
How Good Is QUIC Actually?

Manuel Burghard, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: burghard@in.tum.de, jaeger@net.in.tum.de

Abstract—The Internet Engineering Task Force (IETF) is
currently finalizing the standardization of the QUIC core
transport protocol and HTTP/3 (H3) with a target date of
July 2019 for the final specification. The working group
has defined five key goals that should be improved on:
connection establishment and transport latency, head-of-line
blocking, secure transport, allowing future evolution, as well
as multipath and forward error correction extensions.

In this paper, we explain the problems QUIC tries to
solve, discuss QUIC’s proposed solutions, and highlight their
strengths and weaknesses.

Index Terms—networks, multi-layer transport protocol, la-
tency reduction, performance

1. Introduction

QUIC was initially designed by Roskind [1] at Google
to improve the performance of the SPDY protocol running
on top of the Transmission Control Protocol (TCP) and
Transport Layer Security (TLS). SPDY was the concep-
tional predecessor of HTTP/2 (H2) which was standard-
ized in 2015 [2]. QUIC merged key functionalities of
the transport, security, and application layer into a new
protocol based on the User Datagram Protocol (UDP)
with the goal of reducing latency and improving perfor-
mance [1]. In 2015, a first draft for standardization by
the Internet Engineering Task Force (IETF) was submitted
by Iyengar and Swett [3] and in 2016 a working group
was formed [4]. To distinguish between the IETF’s and
Google’s version of QUIC we refer to Google QUIC as
gQUIC.

Langely et al. [5] state that Google used its control
of the Chrome browser and its web services to create
a large scale test and evaluation environment for the
development of gQUIC. Initially, a small number of users
were randomly selected to test gQUIC in Chrome and the
amount was gradually increased until 2017 when only a
small control group using TCP and TLS was left. The
control over client and server software in combination
with a large user base allowed fast and regression free
iterations of the protocol [5].

IETF QUIC is a stream-multiplexing UDP-based pro-
tocol which always encrypts its payload using TLS 1.3.
In contrast to Google’s gQUIC implementation the IETF
working group decided to separate gQUIC’s transport
protocol and the adopted H2 application protocol to allow
other application level protocols [6]. The adapted version
of H2 for QUIC is currently being standardized, too, and
will be named HTTP/3 (H3) [7].

The QUIC working group defined five key goals QUIC
should deliver [6]:

• Secure the transported payload using TLS 1.3.
• Enable deployment without requiring changes to

network equipment along the path.
• Multiplexing without head-of-line blocking, like

introduced by H2.
• Minimize the connection establishment and trans-

port latency.
• Enable extensions for forward error correction and

multipath connections.

This paper focuses on the IETF version of QUIC in
its discussions, but references observations of real world
data usage by gQUIC because it is the only large scale
deployment as of June 2019.

The remaining parts of this paper are structured in the
following way. In Section 2 an overview of related work is
provided. Section 3 focuses on strengths and weaknesses
of QUIC’s key goals. For each goal, we will discuss the
problems that should be solved, the solutions proposed
by QUIC, and their strengths and weaknesses. Section 4
discusses the overall performance of QUIC in comparison
to TCP. Section 5 concludes this paper and discusses
future work.

2. Related Work

A short overview of QUIC is presented by Yosofie
[8] and a more elaborate introduction of QUIC and H3 is
given by Stenberg [9]. The full specification is currently
available in a series of IETF drafts [7], [10]–[12]. A com-
parison between QUIC and Stream Control Transmission
Protocol (SCTP) is presented by Joseph et al. [13].

Cook et al. evaluated the performance of QUIC in
comparison to H2 based on the page load time [14].
Kakhki et al. [15] present the results of their performance
comparison of TCP and QUIC using different environ-
ments and by running the tests with different versions
of the QUIC implementation of the Chromium project to
compare the development over time. QUIC was originally
intended to be implemented in user space, but Wang et al.
implemented QUIC in the Linux kernel and compared its
performance to TCP [16].

In 2013 Multipath TCP (MPTCP) extensions were
standardized by Ford et al. [17] which define the usage
of multiple (disjoint) paths through a network to provide
TCP’s bi-directional stream. Cheng et al. defined TCP
Fast Open (TFO) [18] which may reduce the connection
establishment by one round-trip time (RTT) for TCP, but
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also introduces a number of new security implications,
like resource exhaustion or amplified reflection attacks.

3. Strengths and Weaknesses

In this Section, we evaluate the strengths and weak-
nesses of the key goals set out by the QUIC working
group. Each subsection focuses on one of the goals,
explaining the existing problem and QUIC’s proposed
solution.

