
Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

NET 2019-10-1Network Architectures and Services

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2019 February 22, 2019 – September 1, 2019

Munich, Germany

Georg Carle, Stephan Günther, Benedikt JaegerEditors

Chair of Network Architectures and ServicesPublisher

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Proceedings of the Seminar
Innovative Internet Technologies and

Mobile Communications (IITM)

Summer Semester 2019

Munich, February 22, 2019 – September 1, 2019

Editors: Georg Carle, Stephan Günther, Benedikt Jaeger

Network Architectures
and Services
NET 2019-10-1

Proceedings of the Seminar
Innovative Internet Technologies and Mobile Communications (IITM)
Summer Semester 2019

Editors:

Georg Carle
Chair of Network Architectures and Services (I8)
Technical University of Munich
85748 Garching b. München, Germany
E-mail: carle@net.in.tum.de
Internet: https://net.in.tum.de/~carle/

Stephan Günther
Chair of Network Architectures and Services (I8)
E-mail: guenther@net.in.tum.de
Internet: https://net.in.tum.de/~guenther/

Benedikt Jaeger
Chair of Network Architectures and Services (I8)
E-mail: jaeger@net.in.tum.de
Internet: https://net.in.tum.de/~jaeger/

Cataloging-in-Publication Data

Seminar IITM SS 19
Proceedings of the Seminar Innovative Internet Technologies and Mobile Communications (IITM)
Munich, Germany, February 22, 2019 – September 1, 2019
ISBN: 978-3-937201-68-9

ISSN: 1868-2634 (print)
ISSN: 1868-2642 (electronic)
DOI: 10.2313/NET-2019-10-1
Innovative Internet Technologies and Mobile Communications (IITM) NET 2019-10-1
Series Editor: Georg Carle, Technical University of Munich, Germany
c© 2019, Technical University of Munich, Germany

II

https://net.in.tum.de/~carle/
https://net.in.tum.de/~guenther/
https://net.in.tum.de/~jaeger/

Preface

We are pleased to present you the proceedings of the Seminar Innovative Internet Technologies and Mobile
Communications (IITM) during the Summer Semester 2019. Each semester, the seminar takes place in two
different ways: once as a block seminar during the semester break and once in the course of the semester.
Both seminars share the same contents and differ only in their duration.

In the context of the seminar, each student individually works on a relevant topic in the domain of computer
networks supervised by one or more advisors. Advisors are staff members working at the Chair of Network
Architectures and Services at the Technical University of Munich. As part of the seminar, the students
write a scientific paper about their topic and afterwards present the results to the other course participants.
To improve the quality of the papers we conduct a peer review process in which each paper is reviewed by
at least two other seminar participants and the advisors.

Among all participants of each seminar we award one with the Best Paper Award. For this semester the
arwards where given to Dominik Spörle with the paper Surveying the depth of user behavior profiling in
mobile networks and Marco Weiss with the paper Optimization of Decision Trees for TCP Performance
Root Cause Analysis.

Some of the talks were recorded and published on our media portal https://media.net.in.tum.de.

We hope that you appreciate the contributions of these seminars. If you are interested in further information
about our work, please visit our homepage https://net.in.tum.de.

Munich, October 2019

Georg Carle Stephan Günther Benedikt Jaeger

III

https://media.net.in.tum.de
https://net.in.tum.de

Seminar Organization

Chair Holder

Georg Carle, Technical University of Munich, Germany

Technical Program Committee

Stephan Günther, Technical University of Munich, Germany
Benedikt Jaeger, Technical University of Munich, Germany

Advisors

Simon Bauer (bauersi@net.in.tum.de)
Technical University of Munich

Paul Emmerich (emmericp@net.in.tum.de)
Technical University of Munich

Stephan Günther (guenther@tum.de)
Technical University of Munich

Max Helm (helm@net.in.tum.de)
Technical University of Munich

Benedikt Jaeger (jaeger@net.in.tum.de)
Technical University of Munich

Jonas Jelten (jelten@net.in.tum.de)
Technical University of Munich

Marton Kajo (kajo@net.in.tum.de)
Technical University of Munich

Holger Kinkelin (kinkelin@net.in.tum.de)
Technical University of Munich

Maurice Leclaire (leclaire@in.tum.de)
Technical University of Munich

Stefan Liebald (liebald@net.in.tum.de)
Technical University of Munich

Christian Lübben (luebben@net.in.tum.de)
Technical University of Munich

Johannes Naab (naab@net.in.tum.de)
Technical University of Munich

Dominik Scholz (scholz@net.in.tum.de)
Technical University of Munich

Richard von Seck (seck@net.in.tum.de)
Technical University of Munich

Henning Stubbe (stubbe@net.in.tum.de)
Technical University of Munich

Seminar Homepage
https://net.in.tum.de/teaching/ss19/seminars/

V

https://net.in.tum.de/teaching/ss19/seminars/

Contents

Block Seminar

DDS vs. MQTT vs. VSL for IoT . 1
Georg Aures (Advisor: Christian Lübben)

Cryptographic Separation of Powers . 7
Jonas Benedikt Erasmus (Advisor: Holger Kinkelin)

Routing in Information Centric Networks . 11
Maximilian-Dominik Robl (Advisor: Stefan Liebald)

Surveying the depth of user behavior profiling in mobile networks 17
Dominik Spörle (Advisor: Marton Kajo)

Matrix Cryptography . 23
Franziska Steinle (Advisor: Jonas Jelten)

Seminar

How good is QUIC actually? . 27
Manuel Burghard (Advisor: Benedikt Jaeger)

Porting ixy.rs to Redox . 33
Simon Ellmann (Advisor: Paul Emmerich)

Peer-to-Peer Matrix . 39
Quirin Heiler (Advisor: Jonas Jelten, Richard von Seck)

OPC UA vs. VSL for IoT . 47
Tobias Benjamin Leibbrand (Advisor: Christian Lübben)

Quality Enhancement in Written Examinations by Automatic Recognition of Correction Results . 53
Arian Mehmanesh (Advisor: Stephan Günther, Johannes Naab, Maurice Leclaire)

Network Emulation using Linux Network Namespaces . 57
Daniel Schubert (Advisor: Benedikt Jaeger, Max Helm)

What is deterministic Network Calculus? . 61
Tobias Wasner (Advisor: Dominik Scholz, Max Helm)

Linear Optimization for Decision trees of TCP Performance RCA 67
Marco Alexander Weiß (Advisor: Simon Bauer, Benedikt Jaeger)

virtio-vsock — configuration-agnostic guest/host communication 73
Johannes Wiesböck (Advisor: Johannes Naab, Henning Stubbe)

Deterministic Networking (DetNet) vs Time Sensitive Networking (TSN) 79
Xiaotian Yang (Advisor: Dominik Scholz, Max Helm)

VII

DDS vs. MQTT vs. VSL for IoT

Georg Aures, Christian Lübben∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: g.aures@tum.de, luebben@net.in.tum.de

Abstract—Connecting IoT devices is a task, developers have
to solve, when they would rather concentrate on application
and hardware. This survey contributes an overview over
the three different middlewares Data Distribution Service
(DDS), Message Queuing Telemetry Transport (MQTT), and
Virtual State Layer (VSL) which are compared from a
developers point of view. Evaluation focuses on how easy
the protocols can be used and on how much work is taken
away from the developer to be automated in the middleware
for regular tasks like securing, searching, and serializing
the data. Transparent of their actual implementation the
compared key features are presented in a rating table to
provide the architect of IoT infrastructure with a guide on
which protocol is suitable for which use case.

Index Terms—software-defined networks, feature compari-
son, rating measures, Internet of Things, middleware

1. Introduction

Data exchange is a fundamental part of distributed sys-
tems. Different IoT middleware use different techniques to
address the key features security, data modeling and prac-
tical usability. This paper compares the protocols Data
Distribution Service (DDS), Message Queuing Telemetry
Transport (MQTT), and Virtual State Layer (VSL) with
measures in those three key features. This overview should
enable the developer of an IoT application to carefully
select the appropriate middleware.

2. Background

This section gives an short description of the compared
network middleware technologies. The compared middle-
wares differ in their network topology and their features.

2.1. Data Distribution Service

DDS is a data-centric publish-subscribe middleware
for highly dynamic distributed systems [1], which is
standardized by the Object Management Group [2]. The
network topology is discovered dynamically and connec-
tions between nodes are established peer-to-peer without
a central server as a single point of failure. There is a rich
set of Quality of Service (QoS) policies which are a reason
why DDS is typically used in industrial environments [3].

2.2. Message Queuing Telemetry Transport

MQTT is an open message protocol standard-
ized by the Organization for the Advancement of
Structured Information Standards (OASIS) [4]. Clients
can publish and subscribe data under topics (like
kitchen/oven/temperature) and a central server is forward-
ing the messages to the subscribers. The main focus is on
small code footprint and low network bandwidth [1].

2.3. Virtual State Layer

The Virtual State Layer (VSL) is a site-local, data-
centric architecture for the IoT. Special features are full
separation of logic and data in IoT services, explicit data
modeling, a semantical data lookup, stream connections
between services, and security-by-design [5].

3. Related work

In [1] Profanter et al. compare the performance of
DDS and MQTT (and other protocols). In [6] Sarafov
compares the overhead of the WebSocket, CoAP and
MQTT protocols. Thota [7] compares the lightweight pro-
tocols MQTT and CoAP. Those papers have in common
that they implement the protocols in a testing environment
to evaluate some of the protocol features in detail.

This survey paper collects the work from several eval-
uation, implementation and architectural papers in order to
give an overview over the compared protocol features and
their differences. This survey is restricted to a selection of
key features (restriction in breadth) which are evaluated
from a protocol users point of view – leaving out imple-
mentation details and underlying technology (restriction
in depth).

4. Survey Approach

This survey provides an overview over some extracted
measurements, based on the related work and other re-
search on performance and evaluation of DDS, MQTT
and VSL for IoT. The evaluation of new measurements
is not in the reach of this paper. The selected measures
are presented in a table and a short description for each
rating is given in section 5 comparison. The measures can
be divided into three feature categories.

Security In many setups IoT devices are connected
via an insecure connection over the Internet. Security is a
crucial feature for many IoT applications e.g. personal,

Seminar IITM SS 19,
Network Architectures and Services, October 2019 1 doi: 10.2313/NET-2019-10-1_01

medical or critical industrial. Here the measures data
integrity, authentication, access control, and encryption
are rated because for some applications they can be even
mandatory by law [8].

Data modeling for convenient discovery and access at
application level and the means of transport and storage
in a way that they are ideally transparent to the user
are covered by the measures data gnostic, data centric,
serialization, protocol overhead, and QoS.

Practical usability is covered by the measures
simplicity of use, real world testing, and monitoring
& RTM because they have a strong influence on the
resources, which have to be spend for application
development in IoT.

5. Comparison

The compared network technologies for IoT and a
short description of their abilities which are rated in table 1
with four grades: feature not available (–), basic coverage
of some aspects (+), feature is fully implemented (++),
with additional benefits (+++).

5.1. Data integrity

The integrity of data means that it is unaltered and
consistent [9].

DDS. The built-in authentication plug-in uses public key
infrastructure (PKI) with a trusted identity certificate au-
thority. Each DDS domain participant is certified by the
certificate authority (++) [10, min. 9 f.].

MQTT. Performing integrity checks is left to the applica-
tion [4]. Even though not part of the protocol specification,
some implementations like HiveMQ1 support integrity
checks. Still if a features is not specified in the protocol
it might not be compatible between implementations (–).
E.g. in the case of integrity checks, different implementa-
tions can use different hash functions.

VSL. The integrity of data and executables is checked
with a certificate [9]. Also the integrity of other files (e.g.
metadata files) can be protected with a cryptographic hash
certificate (+++) [9].

5.2. Authentication

To verify the identity of a peer it has to authenticate
itself [9].

DDS. Authentication of every entity that produces or
consumes data in the network (++) via public key infras-
tructure [1] [11, min. 38] [12, p. 53-64].

MQTT. Basic authentication mechanism based on user-
names and passwords is supported [13]. These credentials
are sent with the CONNECT message, further authoriza-
tion is not provided [14]. Only good for secure channels
(+), since password is sent in clear text [4].

1. https://www.hivemq.com/blog/mqtt-security-fundamentals-mqtt-
message-data-integrity/

VSL. Not only participating entities are authenticated but
also the preceding entities in the processing chain [9].
Nodes can authenticate others locally with cached certifi-
cates which are autonomously renewed by a certificate
management [9]. Automatizing the important renewal of
certificates provides additional security (+++)

5.3. Access control

Access control to services is a key security feature
and mandatory for certain environments – for example
for infrastructure in Germany [8].

DDS. The common access control settings are configured
in a governance file for the hole domain [10, min. 10].
Permission documents signed by a certificate authority
describe what each participant is allowed to do within
the domain. The PermissionsHandles can cache any QoS
that is relevant to access control decisions Access Control
Plugin [12, p. 65-71]. Full access control is implemented,
which can be tedious to apply separately for each partic-
ipant (++).

MQTT. The protocol itself does not specify access con-
trol (–) [15]. Some implementations like mosquitto2 or
HiveMQ3 implement access control via user/password or
RSA authentication for the subscriber and publishers for
specified topics.

VSL. Role-based access control is implemented [16], [17].
This provides additional security because roles can be
used in a way that only the necessary access is granted
(+++). Not only the type information but also the access
modifiers are synchronized over the network, to filter the
discovery results based on a service’s access ID already
at the source [5]. Most important, it takes the burden
to implement adequate service access security from the
developers [5].

5.4. Encryption

The goal of encryption is to protect the data from
unauthorized readers.

DDS. The build in Cryptographic Plugin uses AES in
counter mode [18]. The plugin can configured to only
encrypt some topics (++). [12, p. 72-84].

MQTT. Because encryption is not supported (–) by the
protocol [13] some implementations like HiveMQ [19]
suggest encryption mechanisms on the application layer.
Generally encryption on transport layer is recommended
for MQTT [13].

VSL. All communication between peers is encrypted (++)
[20].

2. https://mosquitto.org/man/mosquitto-conf-5.html
3. https://www.hivemq.com/docs/4/control-center/configuration.html

#access-control

Seminar IITM SS 19,
Network Architectures and Services, October 2019 2 doi: 10.2313/NET-2019-10-1_01

5.5. Data gnostic

Knowledge of the data structure and content enables
the use of simple logic like aggregation and plausibility
checks close to the data. In large scale systems keeping
track of the meta information becomes too complex to be
handled by separate development documentation.

MQTT. A client can publish and subscribe data under a
topic. The topics are hierarchically structured and can also
be accessed vertically [4]. The data itself is not known to
the protocol, which makes it necessary for the applications
to agree on the structure of data on a meta-level for
example a possibly outdated documentation file (+).

DDS. (++) Each topic is bound to a data-type [3]. The
data-type and the labels describe the data in a machine
readable way, so the protocol is data gnostic (Greek
gnostos “known, perceived, understood”).

VSL. More descriptive than typed topics, VSL is struc-
tured with searchable (+++) hierarchical context models,
which are stored in a repository [5]. In virtual nodes the
data in the VSL can be dynamically overlayed by a service
which provides live data only when requested [21] [22].

5.6. Data centric

Data centric protocols provide an abstraction for the
messages send between peers and automate keeping track
of shared variable states. In contrast to message centricity,
data centricity decreases implementation complexity and
time.

DDS. Data is published into the DDS domain and sub-
scribers can subscribe without prior knowledge where the
information comes from or how it is structured, as the
package already describes itself [2]. Dynamic discovery
of topics without a central instance, self describing data
packages and transparent data sources [2] make to proto-
col truly data centric (++).

MQTT. As a “Message Queuing” protocol, the application
needs to keep track of the variable states itself (–). For IoT
this is a serious issue, because the number of devices and
their states, for which each application has to keep track
can be very large.

