
The Basics of Multi Signatures using RSA

Jonas B. Erasmus, Dr. Holger Kinkelin∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: jonas.erasmus@tum.de, kinkelin@net.in.tum.de

Abstract—Requiring multiple parties to generate a single sig-
nature can improve security and accountability. This paper
presents a scheme for Certificate Authorities to have two
signers generate and verify a single certificate, without the
client noticing. Additionally shortcomings and alternatives
to multi key signatures are explored.

Index Terms—Digital signature, Multi-Signature, RSA, Pub-
lic Key Cryptography, Certificate Authority, Secret Sharing

1. Introduction

In the internet almost all traffic is authenticated, the
sender signs the message to prove it was sent by them.
While this system works efficiently on a personal basis,
larger entities or companies also sign messages using
only one key. As a result, whoever knows that key may
authenticate messages. While this is a security risk, addi-
tionally the question arises if a single person should be
able to sign in the name of the whole company. Certificate
Authorities for example sign the certificates of websites.
Even with the whole verification process for a domain
running successfully, in the end a single key (and as such
a single person) signs the certificate. The need to verify
messages is without question. But with a single signing
key, whoever is in control of this key can officially speak
for the whole company. While this is an issue of trust,
there also is the risk of human error. And even if a
misuse is noticed, the tracing of who used the signing
key for what grows ever more complicated with the size
of the company. This paper presents a solution of multiple
keys being used to generate a single signature. This can
enforce multiple signers checking the signature and only if
every participant is satisfied a valid signature is generated.
Additionally none of the signers is in possession of the
master key, but only knows a key part.
First the basic concept of signing is explained using RSA.
Then Colin Boyd’s suggestion of an dual signer approach
[1] is presented, and applied to certificate issuing. Finally
the shortcomings and alternatives to multi key signatures
are explored and evaluated.

2. Fundamentals

For the scope of this paper, only the signing of
messages using RSA (Rivest–Shamir–Adleman) will be
investigated. As such, the main focus is on the keys used
by the signing entity. For basic operation only two keys
are required. Key e is the public key to be shared with all

other users, while d represents the private key that is kept
hidden from other entities. For the sake of simplicity key
generation and distribution is omitted.

2.1. RSA

Signer Client

signature

hash

hash
sig = hd mod n

h = sige mod n

Figure 1: Basic RSA signing scheme

The RSA cipher (as depicted in Fig.1) is widely used
in today’s internet to sign and verify the authenticity of
messages. The to be signed message M is hashed to a
hash-value h.

hs = hash(M) (1)

Subsection 5.2 of the corresponding RFC [2] (Request-for-
Comments; Part of the Internet standardization) describes
the algorithm as follows. With the given h as the hashed
message, and the key (d, n) (private key, and publicly
known modulus) a signature sig may be computed.

sig = hd
s mod n (2)

For further use we will refer to signing a Message M
with Key d using RSA as RSA(M, d). The signature is
then appended to the message and the finished package
is sent to the receiver. Here the message can be verified
using the known public key e of the signer.

hr = sige mod n (3)

hr
?
= hash(M) (4)

Should (4) hold true, the receiver knows, that the message
was indeed sent by the signer. As an imposter could not
generate the correct signature for their message (since they
cannot know the required private key).
In a minimal notation RSA signing can be written as

sig = RSA(M,d) (5)

for signing, and

hash(M)
?
= RSA(sig, e) (6)

for verification of a signature.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 7 doi: 10.2313/NET-2019-10-1_02



2.2. Important RSA Properties

The usage of multiple keys in the RSA algorithm is
straight forward. A signature may be signed a second
time, however the result is the same as if signing with
a "concatenated" key (explained in depth in Sec.3.2).

RSA(RSA(M,d1), d2) = RSA(M,d1.d2) (7)

Additionally RSA is commutative, the key order for multi-
signing is irrelevant.

RSA(RSA(M,d1), d2) = RSA(RSA(M,d2), d1) (8)

By using this property for two random keys d1 and d2, a
third public key e can be found fulfilling the public/private
key properties

hash(M) = RSA(RSA(M,d1.d2), e) (9)

As such d1 and d2 can be interpreted as two parts of
a private key. When choosing n (n > 1;n ∈ N) random
keys, an inverse key (that is a key to decrypt the message)
can always be found.
The security of the use of multiple RSA steps is still
enforced. Without knowing the master key d1.d2, it is
not possible to derive d1 when only knowing d2 and e (or
vice versa). The splitting is only defeated once multiple
key parts of the private key are known to the same entity.
It could then compute the concatenation of those keys,
obtaining a larger key part of the master key (or the master
key itself if knowing all key parts).