3.1. Secure Transport

The leaks and uncoverings by journalists of the last
decade have proven those correct who always warned
about the interest of governments and private corporations
in private user data [19], [20]. Nowadays, it is broadly
acknowledged that user data should be encrypted when
it is sent over the Internet to ensure a minimum level of
integrity, confidentiality and privacy. The HTTP protocol
up to version two relies on TLS on top of TCP for its
(optional) encryption. When opening a connection to a
server, first the three-way handshake of TCP [21] is per-
formed followed by the TLS handshake [22] to establish
a secure bi-directional connection between a client and
a server. During the standardization of H2, the working
group discussed making always-on encryption part of
the protocol, but was unable to find consensus on this
topic [2], [23].

Google’s first specification of QUIC from 2012 [1]
already required always-on encryption for the payload and
some header fields. More information about why some
header fields are encrypted will be provided in Section 3.2.
Google’s initial design for QUIC predated TLS 1.3 and
therefore Langley et al. came up with their own encryp-
tion [24]. The QUIC working group later decided to use
TLS 1.3 for encryption [10], [12].

Always encrypting the payload benefits any potential
end user of the protocol by keeping their communication
private. It also forces companies or other organizations
who wish to use QUIC to provide secure transport, which
should lead to a broader adoption of encrypted communi-
cation on the Internet. On the other hand, there are com-
panies like banks which have to meet certain regulatory
or compliance requirements which effectively prevent the
usage of TLS 1.3 due to being too secure and constrains
these companies to standards like Enterprise Transport
Security (ETS) [25], which was recently assigned a CVE
number for its lack of per-session forward secrecy [26].

The usage of TLS 1.3 comes at a cost, too: QUIC is
vulnerable to application layer replay attacks when using
0-RTT, similar to TLS 1.3, and application layer protocols
must include mitigations [12].

3.2. Enabling Future Changes to QUIC

Iterating on a protocol like TCP or trying to introduce
a new protocol like SCTP often requires long adoption
time because the network equipment along the paths must
support and understand the traffic. Especially router and
firewall vendors are known to make certain assumptions
about the protocols they are supporting, like dropping TCP

packets which contain unknown or new TCP options [9].
Any unexpected change may lead to packets being flagged
as illegitimate which results in rejecting or dropping said
packets. For example, adoption of SCTP on top of IP is
still not widespread today [13]. This stiffness of the exist-
ing Internet infrastructure is referred to as ossification [5],
[9].

In addition to that, protocols like TCP or SCTP are
usually implemented in the kernel and require the com-
mitment of operating system vendors, changes to that
implementation are bound to operating system updates,
and users must install those updates until an application
can rely on a new protocol. As of June 2019 SCTP is still
not supported by Microsoft Windows or Apple’s operating
systems, but third party implementations exist [27].

QUIC tries to solve the problem of adoption and
allowing for future changes: First of all, it is built on
top of UDP. Existing network equipment already supports
UDP and does not require support for a completely new
transport layer protocol. Second, QUIC can be fully im-
plemented in the user space which makes it independent of
any support in an operating system kernel. A downside of
this approach is a potential performance penalty induced
by system calls and context switches, but a user space
implementation decouples development from the operat-
ing system release schedule and allows faster iteration
and easier deployment to legacy systems. Applications can
include a QUIC library and can distribute newer versions
independent of the operating system they are running on,
like Google is doing with Google Chrome. The current
adoption rate also speaks for QUIC’s approach: Langley et
al. [5] estimated the amount of QUIC traffic on the Internet
at 7% in 2017, about five years after the introduction. In
addition to that, QUIC also includes version negotiation
in the protocol as part of opening a connection [10],
thereby enabling the introduction of new QUIC versions
while allowing clients and servers to agree on a version
supported by both sides.

To prevent ossification, QUIC tries to encrypt as much
data as possible, including signaling information [10],
to hide it from network equipment and prevent vendors
of said equipment from making assumptions that will
interfere or prevent future changes to the protocol.

The strengths of the solutions provided are obvious:
The adoption rate is already significant and precautions
have been taken to simplify changes to the protocol in
the future. Nevertheless, 4.7% of video playback traffic is
having problems due to network equipment blocking, rate
limiting, or otherwise limiting UDP traffic [5].