VSL. “Through its separation of service logic and data it
offers more functionality by-design such as security [than
DDS].” [5] VSL is even “information centric”, because it
provides full data management including data modeling,
discovery, caching, and security, which is an advantage
over pure data centricity (+++).

5.7. Serialization

Compressing the data for transmission over the net-
work is a task that should be taken care of the network
technology and not by the application, because decoding
data is error prone if an explicit coupling with meta data
is missing.

TABLE 1: Overview of the compared features

measure DDS MQTT VSL

data integrity ++ − +++
authentication ++ + +++
access control ++ − +++
encryption ++ − ++
data gnostic ++ − +++
data centric ++ − +++
serialization ++ − ++
protocol overhead − +++ −
QoS +++ + +
simplicity of use − ++ ++
real world testing ++ + ++
monitoring & RTM +++ + ++

DDS. The data is serialized for network transmission
without any further information needed (++), since the
topics are typed (eg. "float temperature") [3].

MQTT. The protocol does not support serialization of the
data, which has to be un/marschalled by the application.

VSL. In [22, section 4.2] Kuperjans describes the serial-
ization of the VSL data structures in XML, JSON, CBOR
and Google protocol buffers. No additional information is
required, because the data is completely described in the
context model repository (++).

5.8. Protocol overhead

The protocol overhead has an negative impact on the
network performance which is especially of interest when
the network capacity is low.

DDS. Because different kinds of data can be sent in a
single package, the payload needs additional identification
data [1]. Also diagnostics information can be send with
every transmitted data package [1]. The discovery phase
for the network and periodically heartbeat packages can
add additional overhead which depends not at least on the
chosen implementation of the DDS protocol [1]. All this
meta information generates overhead to the core data (–).

MQTT. A dedicated TCP connection is created for every
subscriber and publisher pair, therefore it is unnecessary to
include additional information about the published data in
the transmitted package. In [1] Profanter et al. show that
MQTT not only adds the smallest amount of additional
data during the connection initialization, it also has a
very small overhead when sending out data messages,
compared to other protocols (+++).

VSL. There is a notable overhead (–) which is caused
by so-called alive pings as well as the self-management
properties of the network [21]. In [9] Pahl and Donini
describe a mechanism to disperse to overhead resulting
from certification.

5.9. Quality of Service

Quality of Service (QoS) describes the ability to con-
figure performance and reliability of the network.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 3 doi: 10.2313/NET-2019-10-1_01

DDS. The data in a topic is associated with a specific
configuration from a broad set of QoS parameters e.g.
durability, lifespan, presentation, reliability, and deadlines
[2]. Detailed QoS is the strength of DDS (+++) with
a separate QoS contract between every data reader and
writer [3].

MQTT. QoS is defined in three levels, so that messages
are send: at most once, at least once or exactly once [4]. It
can be specified if the server should cache data [1]. This
basic QoS parameter leaves a lot of other configurations
(like the update frequency) to application level (+).

VSL. In [23] Pahl and Liebald describe a Modular Dis-
tributed IoT Service Discovery, where one of the goals
is discovering the service provider with the best latency.
Using this mechanism the VSL serves each client with
the best discovered latency. In [24] Pahl, Liebald and
Lübben demonstrate how VSL performs running on top
of existing internet technologies at the example of a com-
plex application which can still provide a real-time user
experience. Together with the virtual nodes (see section
5.5, [21]) the concept of always providing best available
quality provides basic coverage of this feature (+).

5.10. Simplicity of use

Comparison on how fast new users can learn the
protocol and how convenient tasks of various complexity
can be solved.

DDS. Lars Mijeteig states in a youtube video [25, min.
17] that DDS can be hard to start grasping because of its
many options (–).

MQTT. A lightweight, simple protocol, which makes it
simple to use (++) [26]. Still it should be kept in mind,
that features like encryption have to be taken care of by
the application [19]. In this case the simplicity of MQTT
would introduce complexity elsewhere.

VSL. For evaluation of usability the authors of [5] let 150
IoT-beginners implement a complex use case after solving
a tutorial. 73% rated the VSL API as “well suitable or even
easy-to-use for beginners” and all managed to complete
their project in less than 20h [5]. With its high degree of
automation VSL is both simple and powerful (++).

5.11. Real world testing

The possibility to implement testing functionality and
run it in a integration or production environment.

DDS. According to Mijeteig [25, min. 8] test functionality
can be added in a plug and play manner (++).

MQTT. Under [27] several tools are listed that support
MQTT real world testing. This shows that real world
testing is possible (+), but still not part of the protocol.

VSL. In [28] Pahl states that continuous “real world test-
ing” is a requirement, because each IoT site is different,
making comprehensive service testing before deployment
difficult. With a sophisticated application one could imag-
ine even automated testing (++).

5.12. Monitoring and runtime management

The ability to manage the network at runtime (RTM)
is crucial for situations where downtime is very costly.
Monitoring is also a key tool to ensure high uptime rates.

DDS. (+++) There is a dedicated topic to log security-
relevant messages [12, p. 87-88]. Mechanisms to monitor
presence, health and activity of all entities are available
and a concept of liveliness is supported. With a concept of
deadline DDS can monitor the activity of each individual
data-instance in the system. If an instance is not updated
according to the requirements of the receiving application,
the application is notified. With a concept of lifespan DDS
understands if a data-object has outlived its purpose and
is considered ‘stale’ data. [29, 39-40]

MQTT. Tools for monitoring have to be used sepa-
rately4. Due to the simplicity of the protocol, primitive
runtime management is possible by introducing new sub-
scribers/publishers to the broker (+).

VSL. (++) Short lifetime certificates enable service meta
data changes at runtime [17]. Models can also be created
at runtime, where they only affect the local model repos-
itory [20].

6. Evaluation

The comparison shows that the protocols each have
unique strengths, so that no protocol is dominated by
another with an always better or equal rating through
all compared features. MQTT has a very small protocol
overhead and is simple to use. DDS with its rich Quality of
Service properties, monitoring and runtime management
is a good choice in an industrial setting where experienced
developers have access to all the applications in the net-
work. VSL is easy to use and has a rich data discovery
mechanism with build in security which makes it suitable
also for inexperienced developers who want to integrate
applications into distributed ecosystem of applications
which are not known to the developer.

7. Conclusion (and future work)

Given the results of the comparison there is a good
reason to choose each for the three protocols given a
specific use case. Table 1 shows an overview from a
developers point of view with the corresponding reasons
for the rating discussed and cited to detailed papers in
section 5.

Further work could evaluate features like simplicity of
use or real world testing in direct comparison of the three
protocols, for example with testers who have to implement
the same task with all three network technologies. Also an
evaluation on how the data is structured semantically and
possibilities of increasing data availability with means of
the middleware are interesting for further comparison.

4. http://www.steves-internet-guide.com/mqtt-tools/

Seminar IITM SS 19,
Network Architectures and Services, October 2019 4 doi: 10.2313/NET-2019-10-1_01

References

[1] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll,
“OPC UA versus ROS, DDS, and MQTT: Performance evaluation
of industry 4.0 protocols,” in Proceedings of the IEEE International
Conference on Industrial Technology (ICIT), Feb. 2019. [Online].
Available: http://mediatum.ub.tum.de/doc/1470362/1470362.pdf

[2] “About the data distribution service specification version 1.4,”
OMG website, Mar. 2015. [Online]. Available: https://www.omg.
org/spec/DDS/1.4/

[3] G. Pardo-Castellote, “OMG data-distribution service: Architectural
overview,” in 23rd International Conference on Distributed
Computing Systems Workshops, 2003. Proceedings. IEEE, 2003,
pp. 200–206. [Online]. Available: https://ieeexplore.ieee.org/docu
ment/1203555

[4] A. Banks and R. Gupta, “MQTT version 3.1. 1 plus errata 01,”
OASIS standard, vol. 29, p. 89, Dec. 2015. [Online]. Available:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

[5] M.-O. Pahl and S. Liebald, “Information-centric IoT middleware
overlay: VSL,” in 2019 International Conference on Networked
Systems (NetSys) (NetSys’19), Mar. 2019. [Online]. Available:
https://s2labs.org/download/publications/2019-03_NetSys_Designi
ng_a_Data-Centric_Internet_of_Things.pdf

[6] V. Sarafov, “Comparison of IoT data protocol overhead,”
Network Architectures and Services, Website: https://www. net.
in. tum. de, accessed on, vol. 23, 2018. [Online]. Available:
https://www.net.in.tum.de/fileadmin/TUM/NET/NET-2018-03-1
/NET-2018-03-1_02.pdf

[7] P. Thota and Y. Kim, “Implementation and comparison of
m2m protocols for internet of things,” in Proc. 4th Int. Conf.
Appl. Comput. Inf. Technol. IEEE, 2016, pp. 43–48. [Online].
Available: https://ieeexplore.ieee.org/document/7916956

[8] “BSI act of 14 August 2009 (federal law gazette I p. 2821)
last amended by article 1 of the act of 23 June 2017 (federal
law gazette I p. 1885),” passed by the Bundestag as Art. 1 of
the Act of 14/8/2009 I 2821, Aug. 2009. [Online]. Available:
https://www.bsi.bund.de/EN/TheBSI/BSIAct/bsiact_node.html

[9] M.-O. Pahl and L. Donini, “Securing IoT microservices with
certificates,” in NOMS 2018-2018 IEEE/IFIP Network Operations
and Management Symposium. IEEE, 2018, pp. 1–5. [Online].
Available: https://ieeexplore.ieee.org/document/8406189

[10] A. Mitz, “Revolutionizing data distribution with an open and
secure DDS,” OCI webinar, Aug. 2018. [Online]. Available:
https://youtu.be/yDY3lOf4XhU

[11] G. Pardo-Castellote, “Data Distribution Service™ (DDS™),”
Object Management Group talk, Dec. 2018. [Online]. Available:
https://youtu.be/6iICap5G7rw

[12] ——, “OMG data-distribution service security,” LinkedIn
Corporation, Mar. 2014. [Online]. Available: https://www.sl
ideshare.net/GerardoPardo/omg-datadistribution-service-security

[13] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K. Meesublak,
P. Aiumsupucgul, and A. Panya, “Authorization mechanism for
MQTT-based internet of things,” in 2016 IEEE International
Conference on Communications Workshops (ICC). IEEE, 2016,
pp. 290–295. [Online]. Available: https://ieeexplore.ieee.org/abst
ract/document/7503802

[14] “Authenticating & authorizing devices using MQTT with
auth0,” Auth0® documentation. [Online]. Available: https:
//auth0.com/docs/integrations/authenticating-devices-using-mqtt

[15] Y. Upadhyay, A. Borole, and D. Dileepan, “MQTT based secured
home automation system,” in 2016 Symposium on Colossal Data
Analysis and Networking (CDAN). IEEE, 2016, pp. 1–4. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/7570945

[16] R. S. Sandhu, “Role-based access control,” in Advances in
computers. Elsevier, 1998, vol. 46, pp. 237–286. [Online].
Available: https://doi.org/10.1016/S0065-2458(08)60206-5

[17] M.-O. Pahl and L. Donini, “Giving IoT services an identity and
changeable attributes,” in International Symposium on Integrated
Network Management (IM), Washington DC, USA, Apr. 2019.
[Online]. Available: https://s2labs.org/download/publications/201
9-04_IM_Giving_IoT_Services_an_Identitiy_and_Changeable_Att
ributes.pdf

[18] R. Housley, “Using advanced encryption standard (AES) counter
mode with ipsec encapsulating security payload (ESP),” The
Internet Society, Jan. 2004. [Online]. Available: https://tools.ietf.o
rg/pdf/rfc3686.pdf

[19] “MQTT security fundamentals: MQTT payload encryption,” 2015.
[Online]. Available: https://www.hivemq.com/blog/mqtt-security-
fundamentals-payload-encryption/

[20] M.-O. Pahl and G. Carle, “The missing layer — virtualizing
smart spaces,” in 2013 IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM
Workshops). IEEE, 2013, pp. 139–144. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/6529471

[21] M.-O. Pahl, G. Carle, and G. Klinker, “Distributed smart
space orchestration,” in NOMS 2016-2016 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2016, pp.
979–984. [Online]. Available: https://www.pahl.de/download/publi
cations/NOMS2016_Distributed_Smart_Space_Orchestration_Pah
l.pdf

[22] F. Kuperjans, “Native service interfaces for the virtual state layer,”
Master’s thesis, Technische Universität München Department of
Informatics, 2017. [Online]. Available: https://www.net.in.tum.de/
fileadmin/bibtex/publications/theses/ba-kuperjans.pdf

[23] M.-O. Pahl and S. Liebald, “A modular distributed IoT
service discovery,” in International Symposium on Integrated
Network Management (IM), Washington DC, USA, 2019. [Online].
Available: https://s2labs.org/download/publications/2019-04_I
M_A_Modular_Distributed_IoT_Service_Discovery.pdf

[24] M.-O. Pahl, S. Liebald, and C. Lübben, “VSL: A data-centric
internet of things overlay,” in 2019 International Conference on
Networked Systems (NetSys’19), Mar. 2019. [Online]. Available:
https://s2labs.org/download/publications/2019-03_NetSys_Dem
o_VSL.pdf

[25] L. I. Miljeteig, “Data Distribution Service - Lars Ivar Miljeteig,”
NDC Conferences, Dec. 2017. [Online]. Available: https:
//youtu.be/3p-iVgWItJ8

[26] “MQTT 101 - how to get started with the lightweight iot
protocol,” 2014. [Online]. Available: https://www.hivemq.com/blo
g/how-to-get-started-with-mqtt/

[27] J. Colantonio, “Top IoT testing tools that support MQTT,”
Automation Testing, Mar. 2019. [Online]. Available: https:
//www.joecolantonio.com/iot-testing-tools/

[28] M.-O. Pahl, “Multi-tenant IoT service management towards an
iot app economy,” in HotNSM workshop at the International
Symposium on Integrated Network Management (IM), Washington
DC, 2019. [Online]. Available: https://s2labs.org/download/public
ations/2019-04_IM_HotNSM_Multi-Tenant_IoT_Service_Manag
ement_towards_an_App_Economy.pdf

[29] G. Pardo-Castellote, “Introduction to OMG DDS,” LinkedIn
Corporation, Mar. 2013. [Online]. Available: https://www.slidesha
re.net/GerardoPardo/introduction-to-omg-dds-1-hour-45-slides

Seminar IITM SS 19,
Network Architectures and Services, October 2019 5 doi: 10.2313/NET-2019-10-1_01

Seminar IITM SS 19,
Network Architectures and Services, October 2019 6

The Basics of Multi Signatures using RSA

Jonas B. Erasmus, Dr. Holger Kinkelin∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: jonas.erasmus@tum.de, kinkelin@net.in.tum.de

Abstract—Requiring multiple parties to generate a single sig-
nature can improve security and accountability. This paper
presents a scheme for Certificate Authorities to have two
signers generate and verify a single certificate, without the
client noticing. Additionally shortcomings and alternatives
to multi key signatures are explored.

Index Terms—Digital signature, Multi-Signature, RSA, Pub-
lic Key Cryptography, Certificate Authority, Secret Sharing

1. Introduction

In the internet almost all traffic is authenticated, the
sender signs the message to prove it was sent by them.
While this system works efficiently on a personal basis,
larger entities or companies also sign messages using
only one key. As a result, whoever knows that key may
authenticate messages. While this is a security risk, addi-
tionally the question arises if a single person should be
able to sign in the name of the whole company. Certificate
Authorities for example sign the certificates of websites.
Even with the whole verification process for a domain
running successfully, in the end a single key (and as such
a single person) signs the certificate. The need to verify
messages is without question. But with a single signing
key, whoever is in control of this key can officially speak
for the whole company. While this is an issue of trust,
there also is the risk of human error. And even if a
misuse is noticed, the tracing of who used the signing
key for what grows ever more complicated with the size
of the company. This paper presents a solution of multiple
keys being used to generate a single signature. This can
enforce multiple signers checking the signature and only if
every participant is satisfied a valid signature is generated.
Additionally none of the signers is in possession of the
master key, but only knows a key part.
First the basic concept of signing is explained using RSA.
Then Colin Boyd’s suggestion of an dual signer approach
[1] is presented, and applied to certificate issuing. Finally
the shortcomings and alternatives to multi key signatures
are explored and evaluated.

