Routing in Information Centric Networks

Maximilian-Dominik Robl, Stefan Liebald*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: ga94kow@mytum.de, liebald@net.in.tum.de

Abstract—ICN is a new approach to change the current
Internet architecture. In terms of locating and retrieving it
differs a lot from the IP based internet. This paper gives n
insight into the architecture of ICN. Also, this paper provides
explanations of routing and naming in two examples of ICNs,
NDN and Netlnf. At the end of this paper, both approaches
will be compared , especially in terms of routing and naming.

Index Terms—software-defined networks, named data net-
work, network of information, information centric network,
routing

1. Introduction

The current Internet architecture is based on the IP

protocol. In IP a client is building a connection to a
server, through this tunnel the publisher can send the
requested data. This approach of connecting is similar to
the telephone service where two persons are connected
to be able to talk with each other. The IP architecture
is from the year 1981 and oriented on a client to client
communication. Over the last decades, the internet shifted
from the usage of two clients communicating with a
few users to a worldwide interconnected network where
everyone is searching for specific data and not user.
With services like YouTube, Google, Netflix, Spotify,
and co. many users request the same data from the same
source, e.g. a live stream 100.000 people are watching.
Information centric networking (ICN) is the idea to
replace IP with an architecture covering today’s use cases
of the internet. Providing an architecture that provides
a client to data network. ICN attempts to create an
architecture that doesn’t need to search for the publisher
but simply for the name of the needed data.
This paper focuses on routing names of the requested
data and its naming, which makes this possible. For
this we give you a brief introduction of ICN, especially
naming and routing. This paper provides the basics of
ICNs and explains the architectures NDN and NetInf
based on this knowledge.

2. Routing Difficulties in ICN

The main idea of ICN is routing by the names of
the requested data instead of routing by the addresses
of the hosts [1]. Routing in general has difficulties. For
ICN some of these difficulties are naming of the data
(section 2.1) and occurring packet loss. If you download

Seminar IITM SS 19,
Network Architectures and Services, October 2019

11

a file you download many packets. It can be enough
that one byte is corrupted in your packet in any routing
point so that you have to download this packet again.
The problem is that instead of just going back to the last
healthy file it instead the routing goes completely back to
the server. This problem can be better managed with an
ICN architecture, since most ICN architectures provide
caching for their network nodes. Caching in this case
provides the option to retrieve the lost packet from the
last network node instead of the complete network path
to the host.

2.1. Naming

An ICN architecture needs a suiting naming scheme,
because it’s fundamentally for the routing. Routing re-
solves the request with the name of the data until a
node matching this name. Naming has some difficulties
to regard. The names of the data in the network must be
globally unique. [2] If the user wants to resolve this data
the name must be clearly determinable to ensure that the
user gets exactly the requested data. Another difficulty is
the forwarding strategy in combination with the naming.
For some architectures like NDN the forwarding strategy
depends on the naming. Naming can also be human-
readable or not. This is a trade-off that an architecture or
the software engineer has to determine. Names in ICNs
must be location independent. [3] This means that the
names don’t change with the environment they are saved.
Names in ICNs mostly follow two naming schemes, first
a structured or hierarchical naming scheme and second a
structure-less or flat naming scheme. There is also a hybrid
naming scheme which combines both naming schemes.
Hierarchical names have a structure that can be interpreted
similar to directories in operating systems. Flat names are
missing structure.

2.2. Routing and Forwarding

Routing is one of the most important parts of an
ICN since it significantly distinguishes from the cur-
rent Internet architecture. Routing highly depends on the
naming of the given ICN approach. In this paper, we
discuss two routing schemes, name-based routing, and
name resolution. Name-based routing works by using the
name of the requested data to resolve the next hop in
the network. Name resolution mostly works with a name
resolution service, which returns some possible next hops
in the network based on the committed name. A name

doi: 10.2313/NET-2019-10-1 03

resolution service can have different approaches [4], [5].
Routing consists of two main steps, locate the data by
forwarding request and sending the requested data back
to the subscriber. Every architecture can freely choose
the way to design these steps. Especially the second step
could still use an IP protocol since in ICNs forwarding
the request should be based on names.