3.3. Head-of-Line Blocking

Head-of-line (HOL) blocking describes the situation
of sequential packets or requests being held up by the
first item in a serial queue. HOL blocking can appear
on different network layers like TCP when a packet is
dropped/delayed or in HTTP/1.1 (H1.1) when all open
TCP connections to a server are already transferring re-
quests and additional request are forced to wait until an-
other request has finished. With the introduction of H2 and
its multiplexed streams the number of connections opened
by e.g. a browser could be reduced to one compared to the
up to six from H1.1 while also allowing multiple requests
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Figure 1: Comparison of TCP and TLS, QUIC 1-RTT, and QUIC 0-RTT handshakes.
Abbreviations used in the diagrams: ClientHello (CHLO), ServerHello (SHLO), Certificate (CERT), ServerHelloDone (SHD),
ClientKeyExchange (CKE), ChangeCipherSpec (CCS), Finished (F), Reject (REJ)

being performed at the same time. Therefore, H2 may be
less likely to suffer from application layer HOL blocking
in comparison to H1.1, but is more prone to HOL blocking
on the TCP layer [9], [28].

Similar to H2, QUIC supports multiple streams over
a single connection, but loss detection and recovery are
part of QUIC itself and not of an underlying protocol layer
like TCP. UDP is connectionless and does not provide any
loss detection or recovery at all. In case of lost packets,
recovery only impacts the streams whose frames were part
of the lost packets. Other streams are not affected by the
recovery and hence not blocked. Retransmission is also
different when compared to TCP. Instead of retransmitting
a lost packet, QUIC checks for every lost stream frame
whether the contained data is still needed. If that is the
case, the stream frames and packets are then retransmitted.
If a stream is reset in the meantime, the lost frames for
this stream are not retransmitted [10], [11].

Eliminating HOL blocking leads to better performance
of QUIC in lossy environments. The tests performed by
Kakhki et al. [15] support this claim for desktop and
mobile environments, although the gains are inferior in the
mobile environment due to slower packet consumption of
QUIC’s userspace implementation. The downside is that
loss detection and recovery were reimplemented on top
of UDP although TCP implementations already exist and
are well tested.

3.4. Connection Establishment and Transport
Latency

The main goal set out initially by Google was to
reduce latency, especially for connection establishment
which usually includes some form of handshake, like
the well known TCP three-way handshake [1]. For an
H2 connection to a server, first a TCP connection is
opened, followed by a TLS handshake if an encrypted
connection is desired. The full handshake flow for TCP
and TLS is shown in Figure 1a and results in a minimum
of three round trips until a connection is established and
application data can be transferred. In an high delay
environment, the handshake latency can highly influence

the perceived performance of the network connection and
thereby degrade the user experience.

QUIC improves on connection establishment by com-
bining the transport and cryptographic handshake [10].
This results in a 1-RTT handshake which means only
one round-trip is needed until application data can be
transfered using the newly established connection. Fur-
thermore, QUIC also supports 0-RTT handshakes, which
use cryptographic information from a previous connection
for even faster connection establishment allowing data
transfer to start with the initial message from a client.
Both handshake variants can be seen in Figure 1b and 1c.
Data released by Google on handshake latencies shows
that TCP and QUIC handshake latencies are growing
linearly with growing RTTs but QUIC’s slope is lower
due to 0-RTT [5]. Even when considering just the 1-RTT
connection establishments, QUIC only takes about half
the time of TCP. The benefit of supporting 0-RTT hand-
shakes was further shown by [15] who compared QUIC
with and without enabled 0-RTT handshakes and found
significantly improved performance for small transfers up
to 10 kB. There was an attempt to reduce the handshake
latency for TCP with TFO in [18], but according to Paasch
it suffers from ossification and the success rate is at about
80% [29]. Google’s servers support TFO but the influence
of TFO for their handshake comparison is not shown or
highlighted [5].

TLS 1.3 support for 1-RTT and 0-RTT handshakes
is not limited to QUIC and can can be used in the
underlying connection of an H2 stack to further improve
the connection establishment latency in the classic HTTP
stack. This could diminish the performance gains of QUIC
in comparison to TCP and TLS.

3.5. Multipath and Forward Error Correction

QUIC’s multipath extension is not part of the July
2019 milestone but adoption is scheduled for December
2019 and the handover to the Internet Engineering Steer-
ing Group (IESG) is scheduled for May 2020 [6]. De
Coninck et al. present an experimental implementation of
QUIC multipath with the goals of resilience to connection
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Search
latency

Video
latency

Video
rebuffer rate

Desktop 8.0 8.0 18.0
Mobile 3.6 5.3 15.3

TABLE 1: Mean percent reduction of the search latency,
video latency, and video rebuffer rate observed by [5].

failures and the combination of available resources, and
compare its performance to MPTCP [30]. They are also
the authors of the current IETF draft for QUIC multi-
path [31]. Forward Error Correction (FEC) is out of scope
of the first standardization [6]. Google supported FEC in
gQUIC but removed it in 2016 due to the unconvincing
results and the increase in code complexity [5]. Due to
these reasons we do not further discuss multipath and
FEC.