2. Fundamentals

For the scope of this paper, only the signing of
messages using RSA (Rivest–Shamir–Adleman) will be
investigated. As such, the main focus is on the keys used
by the signing entity. For basic operation only two keys
are required. Key e is the public key to be shared with all

other users, while d represents the private key that is kept
hidden from other entities. For the sake of simplicity key
generation and distribution is omitted.

2.1. RSA

Signer Client

signature

hash

hash
sig = hd mod n

h = sige mod n

Figure 1: Basic RSA signing scheme

The RSA cipher (as depicted in Fig.1) is widely used
in today’s internet to sign and verify the authenticity of
messages. The to be signed message M is hashed to a
hash-value h.

hs = hash(M) (1)

Subsection 5.2 of the corresponding RFC [2] (Request-for-
Comments; Part of the Internet standardization) describes
the algorithm as follows. With the given h as the hashed
message, and the key (d, n) (private key, and publicly
known modulus) a signature sig may be computed.

sig = hd
s mod n (2)

For further use we will refer to signing a Message M
with Key d using RSA as RSA(M, d). The signature is
then appended to the message and the finished package
is sent to the receiver. Here the message can be verified
using the known public key e of the signer.

hr = sige mod n (3)

hr
?
= hash(M) (4)

Should (4) hold true, the receiver knows, that the message
was indeed sent by the signer. As an imposter could not
generate the correct signature for their message (since they
cannot know the required private key).
In a minimal notation RSA signing can be written as

sig = RSA(M,d) (5)

for signing, and

hash(M)
?
= RSA(sig, e) (6)

for verification of a signature.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 7 doi: 10.2313/NET-2019-10-1_02

2.2. Important RSA Properties

The usage of multiple keys in the RSA algorithm is
straight forward. A signature may be signed a second
time, however the result is the same as if signing with
a "concatenated" key (explained in depth in Sec.3.2).

RSA(RSA(M,d1), d2) = RSA(M,d1.d2) (7)

Additionally RSA is commutative, the key order for multi-
signing is irrelevant.

RSA(RSA(M,d1), d2) = RSA(RSA(M,d2), d1) (8)

By using this property for two random keys d1 and d2, a
third public key e can be found fulfilling the public/private
key properties

hash(M) = RSA(RSA(M,d1.d2), e) (9)

As such d1 and d2 can be interpreted as two parts of
a private key. When choosing n (n > 1;n ∈ N) random
keys, an inverse key (that is a key to decrypt the message)
can always be found.
The security of the use of multiple RSA steps is still
enforced. Without knowing the master key d1.d2, it is
not possible to derive d1 when only knowing d2 and e (or
vice versa). The splitting is only defeated once multiple
key parts of the private key are known to the same entity.
It could then compute the concatenation of those keys,
obtaining a larger key part of the master key (or the master
key itself if knowing all key parts).

3. Multi Key RSA Signing

This section describes how the RSA algorithm can be
extended to allow multiple parties to generate a single
signature.

3.1. Goal

The important part of multi key signing is that a client
should be unable to tell a difference to a "single-signed"
signature. As such the signer may use a multi key scheme,
however there is still only one public key and the receiver
(client) can verify the signature using the common RSA
verification. In order to do so the private key is split into
multiple keys, however the public key only verifies the
concatenation of all private key parts.
Additionally the signers may not be able to generate a
valid signature on their own. Multiple signers need to sign
in order for the signature to be correct. Still a central
authority, rolling out the individual key parts, is needed.

3.2. Key Distribution

In order to construct all the partial keys, full informa-
tion of all involved keys is needed. To derive the partial
keys the master key (the ’un-spilt’ private key) needs to
be known to compute the corresponding public key. As
such a central authority needs to compute all the partial
keys d1 to dn and the public key e.
By using the standard key generation algorithm so called
’backdoor’ information is generated. Using this extra
knowledge an inverse key can be computed. It is also

possible to find the inverse of multiple concatenated keys
(by treating the product over all private keys as the master
key). While computation time is higher than normal (the
possibly large keys need to be multiplied) key generation
only needs to be done once.
The partial keys then need to be distributed (via a secure
channel) to all signers participating in the process.
The following explanations assume the partial keys were
successfully distributed and the public key e is well known
by all entities. The modulus n is a constant (all keys
and partial keys are of the same "length") and as such
is known, or even hard-coded into the RSA algorithm.

3.3. The Basic Idea

This subsection is a recollection of Boyd’s suggestion
[1] for two signers as depicted in Fig.2.

Signer B Client

signature

hash
sig = psigd2 mod n

h = sige mod n

Signer Ahash

psig = hd1 mod n

pre-signature

Figure 2: Signing using two Signers

With two signing parties, three keys are needed. The
private key is split into two parts d1 and d2, and the public
key e.
The first signer signs the message using its own (secret)
key part d1 generating an incomplete signature.

psig = RSA(M,d1) (10)

The second signer can now create the final signature using
their own private key (11). This signature should not be
published, unless (12) holds true (the second signer checks
the correctness of psig).

sig = RSA(psig, d2) (11)

hash(M)
?
= RSA(sig, e) = RSA(psig, d2.e) (12)

For a client this process is transparent, the public key e
is the only information needed to verify the final signature.
Since RSA is commutative (Sec.2.2 Eq.(8)), the order of
signing is not important.

3.4. Problems when Extending to More Keys

To include more signing parties, more keys need to
be generated. For example three parties need three keys
(d1,d2,d3) and one public key e.
The first signature can be generated as in Sec.3.3.

psig1 = RSA(M,d1) (13)

The second signer still needs to verify the signature (the
first could have lied, and signed a manipulated message).
The only knowledge is psig1, as well as the local secret d2
and the public key e. However at this stage the unknown
key d3 of the third signer is needed for verification:

hash(M)
?
= RSA(psig1, d2.d3.e) (14)

Seminar IITM SS 19,
Network Architectures and Services, October 2019 8 doi: 10.2313/NET-2019-10-1_02

For more signing parties, even more secrete keys of other
participants are needed. Without verification a signature
should not be signed, since its integrity cannot be proven.
With this "blind" signing, only the first and last signer
can verify the signature. All intermediate signers can
not contribute to the correctness (or truthfulness) of the
signature.
Another alternative would be each signer adding their
own signature to the document. However this defies the
requirements of Sec.3, a client should only need to verify
a single signature with a single public key. Additionally,
for larger numbers of n signers a large overhead in
signature length (n times more signatures) is generated.
Needless to say that the verifier needs to check all n
signatures, requiring the trusted knowledge of all n public
keys.

3.5. Multi-Signature Schemes

An often presented solution are identity-based multi-
signature systems. Here the signature is generated by
using the identities of the signing parties. While this is
an important solution to decrease the amount of public
keys each participant needs to know (while maintaining
security) and the complexion of signature verification [3]
[4], these systems are not efficient at solving the problem
of this paper. Especially since the verification process
needs to be adapted to the signing algorithm.
However "A review of multisignatures based on RSA"
[5] presents some schemes that could be adapted to fit
the use case we need. However most of the presented
ciphers require special prerequisites. As presented in [6],
key generation is possible without any participant knowing
the master key.

4. Example of Multi Signature for Certificate
Authorities

In this section the system of Sec.3.3 is applied to a
dual signature scheme for Certificate Authorities.
For sake of simplicity, a website will be signed resulting
in a certificate. The website includes the full request for
a certificate (used public key, website-operator, contact
information, etc.).
Certificate Authorities (CAs) are tasked with verifying
websites and signing their certificate. However the CAs
use a single key pair to sign a record. With multi-key
ciphers (and multiple signing keys) the risks of miss
signings, or unauthorised signings could be reduced. It
is assumed a website has been cleared for signing. Under
normal circumstances, the CAs signing key would be used
to generate the certificate. This can result in a number
of problems. The signature will be secure, however the
website might not have been cleared for signing.These
errors are induced by the staff at the CA. And the easiest
way to reduce these risks, is to establish a second (or even
more) pair of eyes. A miss signing of one employee may
be noticed by a co-worker. Additionally the responsibility
(and the trust) for a certificate is evenly spread amongst
several employees of the CA. A better way to handle
the final signing of the website’s certificate would be as
follows (see Fig.3)

website to certify

website
verification

website
verification

OK?

We say
NO

OK?

pre-certificate

final certificate

dont
sign

Signing Department
A

Signing Department
B

wait for signature
of website

sign

sign

1

2 3

4

5

Figure 3: Basic RSA multi-signature scheme for CA

1) The website information (public key, owner, do-
main, etc.) is handed to two different depart-
ments. For sake of simplicity, one party is called
primary signer. However, the signing order is
irrelevant. Both departments only know one (dif-
ferent) key part of the master signing key.

2) The website is verified by the signers. This is
done as if there was no second party involved.
As a result this step can be taken in parallel: This
will increase workload, but issuing time for a
certificate remains the same (as with one signer).

3) Should the verification fail, the other department
needs to be notified, in order to stop the signing
process. Additionally the certificate will obvi-
ously not be signed with the local key.

4) If the primary signer trusts the website, it may
issue a pre-certificate (using the secret key part)
and send it to the second department.

5) Since (for two signers) the second party can fully
decode the pre-certificate, it can be "re-verified".
Due to working in parallel, at this point the
second department probably is in the process of
verifying said website their self (between stages
2 and 3). Should the website pass, signing the
pre-certificate results in the final certificate.

In the given example (Fig.3) the primary signer will finish
verification before the other department. However there
are only two steps, where information is exchanged. On
the one hand the website could not be verified (step 3)).
In this case the first department to fail will contact the
other one and no certificate is issued. Or everything is
fine and one party has issued the pre-certificate. In step
4) the signer should first check if there is already a pre-
certificate of the website, if there is they were slower than
the other depratment and need to skip to step 5).
In this "two person signing" scheme, the two involved
departments must have been supplied with the two differ-
ent key parts. This needs to be done every time a new

Seminar IITM SS 19,
Network Architectures and Services, October 2019 9 doi: 10.2313/NET-2019-10-1_02

signing key is generated. Effectively the company is split
into two parts, both need to work together to issue a single
certificate. Spreading this further two CAs could work
together to generate a "two CA trusted certificate". With
intelligent use of multiple keys spread across CAs, this
system would distribute trust to more than one company
for each certificate.

5. Secret Sharing

The most used system of secret sharing (and the most
used scheme) was invented by Adi Shamir in 1979 [7].
The basic idea is that a secret (in our case the private
master key) is split into multiple parts. In [8] the system
of splitting a key into multiple parts is already explored.
Although this is not a multi key cipher, the possibility to
split (or share) a key secretly is of fundamental need for
multi-key ciphers. But instead of using the partial keys in
a multi key cipher, other options are also possible.
The master key can be split (by simply using XOR
operations) and the parts distributed. A central trusted
entity then collects these partial keys, reconstructs the
"master key" and signs the document. Obviously the cen-
tral authority is in possession of the master key (or can
read the key when all partial keys are entered). While
this approach is heavily utilised for secure key storage
[8], the partial knowledge forces the signers to rely on
a central entity for signing. If all participants are part of
the same company this might even be wished for, and
there is already a "trusted" master entity (e.g. the boss,
or board of directors). Compared to multi-key schemes
this approach lacks security, since it returns to a single
entity, that may not be compromised, and reintroduces
the problem of "trust".
By using the properties of secret multi party computation,
the knowledge of the master key can be circumvented.
[9] describes a program, that computes a (public) RSA
signature using the input of secret master key parts.
This approach bridges the gap of limited trust and good
usability. Here the central trusted entity is replaced by
cryptographic primitives. All participants compute a RSA
signature only with their local knowledge, by exchanging
additional information (that carries no readable secrets),
the final product will be the correct signature (with no
one actually knowing more than before).
A new opportunity of strongly integrating secret shar-
ing are (t,n) threshold schemes [10]. Instead of all n
(n should be > 2) entities with a partial key, only a
certain subgroup of t < n are needed to successfully
compute a solution. While this may not be a requirement
for signatures, it increases the versatility of a signature
scheme. For example multiple departments of a company
can generate a signature. With this scheme, only 4 (out of
8) are needed for a valid signature. This reduces workload
(only 4 departments must verify a website) and any 4
departments can generate a signature together (making
load balancing across all work groups easier).
A possible danger of secret sharing are dishonest parties.
By sharing faked information, many secret schemes may
be defeated (the system won’t generate the desired result
and even secret information may leak). To ensure that
all participants are using the correct algorithms and do
not try to manipulate the scheme, verifiable secret sharing

(VSS) [11] is needed. These algorithms enforce a correct
utilisation of the scheme for all participants. If not trust-
ing another participant, the integrity of their computation
needs to be enforced this way.

6. Conclusion
The implementations of multi-signature systems are

complicated. While they are feasible and can be used,
the setup for signing a document with multiple signers
is too difficult for the gain. As detailed in Sec.3.3, two
signers can easily collaborate in creating a valid signature.
Approaches requiring more participants are often required
in a regulated environment. It is fair to assume that all
entities are part of the same organisation, or at least know
each other and have secure means of communication. In
other words a trusted third party or centralised authority
can be established (in fact [1] and schemes from [5]
require such an authority). At this point the authority can
also wait until all signers verified the document and then
sign using a single master key.
The approach of incorporating secret sharing algorithms
can bring back cryptographic security, while still spread-
ing the signature process over multiple signers. Still such
schemes are not straight forward and require trust or
strong (and complex) cryptographic primitives.
In the end, the trade-off between risk of missignings (as
well as security) and the requirements for implement-
ing these systems needs to be considered. As long as
all signing is done within the same entity, policies and
management might be able to enforce better and less
restraining signing processes. On the other hand in an
internet driven world and the rise of crowd sourcing,
multi key signature systems can be a first step towards
distributed signing. The need for multi key signing in IoT
systems incorporating "smart contracts" is also a pressing
matter (here identity based signing (Sec.3.5) is heavily
used).

References
[1] C. Boyd, “Some application of multi key ciphers,” Advances in

Cryptology - EUROCRYPT ’88, 1988.
[2] B. Kaliski, J. Jonsson, and A. Rusch, “Rfc 8017,” November 2016,

[Online; accessed 07-04-2019].
[3] M. Bellare and G. Neven, “Identity-based multi-signatures from

rsa,” Cryptographers’ Track at the RSA Conference, 2007.
[4] A. Bagherzandi and S. Jarecki, “Identity-based aggregate and

multi-signature schemes based on rsa,” Public Key Cryptography
– PKC 2010, 2010.

[5] R. Duràn Dìaz and et al., “A review of multisignatures based on
rsa,” 2010.

[6] D. Boneh and M. Franklin, “Efficient generation of shared rsa
keys,” Advances in Cryptology — CRYPTO ’97, pp. 425–439, 1997.

[7] A. Shamir, “How to share a secret,” Communications of the ACM.
22 (11), vol. 22, p. 612–613, 11 1979.

[8] G. Blakley, “Safeguarding cryptographic keys,” Managing Require-
ments Knowledge, International Workshop on (AFIPS), 1979.

[9] A. Mauland, “Realizing distributed rsa using secure multiparty
computations,” July 2009.

[10] S. Tang, “Simple secret sharing and threshold rsa signature
schemes,” Journal of Information and Computational Science,
vol. 1, pp. 259–262, 12 2004.

[11] T. P. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” Advances in Cryptology — CRYPTO ’91,
pp. 129–140, 1992.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 10 doi: 10.2313/NET-2019-10-1_02

Routing in Information Centric Networks

Maximilian-Dominik Robl, Stefan Liebald∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ga94kow@mytum.de, liebald@net.in.tum.de

Abstract—ICN is a new approach to change the current
Internet architecture. In terms of locating and retrieving it
differs a lot from the IP based internet. This paper gives n
insight into the architecture of ICN. Also, this paper provides
explanations of routing and naming in two examples of ICNs,
NDN and NetInf. At the end of this paper, both approaches
will be compared , especially in terms of routing and naming.