3. ICN Architectures

3.1. NDN - named data networking

NDN first appearance was in a google tech talk in

2006 by V. Jacobson. NDNs routes are lying in the earlier
project content centric network which also was accompa-
nied by V. Jacobson [6]. As an ICN paradigm, NDN takes
a prominent role within the broader field of all ICN ar-
chitectures. ICN is using various networking technologies
below the waist for connectivity, including, but not limited
to, IP [7]. Furthermore, the NDN architecture can be an
independent routing architecture but includes the support
to be built on top of IP for better integration in today’s
internet [8].
An important part of the architecture is the hierarchical
namespace that NDN provides. It helps with name-based
routing through its URL like structure [9]. The rough
routing works by a client requesting data by sending
interest packets that include names of the desired data. The
NDN network then routes the interest packet forward until
a node in the network that holds a copy of the requested
data is found. The data packet is then sent back by this
node. NDN as like most ICNs supports caching of data
[10]. This is essential to give the routing paradigm the
option to just send back a cached copy instead of always
resolving to the original publisher. Also, the data objects
should be independent from the location they are cached,
but due to the idea of ICN routing by names, this applies
for NDN.

3.1.1. Naming. Names in the NDN architecture are orga-
nized hierarchical. The names have a tree-like structure
similar to URL, organized similarly to the directories
in operating systems. E.g. Michi has a directory which
contains projects and in this directory are another two
directories raspberry pi and Arduino. In NDN we can
request all data in these directories by using the prefix
/Michi/projects/raspberrypi if Michi chose this organiza-
tional structure.

Names in NDN can be human readable like in the example
but doesn’t have to. Each component can be every format,
a hash value would also be possible. It’s a trade-off
between human-readable and length of the name. The de-
cision is to be made when implementing an NDN network.
A human-readable name can have the advantage for the
client to keep track when reading the messages, but also
can lead to undesirable overhead. Also, global uniqueness
is a necessary requirement which will be affected by the
decision of the trade-off.

NDN uses a named-based forwarding design where for-
warding is dependent on the naming structure. For re-
solving the names NDN uses longest prefix matching.
E.g I'm searching for the name /Michi/project in the
network. The forwarding protocol would first search for

Seminar IITM SS 19,
Network Architectures and Services, October 2019

12

the prefix /Michi/, then for the prefix /project/ and would
resolve to the name that fulfills the most prefixes. Im-
portant is that it will just route to identical prefixes. In
the case of NDN, there is some specialty if I search for
/Michi/projects the network will route for this name and
return every data which shares exactly this prefix like
/Michi/projects/raspberrypi and /Michi/projects/arduino.
The names in NDN are strings with a flexible length. This
gives us many possibilities to name our objects ensuring
less overlapping of names and thus likely securing names
to be globally unique. NDN is using pending interest
tables storing object names and their location. Due to the
flexible names they can easily get very large, resulting in
a slower look up and overall network [11], [12].

3.1.2. Routing and Forwarding. Routing in NDN works
with forwarding packets containing interests or data in
the network. An interest is a request message forwarded
as a packet. E.g. a client requests an information object
with the name "/Michi/projects/" this would be sent as
interest and the network would return a packet consisting
of the data. The routing itself is resolved with longest
prefix matching in the network. An item is found if the
interests name exactly consists of an arrived node or if a
prefix of the interests name consists.