4. Overall Performance

In this section we want to compare different reports
about QUIC’s performance. We focus on three papers
starting with Langley et al. [5].

In 2017 Google presented the results and measure-
ments of their production deployment of QUIC for all
Google services with probably the largest sample size [5].
Their observations of handshake latencies were already
summarized in Subsection 3.4. Google evaluated the per-
formance of QUIC in comparison to TCP and TLS using
the search latency, video latency, and video rebuffer rate as
metrics. We only summarize the mean percent reduction in
Table 1 and refer to [5] for more details. Clearly visible
in the data provided are the inferior gains of QUIC in
the mobile environment. This is explained by a lower
0-RTT handshake rate due to mobile devices changing
IP addresses when switching networks and, thereby in-
validating the cached cryptographic information for the
handshake. Another reason for a lower 0-RTT handshake
rate is hitting different servers causing a 0-RTT handshake
to fail, too. The results for video latency are additionally
influenced by the YouTube app which performs hand-
shakes in the background to improve latency. The video
rebuffer rate measures the time spent on rebuffering data
during video playback and is not directly dependent on
the handshake latency. Instead, it depends on loss recov-
ery and overall throughput of the established connection.
According to Langley et al. QUIC performs best in high
delay, low bandwidth, and lossy networks. This claim
is further supported by comparing QUIC’s performance
when used in India to the performance in South Korea
with both countries being on opposite ends of Internet
quality scale with regard to delay, loss, and throughput.
During the tests, they also noticed higher CPU usage
for QUIC. Even after optimizations QUIC doubled TCP
and TLS CPU usage. Stenberg [9] mentions the slowness
and higher CPU consumption of QUIC, too, and explains
it with the lack of hardware acceleration and lack of
optimized UDP stacks.

Cook et al. [14] evaluated QUIC’s performance based
on the Page Load Time (PLT) of websites in different
scenarios with regard to delay, loss, network type (cellular
vs ADSL), and network load in comparison to H1.1
and H2 on top of TCP and TLS. The test environment

consisted of copies of websites hosted on virtual machines
and their real world counterparts. Their tests showed that
QUIC performs better under delay, in lossy networks, and
when connected to a cellular network. These results match
with the observations of Langley et al. described above.
In addition to the PLT evaluation, the influence of the
distribution of a website was investigated showing that
QUIC performs better if the number of servers hosting
website resources is low.

Another evaluation of QUIC’s performance was done
by Kakhki et al. [15] using Chrome and the corresponding
server component [32]. The scenarios compared QUIC
to TCP based on PLT in a desktop and mobile environ-
ments, video streaming performance, the fairness of QUIC
with regard to sharing of bottleneck bandwidth, and the
impact of in-network proxying when using QUIC. The
performance characteristics of QUIC for the PLT match
with the results we presented before: QUIC performs
better than TCP for small objects and connections with
loss, the gains on the desktop are higher than those on
mobile devices. Interesting findings include QUIC’s poor
performance when packet reordering is required, resulting
in TCP outperforming QUIC. This is explained by the
threshold for negative-acknowledgments being based on
a fixed number in QUIC causing it to start retransmis-
sion whereas TCP benefits from dynamically adapting the
threshold. During the setup of the testbed, the authors
noticed that the QUIC server’s default parameters result in
worse performance when compared to Google’s produc-
tion QUIC servers and therefore tweaked the parameters
until the performance matched that of Google’s servers.
An unfairness of QUIC was observed when comparing
the consumption of bottleneck bandwidth: QUIC vs QUIC
results in equal shares, but QUIC vs TCP results in an
unfair imbalance towards QUIC although both used the
same congestion control algorithm.

5. Conclusion and Future Work

One interesting area of future work is to compare
QUIC’s multipath capabilities to those of MPTCP when
the associated milestone is done by the IETF working
group. MPTCP is already implemented in major operating
systems like Linux [33]. Additional future work may focus
on performance comparisons of H2 over TCP and TLS,
especially how 1-RTT and 0-RTT handshakes of TLS 1.3
influence the results.

The design of QUIC is the logical consequence of
combining the benefits of recent network protocols and
continuing good ideas a step forward. Always-on encryp-
tion is not just for the benefit of the end user’s privacy, but
prevents network ossification. The possibility of an user
space implementation allows deployment independent of
any minimal operating system version and rapid iterations.
Faster handshakes and the elimination of HOL blocking
lead an improved user experience. Overall, the strengths
mentioned in this paper outweigh the weaknesses. QUIC
may not replace TCP and TLS immediately, but there
are areas like high latency and lossy networks or cellular
networks where QUIC is well suited to take over.
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