Index Terms—software-defined networks, named data net-
work, network of information, information centric network,
routing

1. Introduction

The current Internet architecture is based on the IP
protocol. In IP a client is building a connection to a
server, through this tunnel the publisher can send the
requested data. This approach of connecting is similar to
the telephone service where two persons are connected
to be able to talk with each other. The IP architecture
is from the year 1981 and oriented on a client to client
communication. Over the last decades, the internet shifted
from the usage of two clients communicating with a
few users to a worldwide interconnected network where
everyone is searching for specific data and not user.
With services like YouTube, Google, Netflix, Spotify,
and co. many users request the same data from the same
source, e.g. a live stream 100.000 people are watching.
Information centric networking (ICN) is the idea to
replace IP with an architecture covering today’s use cases
of the internet. Providing an architecture that provides
a client to data network. ICN attempts to create an
architecture that doesn’t need to search for the publisher
but simply for the name of the needed data.
This paper focuses on routing names of the requested
data and its naming, which makes this possible. For
this we give you a brief introduction of ICN, especially
naming and routing. This paper provides the basics of
ICNs and explains the architectures NDN and NetInf
based on this knowledge.

2. Routing Difficulties in ICN

The main idea of ICN is routing by the names of
the requested data instead of routing by the addresses
of the hosts [1]. Routing in general has difficulties. For
ICN some of these difficulties are naming of the data
(section 2.1) and occurring packet loss. If you download

a file you download many packets. It can be enough
that one byte is corrupted in your packet in any routing
point so that you have to download this packet again.
The problem is that instead of just going back to the last
healthy file it instead the routing goes completely back to
the server. This problem can be better managed with an
ICN architecture, since most ICN architectures provide
caching for their network nodes. Caching in this case
provides the option to retrieve the lost packet from the
last network node instead of the complete network path
to the host.

2.1. Naming

An ICN architecture needs a suiting naming scheme,
because it’s fundamentally for the routing. Routing re-
solves the request with the name of the data until a
node matching this name. Naming has some difficulties
to regard. The names of the data in the network must be
globally unique. [2] If the user wants to resolve this data
the name must be clearly determinable to ensure that the
user gets exactly the requested data. Another difficulty is
the forwarding strategy in combination with the naming.
For some architectures like NDN the forwarding strategy
depends on the naming. Naming can also be human-
readable or not. This is a trade-off that an architecture or
the software engineer has to determine. Names in ICNs
must be location independent. [3] This means that the
names don’t change with the environment they are saved.
Names in ICNs mostly follow two naming schemes, first
a structured or hierarchical naming scheme and second a
structure-less or flat naming scheme. There is also a hybrid
naming scheme which combines both naming schemes.
Hierarchical names have a structure that can be interpreted
similar to directories in operating systems. Flat names are
missing structure.

2.2. Routing and Forwarding

Routing is one of the most important parts of an
ICN since it significantly distinguishes from the cur-
rent Internet architecture. Routing highly depends on the
naming of the given ICN approach. In this paper, we
discuss two routing schemes, name-based routing, and
name resolution. Name-based routing works by using the
name of the requested data to resolve the next hop in
the network. Name resolution mostly works with a name
resolution service, which returns some possible next hops
in the network based on the committed name. A name

Seminar IITM SS 19,
Network Architectures and Services, October 2019 11 doi: 10.2313/NET-2019-10-1_03

resolution service can have different approaches [4], [5].
Routing consists of two main steps, locate the data by
forwarding request and sending the requested data back
to the subscriber. Every architecture can freely choose
the way to design these steps. Especially the second step
could still use an IP protocol since in ICNs forwarding
the request should be based on names.

3. ICN Architectures

3.1. NDN - named data networking

NDN first appearance was in a google tech talk in
2006 by V. Jacobson. NDNs routes are lying in the earlier
project content centric network which also was accompa-
nied by V. Jacobson [6]. As an ICN paradigm, NDN takes
a prominent role within the broader field of all ICN ar-
chitectures. ICN is using various networking technologies
below the waist for connectivity, including, but not limited
to, IP [7]. Furthermore, the NDN architecture can be an
independent routing architecture but includes the support
to be built on top of IP for better integration in today’s
internet [8].
An important part of the architecture is the hierarchical
namespace that NDN provides. It helps with name-based
routing through its URL like structure [9]. The rough
routing works by a client requesting data by sending
interest packets that include names of the desired data. The
NDN network then routes the interest packet forward until
a node in the network that holds a copy of the requested
data is found. The data packet is then sent back by this
node. NDN as like most ICNs supports caching of data
[10]. This is essential to give the routing paradigm the
option to just send back a cached copy instead of always
resolving to the original publisher. Also, the data objects
should be independent from the location they are cached,
but due to the idea of ICN routing by names, this applies
for NDN.

3.1.1. Naming. Names in the NDN architecture are orga-
nized hierarchical. The names have a tree-like structure
similar to URL, organized similarly to the directories
in operating systems. E.g. Michi has a directory which
contains projects and in this directory are another two
directories raspberry pi and Arduino. In NDN we can
request all data in these directories by using the prefix
/Michi/projects/raspberrypi if Michi chose this organiza-
tional structure.
Names in NDN can be human readable like in the example
but doesn’t have to. Each component can be every format,
a hash value would also be possible. It’s a trade-off
between human-readable and length of the name. The de-
cision is to be made when implementing an NDN network.
A human-readable name can have the advantage for the
client to keep track when reading the messages, but also
can lead to undesirable overhead. Also, global uniqueness
is a necessary requirement which will be affected by the
decision of the trade-off.
NDN uses a named-based forwarding design where for-
warding is dependent on the naming structure. For re-
solving the names NDN uses longest prefix matching.
E.g I’m searching for the name /Michi/project in the
network. The forwarding protocol would first search for

the prefix /Michi/, then for the prefix /project/ and would
resolve to the name that fulfills the most prefixes. Im-
portant is that it will just route to identical prefixes. In
the case of NDN, there is some specialty if I search for
/Michi/projects the network will route for this name and
return every data which shares exactly this prefix like
/Michi/projects/raspberrypi and /Michi/projects/arduino.
The names in NDN are strings with a flexible length. This
gives us many possibilities to name our objects ensuring
less overlapping of names and thus likely securing names
to be globally unique. NDN is using pending interest
tables storing object names and their location. Due to the
flexible names they can easily get very large, resulting in
a slower look up and overall network [11], [12].

3.1.2. Routing and Forwarding. Routing in NDN works
with forwarding packets containing interests or data in
the network. An interest is a request message forwarded
as a packet. E.g. a client requests an information object
with the name "/Michi/projects/" this would be sent as
interest and the network would return a packet consisting
of the data. The routing itself is resolved with longest
prefix matching in the network. An item is found if the
interests name exactly consists of an arrived node or if a
prefix of the interests name consists.
NDN network architecture consists of special routers
named content routers (CR). The content router extends
a common router by providing three data structures,
the forwarding table (FIB), the pending content store
(CS) and the interest table (PIT). The forwarding table
saves all the data to forward an interest. This is done
hop-by-hop, the FIB can only forward an interest one
step to the next router. This structure at least holds a
column with names and one with fitting routing points.
The content store is the cache of the router. The router
can cache data traveling through it. The pending interest
table saves all incoming interests. Only active interests
which are not currently resolved are saved. If the interest
found it’s requested data and returns to the CR it will
be deleted from the table. If a client requests a name
that is already in the list it will be added in the PIT but
not forwarded. The usage of a PIT in combination with
the CS allows several people requesting data without
resolving it several times. This increases the speed of the
network and decreases the workload on the host because
the host has to deal with fewer requests.
Figure 1 is an example of the routing an interest that is
requested [7]. The routing consists of locating the data
and returning the data to the client.
Beforehand the network starts with an empty FIB in
the very first start. Forwarding is impossible in NDN
with an empty FIB. The CRs must first set up the FIBs
by searching for other CRs and information about the
network. This problem is called "bootstrapping" and is
used in today’s internet, e.g. the ARP protocol is a way
to resolve to bootstrap in a local network. NDN supports
different protocols one is OSPF [6].
Step 1 to 3 in figure 1 shows the sending of an interests
message for the data named /aueb.gr/ai/new.htm to the
network and locating the data. In the first step, the clients
send his interest packet to the closest CR. If a CR is
obtaining an interest it always executes the following
steps.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 12 doi: 10.2313/NET-2019-10-1_03

First, the CR checks it’s CS containing an item with the
exact name. If the item is found the CR just sends back a
packet containing the data. If the item isn’t in the CS the
CR starts checking its PIT. In the PIT the CR checks if
a request of the item already arrived independently from
the requester’s ID. If already a request for the exact item
exists the CR aggregates both requests in the PIT and
waits for the returning interest. If there is also no entry
in the PIT the CR starts checking its FIB. Checking the
FIB is done by using longest prefix match, e.g. the FIB
entries for the following interest are /aueb.gr/ for CR2
and /aueb.gr/ai/ for CR3 the interest message would be
forwarded to router CR3 because more prefixes match.
This just applies if all prefixes are given a match. If there
is just one prefix existing in the name of the FIB, but not
in the interesting name the entry will be ignored.
In step 3 the CR finds the name of the interest in it’s CS.
Step 4-6 shows the retrieving of the data to the subscriber.
In step 4 the current CR sends back the data to the last CR
that has sent the interest. In the following steps, the CRs
check their PIT every time they receive a data packet.
The data is sent back to every client that requested the
data. The CR checks all entries for the data objects name,
sends the item to all subscribers linked to that name and
deletes the interests in the PIT. NDN supports different
types of caching strategies, thus the CR has the option
to cache the data in every traveled CRs content store [10].

3.2. NetInf - Network of Information

The network of information paradigm is one of the
projects funded by the fp7 program of the EU and also
part of the funded SAIL program. The principle of this
paradigm is like in the most ICNs that the first order
is accessing information via named data objects (NDO).
NDOs are split into two parts one part is the name in a
common format and the other part is the actual object in
a common data structure [14].
This paradigm is said to have high support for migration.
One part is playing the convergence layers (CL) which
help the NetInf to be built on top of an existing routing
or forwarding technology. Convergence layers are placed
between the two layers and help them to communicate
with each other. This helps to support a broad variety
of different implementations and is also the idea of the
creator, to create a paradigm which is very open in its
implementation. Another way to achieve this is for the
nodes to focus on minimal common node requirements to
also be broadly applied to different types of networks.
There is one naming format that all nodes understand
and one format for representing the NDOs and optional
metadata [13].
NetInf has its own protocol which is based on a few
different messages. These messages are GET, PUBLISH
and SEARCH. The GET message is used if I exactly
know the name of the requested item, the PUBLISH
message is used to advertise my information object and
the SEARCH message is used to find an item by using
keywords. With the SEARCH message, NetInf supports
searching for information objects with keywords. NetInf
nodes can implement the same request and response for-
warding logic, transport and caching strategies for differ-

ent networks that they are attached to [13]. Due to the ICN
architecture and routing by names the routing is location
independent and late-binding is supported, which results
in the capability of caching information objects in the
nodes of the network. NetInf supports on-path and off-
path caching. The architecture of NetInf combines some
design elements that are present in the NDN [6] and the
PURSUIT [15] architecture. E.g. the possibility of routing
on object names like in NDN and the idea of using a name
resolution service like in PURSUIT. This will be described
more precisely in section 3.3.2.

3.2.1. Naming. The namespace in NetInf is flat-ish. This
means NDO names in NetInf can be flat, but names
can also contain a hierarchy in their authority part. The
authority part comes from the URI structure that names in
NetInf fulfill. This structure was set by the SAIL project
(the project with all papers and deliverables can you find
here: https://sail-project.eu/deliverables/index.html) and
has been registered as permanent URI schemes. A name
in NetInf could be named like ni://example.com/foo;YY
Considering the comparison of names NetInf names are
flat [13].
An advantage is that a flat namespace provides better
name persistent, due to its independence from organi-
zational structure. If my object name in a hierarchical
namespace is something like /de/user/data and I change
this structure the name should be changed as well. This
case won’t happen with a flat namespace. A flat names-
pace also has the advantage of separating tussle over trade-
marks from unique data naming [13]. Uniqueness can be
a problem in a hierarchical structure if two users are quite
similar with also a similar organizational structure. With
a flat namespace which is based on hashes, the naming
can rely on statical uniqueness. In the case of a rare name
collision, this can be handled as an error by the NRS.
A disadvantage of a flat namespace can be the capability
of aggregating names based on a hierarchical name. Yet
naming in NetInf isn’t completely flat, in the case of
routing the names can be considered to be hierarchical. So
it comes that in terms of routing NetInf supports name-
based routing as well as naming resolution, which will be
part of section 3.3.2. For name-based routing, it is also
supported to use longest prefix match like in NDN.
Regarding naming scheme NetInf is using a common
naming scheme which supports multiple "pluggable" cryp-
tographic algorithms and representations [13]. The SAIL
project registered two URI naming schemes that were
designed for the NetInf paradigm and they are available
to use for this architecture. The two registered naming
schemes are "ni" and "nih". The scheme "ni" allows the
inclusion of hashes in URIs in a structured manner [13].
On the other hand, "nih" is derived from "ni" by removing
all optional features and ensuring the remaining structure
was unambiguous when spoken [13].

3.2.2. Routing and Forwarding. As mentioned earlier
the NetInf protocol is based on messages. These messages
are used for request and response forwarding. As a small
recap the messages are GET, SEARCH and PUBLISH, all
of these also have a response part GET-RESP, SEARCH-
RESP, and PUBLISH-RESP that are described in the
protocol of NetInf. The routing of the message requires

Seminar IITM SS 19,
Network Architectures and Services, October 2019 13 doi: 10.2313/NET-2019-10-1_03

(a) Figure 1: The NDN architecture. CR stands for Content Router,
FIB for Forwarding Information Base, PIT for Pending Interest
Table, CS for Content Store. [7]

(b) Figure 2: NetInf inter-domain scenario [13]

routing information to decide how to forward on each hop.
The GET request is routing by the name of the requested
NDO.
In NetInf name-based routing and name resolution is
supported, which results in the possibility of a hybrid
approach where either scheme can be freely chosen. Name
resolution in NetInf works with routing hints. Routing in
NetInf supports a component which is called routing hint.
Routing hints indicate where to find copies of the object
[13]. Routing hints are locators for lower layer hosts. The
routing in NetInf forwards and resolves the request for
objects as well as response messages. Here I also separate
the routing in three different parts 1) bootstrapping 2)
locate the NDO and 3) Return the information object.
NetInf supports a big network like IP which exists of
each other different network. All these networks also can
have different routing requirements and thus need different
routing protocols.
NetInf uses a hybrid request routing/forwarding scheme,
which combines the possibility of using a name-based
routing and name resolving. This is implemented by in-
tegrating pure name-based routing with name resolution
aspects. That means that the routing paradigm tries to use
name-based routing to forward the request and switches
to a name resolution service if it can’t find a hint for
forwarding the next hop. Routers in a NetInf network
also support a data structured called label stack similar to
the PIT in the NDN architecture. The label stack stacks
every name of the involved routers to easily travel back
the route for the response message afterward. The name-
based routing can use a pattern matching or as in NDN
a prefix-matching approach. The NRS is then the system
with a freely chosen algorithm that returns a set of routing
hints.
For illustrating the routing scheme it needs a network to
run in. In NetInf the creators assumed a network which is
quite similar to today’s internet. It is expected to have one
global network which is expected of using just one routing
scheme. This global network consists of different edge
domains binding their network with the global network
(The global network here takes the part of being the DFZ).
Every edge domain can internally decide on NetInf rout-
ing/forwarding, adapted to the domains need. The created

network relies on the hybrid routing approach. If a client
will now request the object ni://example.com/foo;YY in
the network the routing consists of 6 steps (Figure 2):

• Step 1: The clients sends a GET message
to it’s the closest network with the content
ni://example.com/foo;YY as the name of the
NDO.