NDN network architecture consists of special routers
named content routers (CR). The content router extends
a common router by providing three data structures,
the forwarding table (FIB), the pending content store
(CS) and the interest table (PIT). The forwarding table
saves all the data to forward an interest. This is done
hop-by-hop, the FIB can only forward an interest one
step to the next router. This structure at least holds a
column with names and one with fitting routing points.
The content store is the cache of the router. The router
can cache data traveling through it. The pending interest
table saves all incoming interests. Only active interests
which are not currently resolved are saved. If the interest
found it’s requested data and returns to the CR it will
be deleted from the table. If a client requests a name
that is already in the list it will be added in the PIT but
not forwarded. The usage of a PIT in combination with
the CS allows several people requesting data without
resolving it several times. This increases the speed of the
network and decreases the workload on the host because
the host has to deal with fewer requests.

Figure 1 is an example of the routing an interest that is
requested [7]. The routing consists of locating the data
and returning the data to the client.

Beforehand the network starts with an empty FIB in
the very first start. Forwarding is impossible in NDN
with an empty FIB. The CRs must first set up the FIBs
by searching for other CRs and information about the
network. This problem is called "bootstrapping” and is
used in today’s internet, e.g. the ARP protocol is a way
to resolve to bootstrap in a local network. NDN supports
different protocols one is OSPF [6].

Step 1 to 3 in figure 1 shows the sending of an interests
message for the data named /aueb.gr/ai/new.htm to the
network and locating the data. In the first step, the clients
send his interest packet to the closest CR. If a CR is
obtaining an interest it always executes the following
steps.

doi: 10.2313/NET-2019-10-1 03

First, the CR checks it’s CS containing an item with the
exact name. If the item is found the CR just sends back a
packet containing the data. If the item isn’t in the CS the
CR starts checking its PIT. In the PIT the CR checks if
a request of the item already arrived independently from
the requester’s ID. If already a request for the exact item
exists the CR aggregates both requests in the PIT and
waits for the returning interest. If there is also no entry
in the PIT the CR starts checking its FIB. Checking the
FIB is done by using longest prefix match, e.g. the FIB
entries for the following interest are /aueb.gr/ for CR2
and /aueb.gr/ai/ for CR3 the interest message would be
forwarded to router CR3 because more prefixes match.
This just applies if all prefixes are given a match. If there
is just one prefix existing in the name of the FIB, but not
in the interesting name the entry will be ignored.

In step 3 the CR finds the name of the interest in it’s CS.
Step 4-6 shows the retrieving of the data to the subscriber.
In step 4 the current CR sends back the data to the last CR
that has sent the interest. In the following steps, the CRs
check their PIT every time they receive a data packet.
The data is sent back to every client that requested the
data. The CR checks all entries for the data objects name,
sends the item to all subscribers linked to that name and
deletes the interests in the PIT. NDN supports different
types of caching strategies, thus the CR has the option
to cache the data in every traveled CRs content store [10].

3.2. NetInf - Network of Information

The network of information paradigm is one of the
projects funded by the fp7 program of the EU and also
part of the funded SAIL program. The principle of this
paradigm is like in the most ICNs that the first order
is accessing information via named data objects (NDO).
NDOs are split into two parts one part is the name in a
common format and the other part is the actual object in
a common data structure [14].

This paradigm is said to have high support for migration.
One part is playing the convergence layers (CL) which
help the Netlnf to be built on top of an existing routing
or forwarding technology. Convergence layers are placed
between the two layers and help them to communicate
with each other. This helps to support a broad variety
of different implementations and is also the idea of the
creator, to create a paradigm which is very open in its
implementation. Another way to achieve this is for the
nodes to focus on minimal common node requirements to
also be broadly applied to different types of networks.
There is one naming format that all nodes understand
and one format for representing the NDOs and optional
metadata [13].

