Gbit NICs.
ixy’s architecture is inspired by DPDK [12] and Snabb
[13]. ixy does not rely on a kernel module (like Snabb)
and features memory management of DMA buffers with
custom pools, polling instead of an interrupt-driven design
and an API that supports batch operations for receiving
and transmitting packets (like DPDK). ixy was originally
written in C by P. Emmerich et al. in 2017 but has been
ported to more than ten other programming languages
including Go, Haskell, Python and Rust (also known as
ixy.rs).

We will describe the architectural design and the im-
plementation of ixy on Redox in the following subsec-
tions. To understand how ixy and similar drivers work it
is necessary to understand how the driver and the device
communicate with each other. There are two communi-
cation channels for PCIe devices: The driver can access
the device’s configuration registers (BARs) to control the
device and the device can access main memory via direct
memory access (DMA) to read and write packet data and
packet status information [4].

4.1. Memory Management

While ixy makes use of custom memory pools which
are a reasonable choice for user space drivers on Linux
due to missing tools for allocating and managing DMA
memory in user space and to gain high performance, ixy.rs
on Redox does not use custom memory pools for two
reasons:

1) Redox provides an API for handling DMA mem-
ory in user space.

2) Performance of the driver is restricted due to its
interrupt-driven design and the fact that packets
cannot be processed in batches. These perfor-
mance barriers cannot be mitigated by custom
memory pools.

ixy.rs on Redox allocates all DMA memory via Re-
dox’s syscall API. Accesses to the device’s registers
(BARs) happen via memory mapped IO: The device is
mapped into the memory space of the driver, read and

... ... ...

ixgbe adv rx desc.read.pkt addr

receive queue packet buffers

Figure 1: DMA memory containing receive queue with
descriptors pointing to packet buffers.

write operations on the registers lead to data transfer on
the PCIe bus.

4.2. Receiving Packets

NICs provide multiple ring buffers to receive and
transmit packets. Incoming traffic can be split with fil-
ters if multiple queues are configured [4]. For the sake
of simplicity, ixy on Redox uses only one receive and
one transmit queue. Receive and transmit queues work
in a similar way: Every queue is a ring buffer filled
with descriptors that point to the memory address of the
corresponding packet and contain status information about
the packet, i.e. size of a received packet or an indicator
whether a packet queued for transmittion has been sent
out by the NIC yet. The structure of a receive queue is
illustrated in Figure 1. Transmit and receive queues are
managed by the driver and the device on a rotating basis.
The device indicates its current position in the ring via
the head pointer, the driver via the tail pointer [4]. Both
pointers can be accessed through the BARs of the device.

Before receiving packets, the driver has to initialize the
descriptors in the receive queue with physical addresses.
For every incoming packet, the NIC writes the packet’s
data to the memory address given in the descriptor, up-
dates the descriptor and increases the queue’s head pointer.

Whether new packets have arrived can be checked by
reading the head pointer. This is what the e1000 driver and
rtl8186 driver of Redox do [14]. Since accessing the head
pointer of the queue incurs a PCIe round trip, a better way
to check for new packets is to read the descriptor status
field from DMA memory that is effectively kept in the
CPU cache [4].

With its custom memory pools, ixy on Linux maintains
a stack of free buffers and tracks which buffers are cur-
rently in use by the device and the driver. When reading
a packet, the corresponding buffer is passed to the user
application and the physical address of the descriptor is
updated to an unusued buffer from the free stack. Unfor-
tunately, ixy on Redox cannot pass its memory to other
user space applications and thus has to copy all received
data. However, this obviates the need for a free stack
and simplifies the driver: All buffers can be immidiately
reused after copying the packet data, no addresses in the
descriptors have to be changed.

4.3. Transmitting Packets

Transmitting packets works similarly to receiving
packets but is more complicated as packets are sent

Seminar IITM SS 19,
Network Architectures and Services, October 2019 35 doi: 10.2313/NET-2019-10-1_07



asynchronously for performance reasons. The transmit
functions consists of two parts: verifying if packets from
previous calls have been sent out and putting the current
packet in the transmit queue. The first part is usually called
cleaning and is executed for the first time when every
descriptor of the transmit queue has been used once, i.e.
the transmit functions keeps track of used descriptors and
runs its cleaning part when the counter of free descriptors
equals zero. Cleaning works as follows: The status flag of
the descriptor after the last cleaned descriptor is checked.
If the descriptor is done, i.e. the packet has been sent out,
the next descriptor is checked and the clean index and the
counter of free descriptors are increased by one. If the
descriptor is not done yet or the whole queue was cleaned,
cleaning is finished and the packet to be sent is put into
the transmit queue by copying the packet’s data to the
descriptor’s buffer, updating the descriptor (e.g. setting the
packet size) and increasing the tail pointer of the transmit
queue.