• Step 2: The request gets forwarded to the next
node. This can be done by name-based routing.
In every step, the last router will be saved in the
label stack.

• Step 3: The node is lacking routing information.
It consults an NRS and gets a set of routing hints
back. These will be added to the GET message.

• Step 4: Following the set of routing hints by
performing the next hop the request reaches the
next node. The set can also be just one element
or there could be several nodes in between which
are forwarded hop by hop with help of the routing
hints.

• Step 5: The current node belongs to a different
provider and thus has it’s own routing/forwarding
scheme. Our set also possesses all the necessary
nodes to route forward based on it.

• Step 6: The requested node reaches a node holding
a copy of the requested NDO.

Returning the NDO is done by the node holding the
NDO sending a RESPONSE message containing the NDO
and the label stack. This message is then routed step by
step dismantling the label stack. While routing backward
NetInf allows caching the NDOs [13].

4. Architecures differences and conclusion

In this paper we summarize the ICN approach and
two of its current architecture. Both architectures can be
implemented completely independent to the current IP
infrastructure, still, both architectures support to be built
on top of an IP network, the NDN architecture with the
option to be built on top of existing routing architectures
and NetInf with its CLs.
In terms of routing NDN provides a hierarchical structure

Seminar IITM SS 19,
Network Architectures and Services, October 2019 14 doi: 10.2313/NET-2019-10-1_03

which has an enormous impact to its routing. NetInf
has a flat-ish naming approach, which combines the
hierarchical naming scheme with a flat one. Due to the
flat-ish naming structure and hashing support, NetInf
ensures global uniqueness with statistical uniqueness,
while NDN uses its prefixes to ensure this global
uniqueness.
The NDN naming approach though can due to its prefixes
have very long names. Also the approach of routing with
names create more entries to look up. With IP adresses a
host had one adress and contained several data objects. In
ICN we route for the data objects, which are in a larger
number. This can result in the FIB and PIT to be very
large, consuming storage space and decrease the lookup
speed. The NetInf architecture uses an NRS which tends
to be the bottleneck of the network. Since the NRS will
be called by several access points to request routing
information and has to store more entries in the table
than the NDN approach. Also the NRS is the location
were some sort of table like the FIB and PIT is used to
resolve the next hops for the request. And the NRS is
potentially linked to a larger network than a CR, which
can also lead to a larger table.
Both architecture support caching in their nodes, which
in most cases can reduce the number of traveled nodes
and thus the lookup speed, because the data can easily
retrieved by these nodes. Also, packet loss can be handled
way better in both architectures. If packet loss occurs
the client can request the data from the last node holding
a copy. In case of packet loss, the data packets mostly
have to travel fewer nodes as in the first request making
the network faster.

References

[1] M. Awais and M. A. Shah, “Information-centric networking: a
review on futuristic networks,” in 2017 23rd International Con-
ference on Automation and Computing (ICAC). IEEE, 2017, pp.
1–5.

[2] M. S. Akbar, K. A. Khaliq, R. N. B. Rais, and A. Qayyum,
“Information-centric networks: Categorizations, challenges, and
classifications,” in 2014 23rd Wireless and Optical Communication
Conference (WOCC). IEEE, 2014, pp. 1–5.

[3] M. F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and B. Math-
ieu, “A survey of naming and routing in information-centric net-
works,” IEEE Communications Magazine, vol. 50, no. 12, pp. 44–
53, 2012.

[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A survey of information-centric networking,” IEEE
Communications Magazine, vol. 50, no. 7, pp. 26–36, 2012.

[5] X. Jiang, J. Bi, G. Nan, and Z. Li, “A survey on information-centric
networking: rationales, designs and debates,” China Communica-
tions, vol. 12, no. 7, pp. 1–12, 2015.

[6] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in
Proceedings of the 5th international conference on Emerging net-
working experiments and technologies. ACM, 2009, pp. 1–12.

[7] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou,
C. Tsilopoulos, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos,
“A survey of information-centric networking research,” IEEE Com-
munications Surveys & Tutorials, vol. 16, no. 2, pp. 1024–1049,
2014.

[8] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3,
pp. 66–73, 2014.

[9] H. Yuan, T. Song, and P. Crowley, “Scalable ndn forwarding: Con-
cepts, issues and principles,” in 2012 21st International Conference
on computer communications and networks (ICCCN). IEEE, 2012,
pp. 1–9.

[10] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev,
J. Thompson, J. Burke, B. Zhang, and L. Zhang, “Named data
networking of things,” in 2016 IEEE first international conference
on internet-of-things design and implementation (IoTDI). IEEE,
2016, pp. 117–128.

[11] Y. Yu, A. Afanasyev, and L. Zhang, “Name-based access control,”
Named Data Networking Project, Technical Report NDN-0034,
2015.

[12] N. L. Van Adrichem and F. A. Kuipers, “Globally accessible names
in named data networking,” in 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2013,
pp. 345–350.

[13] D. Kutsher et al., “Final netinf architecture,” https://sail-project.eu/
deliverables/index.html, 2013.

[14] C. Dannewitz, D. Kutscher, B. Ohlman, S. Farrell, B. Ahlgren, and
H. Karl, “Network of information (netinf)–an information-centric
networking architecture,” Computer Communications, vol. 36,
no. 7, pp. 721–735, 2013.

[15] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing
information networking further: From psirp to pursuit,” in Interna-
tional Conference on Broadband Communications, Networks and
Systems. Springer, 2010, pp. 1–13.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 15 doi: 10.2313/NET-2019-10-1_03

Seminar IITM SS 19,
Network Architectures and Services, October 2019 16

Surveying the depth of user behavior profiling in mobile networks

Dominik Spörle, Marton Kajo∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: d.spoerle@tum.de, kajo@net.in.tum.de

Abstract—CDR (Call Data Records) allow network operators
to collect location information, as well as other application
level data about users of mobile devices. With various ma-
chine learning techniques it is possible to extract information
to deduct general, or also very personal insights into the
user’s behavior. This survey presents various research topics
working with CDR data, such as the evaluation of the
mobility or social interactions of the users. This information
is processed by using data mining methods, which yield
patterns used to get insights in the user behavior.

Index Terms—call data records, data mining, machine learn-
ing, mobility patterns

1. Introduction

Mobile phones are popular devices for decades and
used by a lot of most people daily. According to [1] in
2019 the number of mobile phone users is forecast to reach
4.68 billion. This entails a big amount of data. A CDR is
a data structure created by network providers and stores
relevant information about the telephonic activity. A CDR
contains usually a spatial and a temporal resolution, which
enables researches on the behavior of users by analyzing
CDR data.
CDR data is often compared to GPS data, because it can
track users in time and geographical space. It is important
to note that GPS data is more precise and delivers more
information about the movement of users, but CDR data is
available since longer time and in a higher amount. Fur-
thermore, CDR data can also contain information about
the user’s social interactions.
By analyzing patterns extracted from CDR data there are
various areas to apply this knowledge. The understand-
ing of mobility patterns yields insights into crowd anal-
ysis, population displacement, urban planning, network
design, traffic management, targeted marketing, tourists
movement or disease spreading. By analyzing the social
interactions of calls between users it is possible to discover
relationships, calling patterns or the social attributes of
users. This information might help for example in areas
like criminology to detect the social networks of criminals.
This paper presents and describes various techniques of
creating patterns about the user behavior, while also high-
lighting the importance and usefulness of CDR data for
many different areas by selected examples.
In Section 2 the processing of CDR data is described with
different approaches, primarily showing methods to create
movement trajectories of users by interpolating the spatial

information of CDRs. In Section 3 different applications
of CDR data is presented.

2. Handling & processing of CDR Data

To use CDR data to get insights in the behavior of
users the data must be processed to get a movement
trajectory of the users. Since CDRs only contain data of
calls or texting activities of users, the accuracy of this data
along the spatial and temporal dimension is limited, often
referred to as spatiotemporally sparse data. To mitigate
the sparsity of CDR data there exist several approaches
of data completion, which try to fill the spatiotemporal
gaps and derive movement trajectories from it. To do this
the position of a user between the respective phone calls
or sent text messages has to be estimated. This is done
by applying movement models to the data with the use
of machine learning techniques and data analysis. This is
explained in the following sections.
Before the data of CDRs can be used for research, it
is necessary to draw attention to privacy issues associ-
ated with CDR data. To work with it, the data must be
anonymized to prevent that personal data can be inferred
from it. Some of the approaches to do that are presented
in Section 2.3.

2.1. Call Data Records

A call data record, or short CDR, contains in general
the respective time of the call and the ID of the user.
Also, it has an entry for the location, which is saved as
the ID of the prefecture from where the call occurred. This
information can be extended by appending data like the
day of the week, the time of the previous call, etc. The
structure of a CDR may depend on the communication
service provider publishing the dataset.

2.2. Mobile Positioning based on CDR data

There are several approaches to refine CDR data and
complete mobile positioning of users. As a first approach,
the position of the user in between CDR events can be
refined using a probabilistic model. In [2] an Inter-Call
Mobility model (ICM) is introduced, which is based on a
finite Gaussian mixture model.
The ICM model represents a spatiotemporal probability
distribution of the location of a user between two consec-
utive CDR events. It relies on the Gaussian mixture model
(GMM), which is a weighted sum of Gaussian Probability

Seminar IITM SS 19,
Network Architectures and Services, October 2019 17 doi: 10.2313/NET-2019-10-1_04

Density Functions (PDF). These functions represent the
probability of finding a user at a position (x, y) at time
t. The GMM is defined by the vector of all unknown
parameters θ. Those parameters are estimated by the
Expectation-Maximization algorithm [3], which performs
a maximum-likelihood estimation. The number of compo-
nents K in a Gaussian mixture is selected using criteria
that combine the parameters estimation and a penalty that
tries to prevent overfitting of the model. An initial estimate
of the parameters θ is given by K −means clustering.
In [2] the GMM is fitted to inter-call trajectories created
during the data processing of the CDR data and the
ICM model is defined. Applying the ICM model to two
consecutive CDR events a probabilistic distribution of the
user’s position between the calls can be created. The the
kernel density estimation of spatiotemporal probability
distribution of user’s inter-call movement is shown in
Figure 1.

A second approach presented in [4], [5] is to create

Figure 1: ICM model: probabilistic distribution of the
user’s position between the calls A and B, [2]

a model out of studies and analyzes of user’s behavior.
This is done by considering a user to stay more likely at
certain locations, like his home or work place. The authors
of this work separate the activities of users between a
nighttime and a daytime period. To capture the locations
for home and workplace the data is separated in those
two periods and significant places are extracted. This is
done by considering the place where the majority of CDR
events during daytime occur to be the work place of the
user and the place during nighttime to be his home.
For both day- and nighttime, different techniques are used
for the completion of inter-call localization. During the
nighttime period the user position is set to his home loca-
tion if the last CDR is within some fixed temporal home
boundaries. This method is expanded by adapting the
nighttime interval and the home boundary for each user
on previous observations made of him. For the completion
of CDR data during daytime three factors are categorized,
which affect the temporal cell boundaries of the user.
Those factors are event-related, long-term behavior, and
location-related. Event-related factors relate to the meta-
data of the CDR, like the duration of a call, what may give
some indication if the user is static or moving. An example
of a long-term behavior factor could be the number of
unique visited locations, which can be related to the long-
term mobility of the user. Location-related factors can
yield to indications how relevant different places are in
the user’s activity.

With this information a model is created with supervised
machine learning techniques to estimate the corresponding
temporal cell boundary. The model is generalized from a
training set consisting of CDR entries. Approximations
are made with the Gradient Boosted Regression Trees
technique [6].
In a third approach [7] the coverage area provided by
the mobile operator and the location of the mobile device
within this area is estimated. Also, the type of movement
is detected in order to differentiate between a moving and
staying user. Then, a map-matching technique is used to
match the resulting location to a road (if a moving user is
detected) or a building (if a stationary user is detected).
To do this, first, the coverage area is estimated using the
Voronoi method [8] and is optimized by comparing it with
collected GPS data. This is done by minimizing a penalty
function based on the observations of the GPS data. The
coverage function is minimized with the implementation
of the L-BFGS-B algorithm [9]. To differentiate between a
moving and a staying user an implementation of a Kalman
filter [10] is used and a mobility model is defined and
integrated into this algorithm. For the map-matching of
an estimated position, for each point corresponding road
segments are found and matched. Therefore, a detection
of road segments in a certain radius around the point
is implemented and for each segment candidate points
are computed with an orthogonal projection. The best
candidate point is selected using the haversine distance
[11]. A result of this map-matching step is shown in
Figure 2. In general, it can be observed that the presented

Figure 2: Map-Matching of CDRs: results of Kalman filter
- red circles - estimated position, blue squares - map-
matched position, green triangles - actual position, [7]

approaches yield to good results, if you consider that CDR
data consist of sparse informations about the mobility of
users. Estimated inter-call positions are not comparable to
technologies like GPS, but they are precise enough to get
useful insights into the behavior of users.

2.3. Anonymization of CDR data

As we can see in further chapters, CDR data can
deliver personal information about users, which can cause
privacy issues when working with it. It is challenging
to find a good balance between the protection of the
privacy of users and the utility of the data itself. Of
course, published datasets do not contain any personal

Seminar IITM SS 19,
Network Architectures and Services, October 2019 18 doi: 10.2313/NET-2019-10-1_04

information, but also anonymized data entails the pos-
sibility of re-identification of users. Traditional methods
of anonymization are pseudo-anonymization (ID of the
referenced user in the CDR is replaced with a code using
cryptography), k-anonymity (trajectory of a user is hidden
among k − 1 other users with the same quasi-identifier)
and spatial location cloaking (spatial noise is added to the
data), but these methods are not efficient, because they
either are not preventing re-identification or they impair
the utility of the data.
An approach presented in [12] is to add time distortion
instead of spatial distortion to the data. With a mechanism
called Promesse the POIs (Points of interest) of users are
hidden by smoothing the speed of the movements along
the trajectories (see Figure 3). This approach is designed
for mobility data in general, e.g. also GPS data, and is a
good example of a method restricting the utility of data -
especially if you apply it to CDR data. The protection of
privacy is working, but one goal of CDR data processing
is to find likely locations of users (POIs) and this approach
is not very useful for this.
A more valuable anonymization method is described in

Figure 3: Overview of Promesse: smoothing the speed of
movements - left: original dataset, right: after enforcing a
constant speed, [12]

[13]. Here, the authors propose Differential Privacy (DP),
a method that creates synthetic data out of the original
one without any one-to-one correspondences between the
two datasets. Their method DP-Star processes key factors
and statistics learned from the original data and generates
synthetic data out of it. This is done with 5 components of
the system (which is shown in Figure 4). First an adaptive
grid construction processes an effective discretization of
the geographical location space of the dataset. With the
trip distribution extraction, the correlation of the start and
end point of a respective trajectory is kept. To mimic
movements patterns of actual trajectories a mobility model
is constructed, which is a Markov model. To estimate the
route length of a synthetic trajectory a private median re-
trieval procedure is applied, which returns a noisy median
of the trajectories. As last step the synthetic trajectory
generation is processed in 5 separate steps: The start and
end cells are generated by drawing a random sample from
the trip distribution. The route length is determined by
approximating it with an exponential distribution of the
median lengths. The synthesizing of the trajectory as a
sequence of cells is done with a random walk on the
Markov mobility model. Finally, cells are converted to
locations by randomly sampling a position with each cell.
As a result a sequence of locations is the final trajectory.

Figure 4: DP-Star architecture, [13]

A comparison of an original and a synthetic trajectory can
be seen in the Figures 5 and 6.

Figure 5: DP-Star: original CDR trajectory, [13]

Figure 6: DP-Star: synthetic CDR trajectory, [13]

3. Insights

With the extraction of clusters from CDR data espe-
cially mobility patterns can give insights in the behavior of
users. This can be used in a large variety of applications.