NetInf has its own protocol which is based on a few
different messages. These messages are GET, PUBLISH
and SEARCH. The GET message is used if I exactly
know the name of the requested item, the PUBLISH
message is used to advertise my information object and
the SEARCH message is used to find an item by using
keywords. With the SEARCH message, NetInf supports
searching for information objects with keywords. NetInf
nodes can implement the same request and response for-
warding logic, transport and caching strategies for differ-

Seminar IITM SS 19,
Network Architectures and Services, October 2019

13

ent networks that they are attached to [13]. Due to the ICN
architecture and routing by names the routing is location
independent and late-binding is supported, which results
in the capability of caching information objects in the
nodes of the network. NetInf supports on-path and off-
path caching. The architecture of NetInf combines some
design elements that are present in the NDN [6] and the
PURSUIT [15] architecture. E.g. the possibility of routing
on object names like in NDN and the idea of using a name
resolution service like in PURSUIT. This will be described
more precisely in section 3.3.2.

3.2.1. Naming. The namespace in Netlnf is flat-ish. This
means NDO names in NetInf can be flat, but names
can also contain a hierarchy in their authority part. The
authority part comes from the URI structure that names in
NetInf fulfill. This structure was set by the SAIL project
(the project with all papers and deliverables can you find
here: https://sail-project.eu/deliverables/index.html) and
has been registered as permanent URI schemes. A name
in NetInf could be named like ni://example.com/foo;YY
Considering the comparison of names NetInf names are
flat [13].

An advantage is that a flat namespace provides better
name persistent, due to its independence from organi-
zational structure. If my object name in a hierarchical
namespace is something like /de/user/data and I change
this structure the name should be changed as well. This
case won’t happen with a flat namespace. A flat names-
pace also has the advantage of separating tussle over trade-
marks from unique data naming [13]. Uniqueness can be
a problem in a hierarchical structure if two users are quite
similar with also a similar organizational structure. With
a flat namespace which is based on hashes, the naming
can rely on statical uniqueness. In the case of a rare name
collision, this can be handled as an error by the NRS.
A disadvantage of a flat namespace can be the capability
of aggregating names based on a hierarchical name. Yet
naming in NetInf isn’t completely flat, in the case of
routing the names can be considered to be hierarchical. So
it comes that in terms of routing NetInf supports name-
based routing as well as naming resolution, which will be
part of section 3.3.2. For name-based routing, it is also
supported to use longest prefix match like in NDN.
Regarding naming scheme NetInf is using a common
naming scheme which supports multiple "pluggable” cryp-
tographic algorithms and representations [13]. The SAIL
project registered two URI naming schemes that were
designed for the NetInf paradigm and they are available
to use for this architecture. The two registered naming
schemes are "ni" and "nih". The scheme "ni" allows the
inclusion of hashes in URIs in a structured manner [13].
On the other hand, "nih" is derived from "ni" by removing
all optional features and ensuring the remaining structure
was unambiguous when spoken [13].

3.2.2. Routing and Forwarding. As mentioned earlier
the NetInf protocol is based on messages. These messages
are used for request and response forwarding. As a small
recap the messages are GET, SEARCH and PUBLISH, all
of these also have a response part GET-RESP, SEARCH-
RESP, and PUBLISH-RESP that are described in the
protocol of NetInf. The routing of the message requires

doi: 10.2313/NET-2019-10-1 03

C's routing tables after

' routing tables after
\\\\\\\ g Data packet

\\\\\\\ g Interest packet

H
:

[
[Fame [Requsted
L I

[

A's tables at

er receiving
Data packet oS
Name Data Name
- 5 Taueb griainew hm

s

Data

ving

i FiE =

=
I s s R s
] L —
| [ebors [GRB ECT LTI

Publisher 1

[——
Er——
Taueh | bl 2]

T
Foguested
B

[
[Name
L

o s
——————— Name Data

Subscriber Publisher 2

Link
(1-3)——P> Interest Message
@) Data

(a) Figure 1: The NDN architecture. CR stands for Content Router,
FIB for Forwarding Information Base, PIT for Pending Interest
Table, CS for Content Store. [7]

routing information to decide how to forward on each hop.
The GET request is routing by the name of the requested
NDO.