4.4. Interrupts

The official ixy driver works in poll-mode only [4]
and does not support interrupts yet. This is not a technical
restriction but a performance decision since Linux offers
full interrupt support in user space. However, T. Zwickl
has implemented interrupt-handling for the original ixy
driver [15]. Based on his work we have added support for
MSI-X interrupts to ixy on Redox as well. Unfortunately,
Redox does not feature MSI-X interrupts yet (which will
hopefully change in the future).

4.5. Offloading Features

Although NICs of the ixgbe family support various
offloading features, and frameworks like DPDK make
use of these features, ixy only enables CRC checksum
offloading to keep the driver’s complexity low [4].

5. Evaluation

Redox is still in an experimental development state
and subject to major changes. No stable version has
been released yet. It is possible to boot Redox on real
hardware but this requires a hard disk with no partition
table [10]. For development purposes it is preferable to
run Redox in a virtual machine, e.g. in QEMU which we
used to conduct some performance measurements. The
results of the following subsections confirm that Redox
and its components (e.g. its other network drivers) are
still in a very premature development state. However, our
implementation is a valuable contribution to Redox from
both the performance and the operational safety point of
view.

5.1. Performance

We wrote a simple packet forwarder and packet gener-
ator application called rheinfall1 to assess the transmit
capabilities of our driver. All measurements were per-
formed on commit bccd1ca of our implementation.

1. https://github.com/ackxolotl/rheinfall

e1000 ixy
0

20000

40000

60000

80000

100000

120000

822

119800

579

95522

P
ac
k
et

ra
te

[P
p
s]

60 Byte packets
1500 Byte packets

Figure 2: Packet transmit rates measured on AMD Ryzen
7 1800X with Intel 82574L (e1000) and Intel 10G X550T
(ixy).

We run rheinfall on an AMD Ryzen 7 1800X at
3.6 GHz with Redox 0.5.0 in QEMU with KVM using an
Intel X550T NIC via PCIe passthrough through the AMD
IOMMU. rheinfall bypasses Redox’s network stack
smoltcp by accessing the driver directly, i.e. receiving and
sending raw ethernet frames from/to network, the scheme
registered by the driver. Our measurements show that ixy
on Redox can transmit up to 120,000 packets per second
with a size of 60 Bytes or up to 100,000 packets per
second with a size of 1,500 Bytes which is equivalent to
a transmit rate of about 1.1 Gbit/s.

Reasons for this rather poor performance are probably
OS-dependent: a not extensively optimized kernel, slug-
gish interprocess-communication, many context switches
for large queues of packets and the fact that data has
to be copied multiple times from the application to the
driver to the NIC and the other way around. Nevertheless,
compared to Redox’s two other network drivers, the e1000
and rtl8168 driver, this is a very reasonable packet rate.
Figure 2 shows the transmit capabilities of Redox’s two
Intel network drivers, the e1000 and our implementation.
The transmit rates of Redox’s e1000 and rtl8168 driver
are many times smaller than ixy’s (around 90 to 150 [!]
packets per second on emulated hardware or up to 1,000
packets on real hardware) due to the fact that – unlike
in ixy – their transmit functions block until a packet has
been sent out. This simplifies the transmit function but
also has a massive impact on performance.

5.2. Safety

Code Unsafe
Driver NIC Speed [Lines] [Lines] % Unsafe
Our implementation 10 Gbit/s 901 68 7.5%
e1000 1 Gbit/s 421 117 27.7%
rtl8168 1 Gbit/s 399 114 28.6%

TABLE 1: Unsafe code in different Redox drivers, counted
with cloc.

Another point to note is the different amount of unsafe
code in our implementation and the other two network
drivers in Redox shown in table 1. Unlike the e1000 and

Seminar IITM SS 19,
Network Architectures and Services, October 2019 36 doi: 10.2313/NET-2019-10-1_07



rtl8168 driver, our implementation provides safe functions
to read and write the device’s registers by asserting that
the memory address of a register is indeed inside of the
mapped memory region. This optimization alone leads to
a few hundred lines less unsafe code.