3.1. Data mining on CDRs

With the goal of characterizing users and extract-
ing their behavior data mining analysis on CDR data is
implemented. There are several different procedures for

Seminar IITM SS 19,
Network Architectures and Services, October 2019 19 doi: 10.2313/NET-2019-10-1_04

clustering and knowledge discovery. Often, they are based
on analysis of the data itself, which yields to the definition
of different subsets of features. For processing the CDR
data can be structured as graphs, labeled sequences or
sectioned vectors. The choice of the data structure can
affect the results, it should be considered if for example
topological information or computational resources are
more important to the selected method.
A concrete data mining approach is presented in [14].
Here the cluster discovery is implemented with the LD-
ABCD algorithm, which extracts separated clusters in
the data and returns for each of the clusters the most
appropriate local metric. This multi-agent algorithm is
working on a weighted fully connected graph representing
the data per agent. On each graph clusters are discovered
by means of multiple Markovian random walks. These
patterns are evaluated by a measure called Cluster Quality,
which is dependent on the concept of graph conductance
and the configuration of the dissimilarity measure. An
agent might identify a set of similar clusters, which are
merged to a meta-cluster. The output of the algorithm is a
set of such meta-clusters. These clusters do not necessarily
include the whole dataset. As a result, LD-ABCD is able
to discover regularities and patterns among CDR data.

3.2. Analysis of tourism dynamics

In tourism data about the behavior is often created
by analyzing interviews and surveys. In the area of big
data social networks and economic datasets play a big
role. Working with CDR data improves the quality of
knowledge in various aspects of the tourism industry by
extracting new indicators like, for example, the flow of
tourists or profiles about different interests of tourists.
These indicators can add value to the evaluation of
touristic events and marketing strategies. In the approach
presented in [15] indicators are mined from CDR data
in the context of the country Andorra. As a result, the
authors extract 6 different indicators by analyzing CDR
data and comparing it to self-reported tourism surveys.
The indicators found are:

• segment tourist flows (based on country of origin)
• new tourists and repeated tourists
• spatial distribution (based on country of origin)
• congestion
• revenues: gained by estimating the income of

tourists in order to obtain the price of the mo-
bile device used with the IMEI-TAC-code of the
records

• tourists interest profiles: gained by comparing
POIs of tourists with activities nearby respective
cell towers

The authors then demonstrate in a case study how to add
the value of those information to evaluations of tourism
strategies by analyzing summer and winter events and
tourist interests’ profiles in Andorra. The results of those
profiles can be seen in Figure 7.

3.3. Improved Quality of Experience with predic-
tive models

For communication service providers (CSP) it is a big
challenge to find patterns of customer behavior to improve

Figure 7: Tourism profiles: visualization of the nationality
of tourists vs. their interests, [15]

the network and the customer’s satisfaction. To assure a
good level of Quality of Experience data management
systems including Fault Management and Performance
Management are required. To improve the performance
of networks operators need analysis and diagnosis tools.
Such a diagnosis tool is presented in [16]. This solution,
which is called ARCD, Automatic Root Cause Diagnosis,
is able to locate the root cause of network inefficiency.
It uses logs which contain CDR data. Those CDRs are
labeled either failed or successful and processed in sev-
eral steps using equivalence class and graph computation.
Finally an automated system diagnosing cellular networks
based on the data collected from large-scale monitoring
systems is implemented.
In [17] Customer Relationship Management (CRM)
records are used to build a predictive model for cus-
tomer churn (termination of the user’s contract). To do
that, CSP store customer transactions to discover patterns
of customer behavior, which helps to find solutions to
reduce their contract termination. CRM records contain
contractual data. CDR data is required to complete it in
order to predict churn. The approach is based on logistic
regression [18] and random forest models [19].

3.4. Identifying criminal’s behavior and social
relations

Using CDR data it is possible to generate useful
informations about the social relations and the behavior
of users. Also, in the field of criminology these insights
might be helpful to crack a criminal case. In [20] crime
information and CDR data is combined to extract rela-
tionships and interactive patterns of criminal suspects.
This is done by implementing a knowledge graph analysis,
which uses several graph traversal algorithms. The two
datasets, CDR data and criminal cases, are both imported
into a knowledge graph. The phone number of a single
CDRs is implemented as nodes as well as the number
of a criminal case. Edges are the call records itself,
connecting phone nodes and the crime records connecting
phones with related cases. The resulting knowledge graph
is computed with a shortest path algorithm to discover
shortest paths in the graph and thereby the contacting

Seminar IITM SS 19,
Network Architectures and Services, October 2019 20 doi: 10.2313/NET-2019-10-1_04

chains between users. Then the betweenness centrality
algorithm is applied to the graph to extract the pivotal
person in a social circle. With the Pagerank algorithm
from Google (can be used as part of APOC library [21])
the importance of a node is calculated (as an example see
Figure 8).
To detect different types of relationships a clustering
model is created. To generate clusters features are de-
fined based on the analysis of the respective data. In this
approach features contain only the temporal component
of CDRs, e.g. for example the duration of a call or the
total number of calls during a specified time interval. With
the features a Gaussian mixture model method computes
the clustering model. As result 5 different clusters are
extracted from the data, which contain unique character-
istics. As an example, one of the resulting clusters has
the properties that the contact of the users is kept for
a longer period of time, they have a long holding time
of their calls and the calls mostly occur in a working
time and in relatively large numbers. This cluster reveals
the relationship of the contacting users to be linked to
their work. So, the model can extract the relationships
and to separate these into possible categories like criminal
confederates, working colleagues or close friends.

Figure 8: Page rank algorithm applied to a knowledge
graph, [20]

4. Conclusion

It can be determined that CDR data can yield to
useful information of the behavior of users. This can
be used in a wide range of different topics. It can be
concluded that especially the mobility patterns and the
information about social interactions extracted by analysis
of the data is valuable. Extracting information like the
POIs of a user and his social relationships can be applied
to improve research about human behavior and help to
implement smart solutions for areas like marketing, urban
transports, criminology, tourism and a lot more. To get
good results working with CDR data it is often combined
with other data, which can be geopositional or topic-
related. Anonymization of CDR data is an important issue
and current solutions do not face this issue in the way
they should. On the other side approaches like DP-Star
promise acceptable utility of the data and the protection
of the privacy of users.

References

[1] Statista, “Number of mobile phone users worldwide from 2015
to 2020 (in billions) ,” https://www.statista.com/statistics/274774/
forecast-of-mobile-phone-users-worldwide/, 2019, [Online; ac-
cessed 07-April-2019].

[2] M. Ficek and L. Kencl, “Inter-call mobility model: A spatio-
temporal refinement of call data records using a gaussian mixture
model,” in 2012 Proceedings IEEE INFOCOM. IEEE, 2012, pp.
469–477.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likeli-
hood from incomplete data via the em algorithm,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 39, no. 1,
pp. 1–22, 1977.

[4] S. Hoteit, G. Chen, A. Viana, and M. Fiore, “Filling the gaps: On
the completion of sparse call detail records for mobility analysis,”
in Proceedings of the Eleventh ACM Workshop on Challenged
Networks. ACM, 2016, pp. 45–50.

[5] G. Chen, S. Hoteit, A. C. Viana, M. Fiore, and C. Sarraute,
“Enriching sparse mobility information in call detail records,”
Computer Communications, vol. 122, pp. 44–58, 2018.

[6] J. H. Friedman, “Greedy function approximation: a gradient boost-
ing machine,” Annals of statistics, pp. 1189–1232, 2001.

[7] A. HADACHI, Amnir; LIND, “Exploring a new model for mobile
positioning based on cdr data of the cellular networks.” arXiv
preprint arXiv:1902.09399, 2019.

[8] Wikipedia, “Voronoi diagram,” https://en.wikipedia.org/wiki/
Voronoi_diagram, 2019, [Online; accessed 12-May-2019].

[9] J. L. Morales and J. Nocedal, “Remark on" algorithm 778: L-bfgs-
b: Fortran subroutines for large-scale bound constrained optimiza-
tion".” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 7–1, 2011.

[10] F. Xiao, M. Song, X. Guo, and F. Ge, “Adaptive kalman filtering
for target tracking,” in 2016 IEEE/OES China Ocean Acoustics
(COA). IEEE, 2016, pp. 1–5.

[11] C. C. Robusto, “The cosine-haversine formula,” The American
Mathematical Monthly, vol. 64, no. 1, pp. 38–40, 1957.

[12] V. Primault, S. B. Mokhtar, C. Lauradoux, and L. Brunie, “Time
distortion anonymization for the publication of mobility data with
high utility,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1.
IEEE, 2015, pp. 539–546.

[13] M. E. Gursoy, L. Liu, S. Truex, and L. Yu, “Differentially private
and utility preserving publication of trajectory data,” IEEE Trans-
actions on Mobile Computing, 2018.

[14] F. M. Bianchi, A. Rizzi, A. Sadeghian, and C. Moiso, “Identifying
user habits through data mining on call data records,” Engineering
Applications of Artificial Intelligence, vol. 54, pp. 49–61, 2016.

[15] Y. Leng, A. Noriega, P. A. S., I. Winder, N. Lutz, and L. Alonso,
“Analysis of tourism dynamics and special events through mobile
phone metadata.” arXiv preprint arXiv:1610.08342, 2016.

[16] M. Mdini, G. Simon, A. Blanc, and J. Lecoeuvre, “Arcd: a solution
for root cause diagnosis in mobile networks,” in 2018 14th Interna-
tional Conference on Network and Service Management (CNSM).
IEEE, 2018, pp. 280–284.

[17] K. A. NESTOR, Dahj Muwawa Jean; OGUDO, “Practical imple-
mentation of machine learning and predictive analytics in cellular
network transactions in real time.” International Conference on Ad-
vances in Big Data, Computing and Data Communication Systems
(icABCD) IEEE, 2018. S. 1-10., 2018.

[18] P. Bühlmann and B. Yu, “Boosting with the l 2 loss: regression
and classification,” Journal of the American Statistical Association,
vol. 98, no. 462, pp. 324–339, 2003.

[19] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5–32, 2001.

[20] Y. FAN, T. YANG, G. JIANG, L. ZHU, and R. PENG, “Identifying
criminals’ interactive behavior and social relations through data
mining on call detail records,” DEStech Transactions on Computer
Science and Engineering, no. aiea, 2017.

[21] neo4j, “APOC Labrary,” https://neo4j.com/developer/neo4j-apoc/,
2019, [Online; accessed 12-May-2019].

Seminar IITM SS 19,
Network Architectures and Services, October 2019 21 doi: 10.2313/NET-2019-10-1_04

Seminar IITM SS 19,
Network Architectures and Services, October 2019 22

Matrix Cryptography

Franziska Steinle, Jonas Jelten∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ge34weg@mytum.de, jelten@net.in.tum.de

Abstract—In this paper the main topic is the Matrix cryptog-
raphy. Matrix is a system that helps humans and machines
to communicate over different ways. Matrix tries to be the
main platform to communicate. Many existing platforms are
missing the save encryption. This subject affects most people
at the moment, because the issue of safe communication
is a very important topic in view of the fact that many
people use these services. Matrix provides safety with the two
encryption algorithms Olm, for conversation between two,
and Megolm, for group conversation. The paper concentrates
on how these algorithms work.

Index Terms—matrix, olm, megolm, encryption, double-
ratchet algorithm, communication, iot, bots, webrtc, video-
telephony, messaging apps

1. Introduction

WhatsApp, Telegram, Slack, Line and many more are
platforms we daily use to communicate with others. But
if you want to organise something, often a problem will
arise. Namely one or more of the concerned persons does
not use the platform you want to use to communicate.
This is because of the high fragmentation that exists in
the communication business. Matrix is created to get rid
of this problem. It should help you to reach all people,
who are at least registered at one platform.

Another problem, which is present in our daily life,
is the safety of our data. Recently data were stolen
from Facebook [1] again and everyone considers, which
platform should be used to guarantee that our personal
information does not get stolen. Matrix provides safety,
because firstly the data are not saved at one server, where
many information can be stolen at once, but on many
different servers. Also the severs save only the encrypted
versions of the messages, the addressee and the sender are
the only ones who can decrypt them.

As you can see these issues affect everyone who does
not want to switch between platforms all the time. Also
it is easy for developers to integrate existing platforms to
the big network. Matrix tries to connect many platforms,
to make modern communication easier, like we know it
from using Email.

The main topic this paper handles is how the safety
of the data is guaranteed. Mainly two algorithms are
used, Olm and Megolm. It is described detailed how they
work and given a little overview about the features Matrix
provides.

The paper is grouped in three main parts. The first
handles the topic, what Matrix is and what it can be

Figure 1: The Matrix Logo [2]

used for. The second section describes the Olm algorithm,
details the double-ratchet algorithm, which is the origin
of Olm, the initialisation, the main algorithm and the
difference of the two described methods. The last part
handles Megolm, also with the initialisation and the main
algorithm in detail.

2. Related work

The next section is about the work that is related to
this paper. First we should remind you that the topic is a
very new one. The developing of Matrix started in 2014
and there are a few to none papers about this topic.

But Matrix is not the first attempt to standardise online
communication, there were others. But all failed and from
the mistakes that were made the developers of Matrix tried
to learn.

Because the topic is very new, mostly literature is used,
that is provided by Matrix itself. Matrix is a open source
project, so many information about the detailed encryption
process is available. Even the code itself is public.

3. Matrix

At the following part we describe what Matrix is and
what it is used for. Matrix is a decentralised communica-
tion network. Decentralised means it has no main server
on which everything is saved, but the data is duplicated
at every participating server. It supports encrypted one-
to-one communication and also group messaging. Matrix
also provides real-time synchronisation and the messages
that are send in JSON format are saved on all participating
servers. [2]

The one-to-one communication encryption is based on
the double ratchet algorithm and is called Olm, whereas
the group communication is encrypted with Megolm. Olm
and Megolm will be described and explained later in this

Seminar IITM SS 19,
Network Architectures and Services, October 2019 23 doi: 10.2313/NET-2019-10-1_05

paper. These algorithms guarantee end-to-end encryption,
which means that the messages are saved encrypted at the
servers and only the addressee can decrypt them again.
[2]

The development of Matrix started in 2014 with a
team, who was employed by Amdocs to work on this
project, and since 2017 they founded their own indepen-
dent company, which is called New Vector. The main
team, consisting of circa twelve people, is supported by
many other developers. [3]

The servers are saving the history of the communica-
tion. When a client sends a message, it will first be added
to the path at his own server and then sent to the other
servers. There the message will be checked, whether the
sending client is really him and if the client can transmit
messages. If everything is correct, the message will be
added to the server’s history. It can happen that two or
more clients send their messages at the same moment, then
the history graph splits and when the concurrent situation
ends, the paths are merged together again, like it is done
in Git. Because of this handling the histories of the servers
are always the same. [2]

3.1. Usage

Now we describe the many different ways the Matrix
network can be used. It can be used to connect messaging
apps like Telegram, WhatsApp and Slack. The network
supports interoperable communication, so that not every-
one needs the same application to chat. The usage can be
compared to Email, because writing and receiving them
is not connected to the program you use. Building new
bridges from existing messaging applications to Matrix is
easy. For example the link to Slack has fewer than 100
lines of code. Matrix can also be added as a chatroom
to other Apps, who do not use any chats until now.
Encryption, Emojis, file transfer and many more features
are possible with Matrix. [2]

Matrix can be used in the Internet of Things (IoT),
which is for example used in cars and drones. Matrix
can connect different IoT silos and support them to com-
municate. The information gained from the silos can be
published directly from the device under the user’s control.
Until now the fragmentation in the IoT is very high and
Matrix can help to solve this problem. When developing a
new device, the developers are also able to directly work
with Matrix. [2]

Another usage is for Voice over IP and WebRTC, so
phoning and video-telephony and many other things are
possible. So far there is no standard protocol for this kind
of communication. Matrix tries to become that, because it
is build simple and familiar for Web developers, so they
can integrate it easily to their Websites. It can be used in
Apps too. [2]

The last described way to use it, are bots. Bots must be
developed for every platform separately, but with Matrix
they only need to be programmed for one. [2]

3.2. Features

Now additional features of Matrix are shown that can
be used, in a room. In a chatroom you can see, if the
other users are online, typing or if they have already read

(a) Chain at the double-ratchet algorithm [4]

(b) The KDF key chains [4]

Figure 2: Double-ratchet algorithm

your message. Also you can adjust how often the server
informs you that new messages are available. The server
can be searched to find old messages. Additionally the
account data of every participant in a room is saved. [2]

4. Olm

At the following part we describe the Olm algorithm,
which is based on the double-ratchet algorithm. Olm is
used to guarantee end-to-end encryption in 1:1 communi-
cation.