In NetInf name-based routing and name resolution is
supported, which results in the possibility of a hybrid
approach where either scheme can be freely chosen. Name
resolution in NetInf works with routing hints. Routing in
NetInf supports a component which is called routing hint.
Routing hints indicate where to find copies of the object
[13]. Routing hints are locators for lower layer hosts. The
routing in NetInf forwards and resolves the request for
objects as well as response messages. Here I also separate
the routing in three different parts 1) bootstrapping 2)
locate the NDO and 3) Return the information object.
NetInf supports a big network like IP which exists of
each other different network. All these networks also can
have different routing requirements and thus need different
routing protocols.

NetInf uses a hybrid request routing/forwarding scheme,
which combines the possibility of using a name-based
routing and name resolving. This is implemented by in-
tegrating pure name-based routing with name resolution
aspects. That means that the routing paradigm tries to use
name-based routing to forward the request and switches
to a name resolution service if it can’t find a hint for
forwarding the next hop. Routers in a NetInf network
also support a data structured called label stack similar to
the PIT in the NDN architecture. The label stack stacks
every name of the involved routers to easily travel back
the route for the response message afterward. The name-
based routing can use a pattern matching or as in NDN
a prefix-matching approach. The NRS is then the system
with a freely chosen algorithm that returns a set of routing
hints.

For illustrating the routing scheme it needs a network to
run in. In NetInf the creators assumed a network which is
quite similar to today’s internet. It is expected to have one
global network which is expected of using just one routing
scheme. This global network consists of different edge
domains binding their network with the global network
(The global network here takes the part of being the DFZ).
Every edge domain can internally decide on NetInf rout-
ing/forwarding, adapted to the domains need. The created

Seminar IITM SS 19,
Network Architectures and Services, October 2019

14

Name Resolution Service D2x
6

- | GeT .

- ni://example.com/foo;YY

3 L Hint: (D|D2|D2x)
Label D31

Resolving
ni://example.com/foo;YY

3
(0]2|D2%)

1
GET

ni://example.com/foo;YY
Label stack: [1

GET
niz//example.com/foo;YY
Label stack: [11]

(b) Figure 2: NetInf inter-domain scenario [13]

network relies on the hybrid routing approach. If a client
will now request the object ni://example.com/foo;YY in
the network the routing consists of 6 steps (Figure 2):

e Step 1: The clients sends a GET message
to it’s the closest network with the content
ni://example.com/foo;YY as the name of the
NDO.

e Step 2: The request gets forwarded to the next
node. This can be done by name-based routing.
In every step, the last router will be saved in the
label stack.

o Step 3: The node is lacking routing information.
It consults an NRS and gets a set of routing hints
back. These will be added to the GET message.

o« Step 4: Following the set of routing hints by
performing the next hop the request reaches the
next node. The set can also be just one element
or there could be several nodes in between which
are forwarded hop by hop with help of the routing
hints.

o Step 5: The current node belongs to a different
provider and thus has it’s own routing/forwarding
scheme. Our set also possesses all the necessary
nodes to route forward based on it.

o Step 6: The requested node reaches a node holding
a copy of the requested NDO.

Returning the NDO is done by the node holding the
NDO sending a RESPONSE message containing the NDO
and the label stack. This message is then routed step by
step dismantling the label stack. While routing backward
Netlnf allows caching the NDOs [13].

4. Architecures differences and conclusion

In this paper we summarize the ICN approach and
two of its current architecture. Both architectures can be
implemented completely independent to the current IP
infrastructure, still, both architectures support to be built
on top of an IP network, the NDN architecture with the
option to be built on top of existing routing architectures
and NetInf with its CLs.

In terms of routing NDN provides a hierarchical structure

doi: 10.2313/NET-2019-10-1 03

which has an enormous impact to its routing. Netlnf
has a flat-ish naming approach, which combines the
hierarchical naming scheme with a flat one. Due to the
flat-ish naming structure and hashing support, NetInf
ensures global uniqueness with statistical uniqueness,
while NDN uses its prefixes to ensure this global
uniqueness.