6. Related Work

As early as 1993, researchers proposed to move net-
work software traditionally implemented in kernel space
to user space. Exemplary for these efforts is the work of
Chandramohan A. Thekkath, Thu D. Nguyen, et al. [16],
in which they suggested to rewrite transport protocols as
user-level libraries. Their work already includes a multi-
tude of observations on different kernel designs and the
resulting advantages and disadvantages for software. They
claim that it is possible to implement protocols in a highly
performant and secure way in user space.

Another scientific paper is “The Case for Writing Net-
work Drivers in High-Level Programming Languages”,
in which P. Emmerich, S. Ellmann et al. present a net-
work driver written in various high-level programming
languages [2]. They propose to rewrite drivers instead of
the whole operating system in memory-safe languages.

7. Conclusion and Future Work

Many bugs in current operating systems are located
in driver code. By moving driver code to user space
and using high-level languages (preferably memory-safe
ones like Go and Rust), many safety and security related
bugs can be mitigated. However, this requires a different
kernel design. Modern microkernel architectures like the
Redox kernel provide such a design. They form a safe
alternative to the deprecated monolithic kernel design of
the Linux kernel. In line with the proposal of P. Emmerich,
S. Ellmann et al. to port drivers to high-level languages
and user space, we present the first 10 Gbit/s user space
network driver on Redox written in Rust. Our evaluation
shows that the driver is a great contribution to Redox.
However, there is still a huge potential and need for
optimization on part of the operating system.

Future work on the driver might include implementing
the use of multiple receive and transmit queues, further
reducing the amount of unsafe code or enabling more
hardware offloading features like VLAN tag offloading.
Furthermore, depending on the development status of

Redox, more detailed performance measurements could be
performed, possibly using a high-speed packet generator
like MoonGen [17].

References

[1] C. Cutler, M. F. Kaashoek, and R. T. Morris, “The benefits and
costs of writing a posix kernel in a high-level language,” in 13th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), 2018, pp. 89–105.

[2] P. Emmerich, S. Ellmann, F. Bonk, A. Egger, T. Günzel, A. Obada,
M. Stadlmeier, S. Voit, S. Huber, and G. Carle, “The Case for
Writing Network Drivers in High-Level Programming Languages,”
2019.

[3] S. Ellmann, “Writing Network Drivers in Rust,” 2018.
[4] P. Emmerich, M. Pudelko, S. Bauer, and G. Carle, “User Space

Network Drivers,” in Proceedings of the Applied Networking Re-
search Workshop. ACM, 2018, pp. 91–93.

[5] “Redox,” https://www.redox-os.org/, accessed: 2019-06-23.

[6] S. Klabnik and C. Nichols, The Rust Programming Language. No
Starch Press, 2018.

[7] S. Ellmann, “Ixgbe user space driver for Redox,” https://github.
com/ackxolotl/ixgbed, 2019, accessed: 2019-06-24.

[8] J. Blandy and J. Orendorff, Programming Rust: Fast, Safe Systems
Development. " O’Reilly Media, Inc.", 2017.

[9] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Minix 3: A highly reliable, self-repairing operating system,” ACM
SIGOPS Operating Systems Review, vol. 40, no. 3, pp. 80–89,
2006.

[10] “The Redox Operating System,” https://doc.redox-os.org/book/, ac-
cessed: 2019-06-23.

[11] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. Trickey, and P. Winterbottom, “Plan 9 from bell labs,” Comput-
ing systems, vol. 8, no. 2, pp. 221–254, 1995.

[12] “DPDK Website,” https://www.dpdk.org/, accessed: 2019-06-23.

[13] L. Gorrie et al., “Snabb: Simple and fast packet networking.”

[14] “Redox OS Drivers,” https://gitlab.redox-os.org/redox-os/drivers,
accessed: 2019-06-23.

[15] “Interrupt Handling in Ixy,” https://github.com/tzwickl/ixy/tree/
vfio-interrupt/, accessed: 2019-06-23.

[16] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. Lazowska,
“Implementing network protocols at user level,” IEEE/ACM Trans-
actions on Networking, vol. 1, no. 5, pp. 554–565, 1993.

[17] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “Moongen: A scriptable high-speed packet generator,” in
Proceedings of the 2015 Internet Measurement Conference. ACM,
2015, pp. 275–287.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 37 doi: 10.2313/NET-2019-10-1_07