4.1. Double-ratchet algorithm

At this section we look at some parts of the double-
ratchet algorithm, which is the base of the Olm algorithm.
It helps to understand the explanation of the Olm algo-
rithm, which follows later in the paper.

Every message is encrypted with its own key, so
hacking the system is harder. These keys are generated
with KDF chains. These chains take a secret and random
KDF key and input data and produce output data, which
is then split in an output key and a new KDF key for

Seminar IITM SS 19,
Network Architectures and Services, October 2019 24 doi: 10.2313/NET-2019-10-1_05

TABLE 1: Olm Pre-key Message Tags

Name Tag Type

One-Time-Key 0x0A String
Base-Key 0x12 String

Identity-Key 0x1A String
Message 0x22 String

the next step in the chain with new input data. All clients
have three chains, one for sending, one for receiving and
a root chain. [4]

One part of the double-ratchet algorithm is the Diffie-
Hellman ratchet. Every client has a Diffie-Hellman key
pair with a public and private key. The sender of a message
sends the public part at the beginning of the message and if
the addressee does not know this key, he creates himself a
new key pair. When a new key is generated, another output
is also created. This is called a Diffie-Hellman ratchet step.
The result of this algorithm is a constantly changing key
pair. [4]

The output of the Diffie-Hellman algorithm is used
to produce new sending and receiving chains, because it
works as input for the root chain. The output from the
root chain is then used as a new KDF key either for a
new sending or a new receiving chain. [4]

The output data from these chains are used as message
keys. The message keys from the sending chain are used
to encrypt the message and the keys from the receiving
chain to decrypt them. The inputs in these chains are
constants. This is called the symmetric-key ratchet and it
works because both participants start with the same Diffie-
Hellman key pair and so all the following chains have the
same outcomes. The only difference is that the sending
and receiving chains are switched. [4]

4.2. Initialisation

Now it is shown how a room must be initialised to
make Olm possible. At first one participant publishes the
public part of his identity key and some single-use keys.
The other participant takes the identity and one single-use
key and builds his own single-use key. With the identity
keys and the used single-use keys a shared secret is made
using the Diffie-Hellman algorithm. This shared secret is
then used to generate the first root key, the first chain key
and a ratchet key. [5]

The next step is that the second participant sends a
pre-key message to the first. Pre-key messages consist of
a version byte, which is usually ’x\03’ and payload bytes.
The payload bytes have key-value format, in which the
keys are encoded. The last three bits of every encoded
key will show, if the following value is an integer or a
string. Encoded strings have first a specific tag followed
from his encoded length and then the string itself. Integers
also have a tag followed by a byte, which saves the least
significant bits from every Byte of the original integer.
These tags for the different values are demonstrated in
table 1. After that the other bytes are stored, with the
high bit switching between one and zero followed by the
remaining seven bits. [5]

To send a pre-key messages a new chain key and
with that a new messages key is derived from the old
chain key. The message contains: the public part of the

TABLE 2: Olm Normal Message Tags

Name Tag Type

Ratchet-Key 0x0A String
Chain-Index 0x10 Integer
Cipher-Text 0x22 String

senders identity key, of the ratchet key and of both single-
use keys, also the current chain index and of course the
message, which is encoded with the message key. The
sender keeps sending these pre-key messages, till the
addressee responds. [5]

When a participant receives a pre-key message he
builds his root and chain key from the identity and single-
use keys. The current state of the chain key can be
replicated because of the received chain index. With that
information he also is able to get the message key and
decrypt the received message. [5]

4.3. Main Algorithm

From now on we describe how the algorithm works
after the initialisation. At the beginning it is important
to know, that the chain keys with an even number are
used to encrypt messages from the first participant and the
odd ones are used for the second participant. To send a
message the sender will check, if a fitting chain key exists,
or else he will create a new ratchet key. With that ratchet
key a new chain and root key are generated. With the
current chain key a message key is build and the message
is send. [5]

A normal message consists of a Version Byte, Payload
Bytes and Message Authentification Code (MAC) Bytes.
The Version Byte is ’x\03’ and the Payload Bytes are
encoded like the pre-key messages. For the normal mes-
sages other tags are valid. These are shown in table 2. The
information carried in these Bytes is: the chain index, to
find the fitting message key, the public ratchet key and the
encrypted real message. The MAC Bytes are part of the
MAC, the length is provided by the encryption algorithm.
[5]

When receiving a message, the addressee first checks
if the ratchet key he receives is the same as his. If not he
computes the next ratchet key and with that a new chain
and root key. Also he checks if the chain indexes are the
same, then he builds a new message key from the chain
key, else he takes an old message key, that fits the index
and was saved before. With that message key he can now
decrypt the received message. [5]

4.4. Differences between the Double-Ratchet Al-
gorithm and Olm

The biggest difference between the Olm and the dou-
ble ratchet algorithm is that Olm has no sending and
receiving chain, but just one in which the index decides
about the sender. The Diffie-Hellman key is called ratchet
byte in the Olm algorithm.

5. Megolm

In the following part we describe the Megolm pro-
tocol, which can protect the communication of many

Seminar IITM SS 19,
Network Architectures and Services, October 2019 25 doi: 10.2313/NET-2019-10-1_05

TABLE 3: Megolm Message Tags

Name Tag Type

Message Index 0x08 Integer
Cipher-Text 0x12 String

recipients in a conversation. Every member of the group
has an outbound session, with a ratchet chain and a key
pair. The key pair is used to authenticate him, so everyone
in the group knows, who is sending and who’s receiving
the message. With the ratchet chain, new message keys are
generated, so the safety is guaranteed. If a member wants
to share his current ratchet key and his public key, he does
this with a peer-to-peer connection to another member.
This connection is encrypted with a safe algorithm. For
example Olm can be used. [6]

For a safe storage of the server history, like it is
provided by Matrix, the servers only save the encrypted
messages. The users can only read these from the point
when they joined the group, because all used message
keys can be built from the first ratchet key they got. [6]

5.1. Initialisation

Every session of each member of a group has a
counter, a key pair and a ratchet with four different
values. There can be many session in a conversation. The
public key helps to authenticate the different sessions.
To initialise such a session, the counter is set null and
a random value is assigned to the other values. To add
new users to this session the session data is shared over a
safe peer-to-peer communication, which can be Olm. [6]

The format to share that information consists of ex-
actly 229 Bytes. At the beginning stands the Version Byte
with the value ’x\02’ followed by the four different ratchet
32-Bit Integers and the public key. It ends with a 64-Bit
Signature, showing who sent the data. The receiver of this
data checks the signature and saves the other values. [6]

5.2. Main Algorithm

The message key in Megolm is derived from the
ratchet. The number of steps that were performed on the
ratchet, plus the encrypted message, is sent to the other
servers. These messages have a certain format, that has a
very similar format to the message from Olm. First the
Version Byte ’x\03’ is sent, then the encrypted Payload
bytes and the MAC Bytes like in Olm. The tags for the
Megolm algorithm are described in table 3. The only
difference is the signature Byte that is sent at the end,
to authenticate the sender of this message. Because the
messages are encrypted this good, they can be sent over
insecure channels. [6]

Every message should be encrypted with another mes-
sage key, so after sending, a new key is created. To do
that four different hash functions are needed. The ratchet
algorithm takes the four different values and changes them
after a certain number of iterations. The message key is
built from a hash of the combination of the four values.
[6]

The value of the ratchet and the counter are stored in
the session. The earliest value of the ratchet can be saved
to guarantee backward compatibility. [6]

6. Conclusion and future work

Finally it can seen that the Matrix cryptography is a
good way to protect our messages. The algorithms are
already used by Riot and WeeChat [2]. And also common
applications like WhatsApp are using techniques like the
end-to-end encryption, which is also provided by Matrix.

Also the idea of connecting all communication plat-
forms, can help many people and make communication
less complicated. Matrix makes a standard and save com-
munication possible. To help us protecting our messages
more people should use the system. A commercial for de-
velopers or for everyone could help to make this network
common. At first the development should be finished, to
avoid mistakes, which are not identified till yet and could
be a huge security lack.

But not everything is perfect, in the Megolm algorithm
were found some lacks in the protection of messages. The
developing team is already working to fix them [6]

References

[1] “Facebook-Hacker klauten hochsensible Daten,”
https://www.welt.de/wirtschaft/article182033314/
Facebook-Hacker-klauten-sehr-private-Daten-von-Millionen-Nutzern.
html.

[2] https://matrix.org/blog/home/, [Online; accessed 07-April-2019].

[3] “Frequently Asked Questions,” https://matrix.org/docs/guides/faq,
[Online; accessed 07-April-2019].

[4] T. Perrin and M. Marlinspike, “The Double Ratchet Algo-
rithm,” https://signal.org/docs/specifications/doubleratchet/, [Online;
accessed 07-April-2019].

[5] “Olm: A Cryptographic Ratchet,” https://git.matrix.org/git/olm/
about/docs/olm.rst, [Online; accessed 07-April-2019].

[6] “Megolm group ratchet,” https://git.matrix.org/git/olm/about/docs/
megolm.rst, [Online; accessed 07-April-2019].

Seminar IITM SS 19,
Network Architectures and Services, October 2019 26 doi: 10.2313/NET-2019-10-1_05

How Good Is QUIC Actually?

Manuel Burghard, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: burghard@in.tum.de, jaeger@net.in.tum.de

Abstract—The Internet Engineering Task Force (IETF) is
currently finalizing the standardization of the QUIC core
transport protocol and HTTP/3 (H3) with a target date of
July 2019 for the final specification. The working group
has defined five key goals that should be improved on:
connection establishment and transport latency, head-of-line
blocking, secure transport, allowing future evolution, as well
as multipath and forward error correction extensions.

In this paper, we explain the problems QUIC tries to
solve, discuss QUIC’s proposed solutions, and highlight their
strengths and weaknesses.

Index Terms—networks, multi-layer transport protocol, la-
tency reduction, performance

1. Introduction

QUIC was initially designed by Roskind [1] at Google
to improve the performance of the SPDY protocol running
on top of the Transmission Control Protocol (TCP) and
Transport Layer Security (TLS). SPDY was the concep-
tional predecessor of HTTP/2 (H2) which was standard-
ized in 2015 [2]. QUIC merged key functionalities of
the transport, security, and application layer into a new
protocol based on the User Datagram Protocol (UDP)
with the goal of reducing latency and improving perfor-
mance [1]. In 2015, a first draft for standardization by
the Internet Engineering Task Force (IETF) was submitted
by Iyengar and Swett [3] and in 2016 a working group
was formed [4]. To distinguish between the IETF’s and
Google’s version of QUIC we refer to Google QUIC as
gQUIC.

Langely et al. [5] state that Google used its control
of the Chrome browser and its web services to create
a large scale test and evaluation environment for the
development of gQUIC. Initially, a small number of users
were randomly selected to test gQUIC in Chrome and the
amount was gradually increased until 2017 when only a
small control group using TCP and TLS was left. The
control over client and server software in combination
with a large user base allowed fast and regression free
iterations of the protocol [5].

IETF QUIC is a stream-multiplexing UDP-based pro-
tocol which always encrypts its payload using TLS 1.3.
In contrast to Google’s gQUIC implementation the IETF
working group decided to separate gQUIC’s transport
protocol and the adopted H2 application protocol to allow
other application level protocols [6]. The adapted version
of H2 for QUIC is currently being standardized, too, and
will be named HTTP/3 (H3) [7].

The QUIC working group defined five key goals QUIC
should deliver [6]:

• Secure the transported payload using TLS 1.3.
• Enable deployment without requiring changes to

network equipment along the path.
• Multiplexing without head-of-line blocking, like

introduced by H2.
• Minimize the connection establishment and trans-

port latency.
• Enable extensions for forward error correction and

multipath connections.

This paper focuses on the IETF version of QUIC in
its discussions, but references observations of real world
data usage by gQUIC because it is the only large scale
deployment as of June 2019.

The remaining parts of this paper are structured in the
following way. In Section 2 an overview of related work is
provided. Section 3 focuses on strengths and weaknesses
of QUIC’s key goals. For each goal, we will discuss the
problems that should be solved, the solutions proposed
by QUIC, and their strengths and weaknesses. Section 4
discusses the overall performance of QUIC in comparison
to TCP. Section 5 concludes this paper and discusses
future work.

2. Related Work

A short overview of QUIC is presented by Yosofie
[8] and a more elaborate introduction of QUIC and H3 is
given by Stenberg [9]. The full specification is currently
available in a series of IETF drafts [7], [10]–[12]. A com-
parison between QUIC and Stream Control Transmission
Protocol (SCTP) is presented by Joseph et al. [13].

Cook et al. evaluated the performance of QUIC in
comparison to H2 based on the page load time [14].
Kakhki et al. [15] present the results of their performance
comparison of TCP and QUIC using different environ-
ments and by running the tests with different versions
of the QUIC implementation of the Chromium project to
compare the development over time. QUIC was originally
intended to be implemented in user space, but Wang et al.
implemented QUIC in the Linux kernel and compared its
performance to TCP [16].

In 2013 Multipath TCP (MPTCP) extensions were
standardized by Ford et al. [17] which define the usage
of multiple (disjoint) paths through a network to provide
TCP’s bi-directional stream. Cheng et al. defined TCP
Fast Open (TFO) [18] which may reduce the connection
establishment by one round-trip time (RTT) for TCP, but

Seminar IITM SS 19,
Network Architectures and Services, October 2019 27 doi: 10.2313/NET-2019-10-1_06

also introduces a number of new security implications,
like resource exhaustion or amplified reflection attacks.

3. Strengths and Weaknesses

In this Section, we evaluate the strengths and weak-
nesses of the key goals set out by the QUIC working
group. Each subsection focuses on one of the goals,
explaining the existing problem and QUIC’s proposed
solution.

3.1. Secure Transport

The leaks and uncoverings by journalists of the last
decade have proven those correct who always warned
about the interest of governments and private corporations
in private user data [19], [20]. Nowadays, it is broadly
acknowledged that user data should be encrypted when
it is sent over the Internet to ensure a minimum level of
integrity, confidentiality and privacy. The HTTP protocol
up to version two relies on TLS on top of TCP for its
(optional) encryption. When opening a connection to a
server, first the three-way handshake of TCP [21] is per-
formed followed by the TLS handshake [22] to establish
a secure bi-directional connection between a client and
a server. During the standardization of H2, the working
group discussed making always-on encryption part of
the protocol, but was unable to find consensus on this
topic [2], [23].

Google’s first specification of QUIC from 2012 [1]
already required always-on encryption for the payload and
some header fields. More information about why some
header fields are encrypted will be provided in Section 3.2.
Google’s initial design for QUIC predated TLS 1.3 and
therefore Langley et al. came up with their own encryp-
tion [24]. The QUIC working group later decided to use
TLS 1.3 for encryption [10], [12].

Always encrypting the payload benefits any potential
end user of the protocol by keeping their communication
private. It also forces companies or other organizations
who wish to use QUIC to provide secure transport, which
should lead to a broader adoption of encrypted communi-
cation on the Internet. On the other hand, there are com-
panies like banks which have to meet certain regulatory
or compliance requirements which effectively prevent the
usage of TLS 1.3 due to being too secure and constrains
these companies to standards like Enterprise Transport
Security (ETS) [25], which was recently assigned a CVE
number for its lack of per-session forward secrecy [26].