The NDN naming approach though can due to its prefixes
have very long names. Also the approach of routing with
names create more entries to look up. With IP adresses a
host had one adress and contained several data objects. In
ICN we route for the data objects, which are in a larger
number. This can result in the FIB and PIT to be very
large, consuming storage space and decrease the lookup
speed. The NetInf architecture uses an NRS which tends
to be the bottleneck of the network. Since the NRS will
be called by several access points to request routing
information and has to store more entries in the table
than the NDN approach. Also the NRS is the location
were some sort of table like the FIB and PIT is used to
resolve the next hops for the request. And the NRS is
potentially linked to a larger network than a CR, which
can also lead to a larger table.

Both architecture support caching in their nodes, which
in most cases can reduce the number of traveled nodes
and thus the lookup speed, because the data can easily
retrieved by these nodes. Also, packet loss can be handled
way better in both architectures. If packet loss occurs
the client can request the data from the last node holding
a copy. In case of packet loss, the data packets mostly
have to travel fewer nodes as in the first request making
the network faster.

References

[1] M. Awais and M. A. Shah, “Information-centric networking: a
review on futuristic networks,” in 2017 23rd International Con-
ference on Automation and Computing (ICAC). 1EEE, 2017, pp.

1-5.

M. S. Akbar, K. A. Khalig, R. N. B. Rais, and A. Qayyum,
“Information-centric networks: Categorizations, challenges, and
classifications,” in 2014 23rd Wireless and Optical Communication
Conference (WOCC). IEEE, 2014, pp. 1-5.

(2]

Seminar IITM SS 19,
Network Architectures and Services, October 2019

15

(3]

(4]

(5]

(6]

(7]

(8]

(91

(10]

(11]

[12]

[13]

(14]

[15]

M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and B. Math-
ieu, “A survey of naming and routing in information-centric net-
works,” IEEE Communications Magazine, vol. 50, no. 12, pp. 44—
53, 2012.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,” IEEE
Communications Magazine, vol. 50, no. 7, pp. 26-36, 2012.

X. Jiang, J. Bi, G. Nan, and Z. Li, “A survey on information-centric
networking: rationales, designs and debates,” China Communica-
tions, vol. 12, no. 7, pp. 1-12, 2015.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in
Proceedings of the 5th international conference on Emerging net-
working experiments and technologies. ACM, 2009, pp. 1-12.

G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou,
C. Tsilopoulos, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos,
“A survey of information-centric networking research,” IEEE Com-
munications Surveys & Tutorials, vol. 16, no. 2, pp. 1024-1049,
2014.

L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3,
pp. 66-73, 2014.

H. Yuan, T. Song, and P. Crowley, “Scalable ndn forwarding: Con-
cepts, issues and principles,” in 2012 21st International Conference
on computer communications and networks (ICCCN). 1EEE, 2012,
pp. 1-9.

W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyeyv,
J. Thompson, J. Burke, B. Zhang, and L. Zhang, “Named data
networking of things,” in 2016 IEEE first international conference
on internet-of-things design and implementation (IoTDI). 1EEE,
2016, pp. 117-128.

Y. Yu, A. Afanasyev, and L. Zhang, “Name-based access control,”
Named Data Networking Project, Technical Report NDN-0034,
2015.

N. L. Van Adrichem and F. A. Kuipers, “Globally accessible names
in named data networking,” in 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). 1EEE, 2013,
pp. 345-350.

D. Kutsher et al., “Final netinf architecture,” https://sail-project.eu/
deliverables/index.html, 2013.

C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (netinf)—an information-centric
networking architecture,” Computer Communications, vol. 36,
no. 7, pp. 721-735, 2013.

N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing
information networking further: From psirp to pursuit,” in Interna-
tional Conference on Broadband Communications, Networks and
Systems. Springer, 2010, pp. 1-13.

doi: 10.2313/NET-2019-10-1 03