3. Multi Key RSA Signing

This section describes how the RSA algorithm can be
extended to allow multiple parties to generate a single
signature.

3.1. Goal

The important part of multi key signing is that a client
should be unable to tell a difference to a "single-signed"
signature. As such the signer may use a multi key scheme,
however there is still only one public key and the receiver
(client) can verify the signature using the common RSA
verification. In order to do so the private key is split into
multiple keys, however the public key only verifies the
concatenation of all private key parts.
Additionally the signers may not be able to generate a
valid signature on their own. Multiple signers need to sign
in order for the signature to be correct. Still a central
authority, rolling out the individual key parts, is needed.

3.2. Key Distribution

In order to construct all the partial keys, full informa-
tion of all involved keys is needed. To derive the partial
keys the master key (the ’un-spilt’ private key) needs to
be known to compute the corresponding public key. As
such a central authority needs to compute all the partial
keys d1 to dn and the public key e.
By using the standard key generation algorithm so called
’backdoor’ information is generated. Using this extra
knowledge an inverse key can be computed. It is also

possible to find the inverse of multiple concatenated keys
(by treating the product over all private keys as the master
key). While computation time is higher than normal (the
possibly large keys need to be multiplied) key generation
only needs to be done once.
The partial keys then need to be distributed (via a secure
channel) to all signers participating in the process.
The following explanations assume the partial keys were
successfully distributed and the public key e is well known
by all entities. The modulus n is a constant (all keys
and partial keys are of the same "length") and as such
is known, or even hard-coded into the RSA algorithm.

3.3. The Basic Idea

This subsection is a recollection of Boyd’s suggestion
[1] for two signers as depicted in Fig.2.

Signer B Client

signature

hash
sig = psigd2 mod n

h = sige mod n

Signer Ahash

psig = hd1 mod n

pre-signature

Figure 2: Signing using two Signers

With two signing parties, three keys are needed. The
private key is split into two parts d1 and d2, and the public
key e.
The first signer signs the message using its own (secret)
key part d1 generating an incomplete signature.

psig = RSA(M,d1) (10)

The second signer can now create the final signature using
their own private key (11). This signature should not be
published, unless (12) holds true (the second signer checks
the correctness of psig).

sig = RSA(psig, d2) (11)

hash(M)
?
= RSA(sig, e) = RSA(psig, d2.e) (12)

For a client this process is transparent, the public key e
is the only information needed to verify the final signature.
Since RSA is commutative (Sec.2.2 Eq.(8)), the order of
signing is not important.

3.4. Problems when Extending to More Keys

To include more signing parties, more keys need to
be generated. For example three parties need three keys
(d1,d2,d3) and one public key e.
The first signature can be generated as in Sec.3.3.

psig1 = RSA(M,d1) (13)

The second signer still needs to verify the signature (the
first could have lied, and signed a manipulated message).
The only knowledge is psig1, as well as the local secret d2
and the public key e. However at this stage the unknown
key d3 of the third signer is needed for verification:

hash(M)
?
= RSA(psig1, d2.d3.e) (14)

Seminar IITM SS 19,
Network Architectures and Services, October 2019 8 doi: 10.2313/NET-2019-10-1_02



For more signing parties, even more secrete keys of other
participants are needed. Without verification a signature
should not be signed, since its integrity cannot be proven.
With this "blind" signing, only the first and last signer
can verify the signature. All intermediate signers can
not contribute to the correctness (or truthfulness) of the
signature.
Another alternative would be each signer adding their
own signature to the document. However this defies the
requirements of Sec.3, a client should only need to verify
a single signature with a single public key. Additionally,
for larger numbers of n signers a large overhead in
signature length (n times more signatures) is generated.
Needless to say that the verifier needs to check all n
signatures, requiring the trusted knowledge of all n public
keys.

3.5. Multi-Signature Schemes

An often presented solution are identity-based multi-
signature systems. Here the signature is generated by
using the identities of the signing parties. While this is
an important solution to decrease the amount of public
keys each participant needs to know (while maintaining
security) and the complexion of signature verification [3]
[4], these systems are not efficient at solving the problem
of this paper. Especially since the verification process
needs to be adapted to the signing algorithm.
However "A review of multisignatures based on RSA"
[5] presents some schemes that could be adapted to fit
the use case we need. However most of the presented
ciphers require special prerequisites. As presented in [6],
key generation is possible without any participant knowing
the master key.

4. Example of Multi Signature for Certificate
Authorities

In this section the system of Sec.3.3 is applied to a
dual signature scheme for Certificate Authorities.
For sake of simplicity, a website will be signed resulting
in a certificate. The website includes the full request for
a certificate (used public key, website-operator, contact
information, etc.).
Certificate Authorities (CAs) are tasked with verifying
websites and signing their certificate. However the CAs
use a single key pair to sign a record. With multi-key
ciphers (and multiple signing keys) the risks of miss
signings, or unauthorised signings could be reduced. It
is assumed a website has been cleared for signing. Under
normal circumstances, the CAs signing key would be used
to generate the certificate. This can result in a number
of problems. The signature will be secure, however the
website might not have been cleared for signing.These
errors are induced by the staff at the CA. And the easiest
way to reduce these risks, is to establish a second (or even
more) pair of eyes. A miss signing of one employee may
be noticed by a co-worker. Additionally the responsibility
(and the trust) for a certificate is evenly spread amongst
several employees of the CA. A better way to handle
the final signing of the website’s certificate would be as
follows (see Fig.3)

website to certify

website
verification

website
verification

OK?

We say 
NO

OK?

pre-certificate

final certificate

dont
sign

Signing Department
A

Signing Department
B

wait for signature 
of website

sign

sign

1

2 3

4

5

Figure 3: Basic RSA multi-signature scheme for CA

1) The website information (public key, owner, do-
main, etc.) is handed to two different depart-
ments. For sake of simplicity, one party is called
primary signer. However, the signing order is
irrelevant. Both departments only know one (dif-
ferent) key part of the master signing key.

2) The website is verified by the signers. This is
done as if there was no second party involved.
As a result this step can be taken in parallel: This
will increase workload, but issuing time for a
certificate remains the same (as with one signer).

3) Should the verification fail, the other department
needs to be notified, in order to stop the signing
process. Additionally the certificate will obvi-
ously not be signed with the local key.

4) If the primary signer trusts the website, it may
issue a pre-certificate (using the secret key part)
and send it to the second department.

5) Since (for two signers) the second party can fully
decode the pre-certificate, it can be "re-verified".
Due to working in parallel, at this point the
second department probably is in the process of
verifying said website their self (between stages
2 and 3). Should the website pass, signing the
pre-certificate results in the final certificate.

In the given example (Fig.3) the primary signer will finish
verification before the other department. However there
are only two steps, where information is exchanged. On
the one hand the website could not be verified (step 3)).
In this case the first department to fail will contact the
other one and no certificate is issued. Or everything is
fine and one party has issued the pre-certificate. In step
4) the signer should first check if there is already a pre-
certificate of the website, if there is they were slower than
the other depratment and need to skip to step 5).
In this "two person signing" scheme, the two involved
departments must have been supplied with the two differ-
ent key parts. This needs to be done every time a new

Seminar IITM SS 19,
Network Architectures and Services, October 2019 9 doi: 10.2313/NET-2019-10-1_02



signing key is generated. Effectively the company is split
into two parts, both need to work together to issue a single
certificate. Spreading this further two CAs could work
together to generate a "two CA trusted certificate". With
intelligent use of multiple keys spread across CAs, this
system would distribute trust to more than one company
for each certificate.

5. Secret Sharing

The most used system of secret sharing (and the most
used scheme) was invented by Adi Shamir in 1979 [7].
The basic idea is that a secret (in our case the private
master key) is split into multiple parts. In [8] the system
of splitting a key into multiple parts is already explored.
Although this is not a multi key cipher, the possibility to
split (or share) a key secretly is of fundamental need for
multi-key ciphers. But instead of using the partial keys in
a multi key cipher, other options are also possible.
The master key can be split (by simply using XOR
operations) and the parts distributed. A central trusted
entity then collects these partial keys, reconstructs the
"master key" and signs the document. Obviously the cen-
tral authority is in possession of the master key (or can
read the key when all partial keys are entered). While
this approach is heavily utilised for secure key storage
[8], the partial knowledge forces the signers to rely on
a central entity for signing. If all participants are part of
the same company this might even be wished for, and
there is already a "trusted" master entity (e.g. the boss,
or board of directors). Compared to multi-key schemes
this approach lacks security, since it returns to a single
entity, that may not be compromised, and reintroduces
the problem of "trust".
By using the properties of secret multi party computation,
the knowledge of the master key can be circumvented.
[9] describes a program, that computes a (public) RSA
signature using the input of secret master key parts.
This approach bridges the gap of limited trust and good
usability. Here the central trusted entity is replaced by
cryptographic primitives. All participants compute a RSA
signature only with their local knowledge, by exchanging
additional information (that carries no readable secrets),
the final product will be the correct signature (with no
one actually knowing more than before).
A new opportunity of strongly integrating secret shar-
ing are (t,n) threshold schemes [10]. Instead of all n
(n should be > 2) entities with a partial key, only a
certain subgroup of t < n are needed to successfully
compute a solution. While this may not be a requirement
for signatures, it increases the versatility of a signature
scheme. For example multiple departments of a company
can generate a signature. With this scheme, only 4 (out of
8) are needed for a valid signature. This reduces workload
(only 4 departments must verify a website) and any 4
departments can generate a signature together (making
load balancing across all work groups easier).
A possible danger of secret sharing are dishonest parties.
By sharing faked information, many secret schemes may
be defeated (the system won’t generate the desired result
and even secret information may leak). To ensure that
all participants are using the correct algorithms and do
not try to manipulate the scheme, verifiable secret sharing

(VSS) [11] is needed. These algorithms enforce a correct
utilisation of the scheme for all participants. If not trust-
ing another participant, the integrity of their computation
needs to be enforced this way.

6. Conclusion
The implementations of multi-signature systems are

complicated. While they are feasible and can be used,
the setup for signing a document with multiple signers
is too difficult for the gain. As detailed in Sec.3.3, two
signers can easily collaborate in creating a valid signature.
Approaches requiring more participants are often required
in a regulated environment. It is fair to assume that all
entities are part of the same organisation, or at least know
each other and have secure means of communication. In
other words a trusted third party or centralised authority
can be established (in fact [1] and schemes from [5]
require such an authority). At this point the authority can
also wait until all signers verified the document and then
sign using a single master key.
The approach of incorporating secret sharing algorithms
can bring back cryptographic security, while still spread-
ing the signature process over multiple signers. Still such
schemes are not straight forward and require trust or
strong (and complex) cryptographic primitives.
In the end, the trade-off between risk of missignings (as
well as security) and the requirements for implement-
ing these systems needs to be considered. As long as
all signing is done within the same entity, policies and
management might be able to enforce better and less
restraining signing processes. On the other hand in an
internet driven world and the rise of crowd sourcing,
multi key signature systems can be a first step towards
distributed signing. The need for multi key signing in IoT
systems incorporating "smart contracts" is also a pressing
matter (here identity based signing (Sec.3.5) is heavily
used).

References
[1] C. Boyd, “Some application of multi key ciphers,” Advances in

Cryptology - EUROCRYPT ’88, 1988.
[2] B. Kaliski, J. Jonsson, and A. Rusch, “Rfc 8017,” November 2016,

[Online; accessed 07-04-2019].
[3] M. Bellare and G. Neven, “Identity-based multi-signatures from

rsa,” Cryptographers’ Track at the RSA Conference, 2007.
[4] A. Bagherzandi and S. Jarecki, “Identity-based aggregate and

multi-signature schemes based on rsa,” Public Key Cryptography
– PKC 2010, 2010.

[5] R. Duràn Dìaz and et al., “A review of multisignatures based on
rsa,” 2010.

[6] D. Boneh and M. Franklin, “Efficient generation of shared rsa
keys,” Advances in Cryptology — CRYPTO ’97, pp. 425–439, 1997.

[7] A. Shamir, “How to share a secret,” Communications of the ACM.
22 (11), vol. 22, p. 612–613, 11 1979.

[8] G. Blakley, “Safeguarding cryptographic keys,” Managing Require-
ments Knowledge, International Workshop on (AFIPS), 1979.

[9] A. Mauland, “Realizing distributed rsa using secure multiparty
computations,” July 2009.

[10] S. Tang, “Simple secret sharing and threshold rsa signature
schemes,” Journal of Information and Computational Science,
vol. 1, pp. 259–262, 12 2004.

[11] T. P. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” Advances in Cryptology — CRYPTO ’91,
pp. 129–140, 1992.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 10 doi: 10.2313/NET-2019-10-1_02