The usage of TLS 1.3 comes at a cost, too: QUIC is
vulnerable to application layer replay attacks when using
0-RTT, similar to TLS 1.3, and application layer protocols
must include mitigations [12].

3.2. Enabling Future Changes to QUIC

Iterating on a protocol like TCP or trying to introduce
a new protocol like SCTP often requires long adoption
time because the network equipment along the paths must
support and understand the traffic. Especially router and
firewall vendors are known to make certain assumptions
about the protocols they are supporting, like dropping TCP

packets which contain unknown or new TCP options [9].
Any unexpected change may lead to packets being flagged
as illegitimate which results in rejecting or dropping said
packets. For example, adoption of SCTP on top of IP is
still not widespread today [13]. This stiffness of the exist-
ing Internet infrastructure is referred to as ossification [5],
[9].

In addition to that, protocols like TCP or SCTP are
usually implemented in the kernel and require the com-
mitment of operating system vendors, changes to that
implementation are bound to operating system updates,
and users must install those updates until an application
can rely on a new protocol. As of June 2019 SCTP is still
not supported by Microsoft Windows or Apple’s operating
systems, but third party implementations exist [27].

QUIC tries to solve the problem of adoption and
allowing for future changes: First of all, it is built on
top of UDP. Existing network equipment already supports
UDP and does not require support for a completely new
transport layer protocol. Second, QUIC can be fully im-
plemented in the user space which makes it independent of
any support in an operating system kernel. A downside of
this approach is a potential performance penalty induced
by system calls and context switches, but a user space
implementation decouples development from the operat-
ing system release schedule and allows faster iteration
and easier deployment to legacy systems. Applications can
include a QUIC library and can distribute newer versions
independent of the operating system they are running on,
like Google is doing with Google Chrome. The current
adoption rate also speaks for QUIC’s approach: Langley et
al. [5] estimated the amount of QUIC traffic on the Internet
at 7% in 2017, about five years after the introduction. In
addition to that, QUIC also includes version negotiation
in the protocol as part of opening a connection [10],
thereby enabling the introduction of new QUIC versions
while allowing clients and servers to agree on a version
supported by both sides.

To prevent ossification, QUIC tries to encrypt as much
data as possible, including signaling information [10],
to hide it from network equipment and prevent vendors
of said equipment from making assumptions that will
interfere or prevent future changes to the protocol.

The strengths of the solutions provided are obvious:
The adoption rate is already significant and precautions
have been taken to simplify changes to the protocol in
the future. Nevertheless, 4.7% of video playback traffic is
having problems due to network equipment blocking, rate
limiting, or otherwise limiting UDP traffic [5].

3.3. Head-of-Line Blocking

Head-of-line (HOL) blocking describes the situation
of sequential packets or requests being held up by the
first item in a serial queue. HOL blocking can appear
on different network layers like TCP when a packet is
dropped/delayed or in HTTP/1.1 (H1.1) when all open
TCP connections to a server are already transferring re-
quests and additional request are forced to wait until an-
other request has finished. With the introduction of H2 and
its multiplexed streams the number of connections opened
by e.g. a browser could be reduced to one compared to the
up to six from H1.1 while also allowing multiple requests

Seminar IITM SS 19,
Network Architectures and Services, October 2019 28 doi: 10.2313/NET-2019-10-1_06

Client Server
SYN

SYN ACK

ACK
CHLO

SHLO;CERT;S
HD

CKE;CCS;F

CCS;F

TCP

TLS

(a) TCP and TLS handshake (simpli-
fied).

Client Server
Inchoate CHLO

REJ
Complete CHLOEncrypted Request

SHLO

Encrypted Response

(b) QUIC 1-RTT connection establish-
ment [5]

Client Server
Complete CHLOEncrypted Request

SHLO

Encrypted Response

(c) QUIC 0-RTT connection establish-
ment [5]

Figure 1: Comparison of TCP and TLS, QUIC 1-RTT, and QUIC 0-RTT handshakes.
Abbreviations used in the diagrams: ClientHello (CHLO), ServerHello (SHLO), Certificate (CERT), ServerHelloDone (SHD),
ClientKeyExchange (CKE), ChangeCipherSpec (CCS), Finished (F), Reject (REJ)

being performed at the same time. Therefore, H2 may be
less likely to suffer from application layer HOL blocking
in comparison to H1.1, but is more prone to HOL blocking
on the TCP layer [9], [28].

Similar to H2, QUIC supports multiple streams over
a single connection, but loss detection and recovery are
part of QUIC itself and not of an underlying protocol layer
like TCP. UDP is connectionless and does not provide any
loss detection or recovery at all. In case of lost packets,
recovery only impacts the streams whose frames were part
of the lost packets. Other streams are not affected by the
recovery and hence not blocked. Retransmission is also
different when compared to TCP. Instead of retransmitting
a lost packet, QUIC checks for every lost stream frame
whether the contained data is still needed. If that is the
case, the stream frames and packets are then retransmitted.
If a stream is reset in the meantime, the lost frames for
this stream are not retransmitted [10], [11].

Eliminating HOL blocking leads to better performance
of QUIC in lossy environments. The tests performed by
Kakhki et al. [15] support this claim for desktop and
mobile environments, although the gains are inferior in the
mobile environment due to slower packet consumption of
QUIC’s userspace implementation. The downside is that
loss detection and recovery were reimplemented on top
of UDP although TCP implementations already exist and
are well tested.

3.4. Connection Establishment and Transport
Latency

The main goal set out initially by Google was to
reduce latency, especially for connection establishment
which usually includes some form of handshake, like
the well known TCP three-way handshake [1]. For an
H2 connection to a server, first a TCP connection is
opened, followed by a TLS handshake if an encrypted
connection is desired. The full handshake flow for TCP
and TLS is shown in Figure 1a and results in a minimum
of three round trips until a connection is established and
application data can be transferred. In an high delay
environment, the handshake latency can highly influence

the perceived performance of the network connection and
thereby degrade the user experience.

QUIC improves on connection establishment by com-
bining the transport and cryptographic handshake [10].
This results in a 1-RTT handshake which means only
one round-trip is needed until application data can be
transfered using the newly established connection. Fur-
thermore, QUIC also supports 0-RTT handshakes, which
use cryptographic information from a previous connection
for even faster connection establishment allowing data
transfer to start with the initial message from a client.
Both handshake variants can be seen in Figure 1b and 1c.
Data released by Google on handshake latencies shows
that TCP and QUIC handshake latencies are growing
linearly with growing RTTs but QUIC’s slope is lower
due to 0-RTT [5]. Even when considering just the 1-RTT
connection establishments, QUIC only takes about half
the time of TCP. The benefit of supporting 0-RTT hand-
shakes was further shown by [15] who compared QUIC
with and without enabled 0-RTT handshakes and found
significantly improved performance for small transfers up
to 10 kB. There was an attempt to reduce the handshake
latency for TCP with TFO in [18], but according to Paasch
it suffers from ossification and the success rate is at about
80% [29]. Google’s servers support TFO but the influence
of TFO for their handshake comparison is not shown or
highlighted [5].

TLS 1.3 support for 1-RTT and 0-RTT handshakes
is not limited to QUIC and can can be used in the
underlying connection of an H2 stack to further improve
the connection establishment latency in the classic HTTP
stack. This could diminish the performance gains of QUIC
in comparison to TCP and TLS.

3.5. Multipath and Forward Error Correction

QUIC’s multipath extension is not part of the July
2019 milestone but adoption is scheduled for December
2019 and the handover to the Internet Engineering Steer-
ing Group (IESG) is scheduled for May 2020 [6]. De
Coninck et al. present an experimental implementation of
QUIC multipath with the goals of resilience to connection

Seminar IITM SS 19,
Network Architectures and Services, October 2019 29 doi: 10.2313/NET-2019-10-1_06

Search
latency

Video
latency

Video
rebuffer rate

Desktop 8.0 8.0 18.0
Mobile 3.6 5.3 15.3

TABLE 1: Mean percent reduction of the search latency,
video latency, and video rebuffer rate observed by [5].

failures and the combination of available resources, and
compare its performance to MPTCP [30]. They are also
the authors of the current IETF draft for QUIC multi-
path [31]. Forward Error Correction (FEC) is out of scope
of the first standardization [6]. Google supported FEC in
gQUIC but removed it in 2016 due to the unconvincing
results and the increase in code complexity [5]. Due to
these reasons we do not further discuss multipath and
FEC.

4. Overall Performance

In this section we want to compare different reports
about QUIC’s performance. We focus on three papers
starting with Langley et al. [5].

In 2017 Google presented the results and measure-
ments of their production deployment of QUIC for all
Google services with probably the largest sample size [5].
Their observations of handshake latencies were already
summarized in Subsection 3.4. Google evaluated the per-
formance of QUIC in comparison to TCP and TLS using
the search latency, video latency, and video rebuffer rate as
metrics. We only summarize the mean percent reduction in
Table 1 and refer to [5] for more details. Clearly visible
in the data provided are the inferior gains of QUIC in
the mobile environment. This is explained by a lower
0-RTT handshake rate due to mobile devices changing
IP addresses when switching networks and, thereby in-
validating the cached cryptographic information for the
handshake. Another reason for a lower 0-RTT handshake
rate is hitting different servers causing a 0-RTT handshake
to fail, too. The results for video latency are additionally
influenced by the YouTube app which performs hand-
shakes in the background to improve latency. The video
rebuffer rate measures the time spent on rebuffering data
during video playback and is not directly dependent on
the handshake latency. Instead, it depends on loss recov-
ery and overall throughput of the established connection.
According to Langley et al. QUIC performs best in high
delay, low bandwidth, and lossy networks. This claim
is further supported by comparing QUIC’s performance
when used in India to the performance in South Korea
with both countries being on opposite ends of Internet
quality scale with regard to delay, loss, and throughput.
During the tests, they also noticed higher CPU usage
for QUIC. Even after optimizations QUIC doubled TCP
and TLS CPU usage. Stenberg [9] mentions the slowness
and higher CPU consumption of QUIC, too, and explains
it with the lack of hardware acceleration and lack of
optimized UDP stacks.

Cook et al. [14] evaluated QUIC’s performance based
on the Page Load Time (PLT) of websites in different
scenarios with regard to delay, loss, network type (cellular
vs ADSL), and network load in comparison to H1.1
and H2 on top of TCP and TLS. The test environment

consisted of copies of websites hosted on virtual machines
and their real world counterparts. Their tests showed that
QUIC performs better under delay, in lossy networks, and
when connected to a cellular network. These results match
with the observations of Langley et al. described above.
In addition to the PLT evaluation, the influence of the
distribution of a website was investigated showing that
QUIC performs better if the number of servers hosting
website resources is low.

Another evaluation of QUIC’s performance was done
by Kakhki et al. [15] using Chrome and the corresponding
server component [32]. The scenarios compared QUIC
to TCP based on PLT in a desktop and mobile environ-
ments, video streaming performance, the fairness of QUIC
with regard to sharing of bottleneck bandwidth, and the
impact of in-network proxying when using QUIC. The
performance characteristics of QUIC for the PLT match
with the results we presented before: QUIC performs
better than TCP for small objects and connections with
loss, the gains on the desktop are higher than those on
mobile devices. Interesting findings include QUIC’s poor
performance when packet reordering is required, resulting
in TCP outperforming QUIC. This is explained by the
threshold for negative-acknowledgments being based on
a fixed number in QUIC causing it to start retransmis-
sion whereas TCP benefits from dynamically adapting the
threshold. During the setup of the testbed, the authors
noticed that the QUIC server’s default parameters result in
worse performance when compared to Google’s produc-
tion QUIC servers and therefore tweaked the parameters
until the performance matched that of Google’s servers.
An unfairness of QUIC was observed when comparing
the consumption of bottleneck bandwidth: QUIC vs QUIC
results in equal shares, but QUIC vs TCP results in an
unfair imbalance towards QUIC although both used the
same congestion control algorithm.

5. Conclusion and Future Work

One interesting area of future work is to compare
QUIC’s multipath capabilities to those of MPTCP when
the associated milestone is done by the IETF working
group. MPTCP is already implemented in major operating
systems like Linux [33]. Additional future work may focus
on performance comparisons of H2 over TCP and TLS,
especially how 1-RTT and 0-RTT handshakes of TLS 1.3
influence the results.

The design of QUIC is the logical consequence of
combining the benefits of recent network protocols and
continuing good ideas a step forward. Always-on encryp-
tion is not just for the benefit of the end user’s privacy, but
prevents network ossification. The possibility of an user
space implementation allows deployment independent of
any minimal operating system version and rapid iterations.
Faster handshakes and the elimination of HOL blocking
lead an improved user experience. Overall, the strengths
mentioned in this paper outweigh the weaknesses. QUIC
may not replace TCP and TLS immediately, but there
are areas like high latency and lossy networks or cellular
networks where QUIC is well suited to take over.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 30 doi: 10.2313/NET-2019-10-1_06

References

[1] J. Roskind, “Quic: Multiplexed stream transport over
udp,” https://docs.google.com/document/d/1RNHkx_
VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34, 2012, [Online:
accessed 10-June-2019].

[2] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer
Protocol Version 2 (HTTP/2),” RFC 7540, May 2015. [Online].
Available: https://rfc-editor.org/rfc/rfc7540.txt

[3] J. Iyengar and I. Swett, “QUIC: A UDP-Based Secure
and Reliable Transport for HTTP/2,” https://tools.ietf.org/id/
draft-tsvwg-quic-protocol-00.txt, 2017, [Online; accessed 04-June-
2019].

[4] M. Westerlund and S. Dawkins, https://datatracker.ietf.org/doc/
charter-ietf-quic/00-00/, 2016, [Online; accessed 04-June-2019].

[5] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey,
J. Dorfman, J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade,
R. Hamilton, V. Vasiliev, W.-T. Chang, and Z. Shi, “The quic
transport protocol: Design and internet-scale deployment,” in
Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’17. New
York, NY, USA: ACM, 2017, pp. 183–196. [Online]. Available:
http://doi.acm.org/10.1145/3098822.3098842

[6] Internet Engineering Task Force, “QUIC (quic),” https://
datatracker.ietf.org/wg/quic/about/, [Online; accessed 04-June-
2019].

[7] M. Bishop, “Hypertext Transfer Protocol Version 3 (HTTP/3),”
Internet Engineering Task Force, Internet-Draft draft-ietf-quic-
http-20, Apr. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-20

[8] M. Yosofie, “Recent progress on the QUIC protocol,” in Pro-
ceedings of the Seminar Innovative Internet Technologies and
Mobile Communications (IITM), Winter Semester 2018/2019, ser.
Network Architectures and Services (NET), G. Carle, S. Günther,
and B. Jaeger, Eds., vol. NET-2019-06-1. Munich, Germany: Chair
of Network Architectures and Services, Department of Computer
Science, Technical University of Munich, Jun. 2019, pp. 77–81.

[9] D. Stenberg, “HTTP/3 explained,” https://http3-explained.haxx.se/
en/, 2018, [Online; accessed 04-June-2019].

[10] J. Iyengar and M. Thomson, “QUIC: A UDP-
Based Multiplexed and Secure Transport,” Internet En-
gineering Task Force, Internet-Draft draft-ietf-quic-transport-
20, Apr. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20

[11] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion
Control,” Internet Engineering Task Force, Internet-Draft draft-ietf-
quic-recovery-20, Apr. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-20

[12] M. Thomson and S. Turner, “Using TLS to Secure QUIC,”
Internet Engineering Task Force, Internet-Draft draft-ietf-quic-
tls-20, Apr. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-20

[13] A. Joseph, T. Li, Z. He, Y. Cui, and L. Zhang, “A Comparison
between SCTP and QUIC,” Internet Engineering Task Force,
Internet-Draft draft-joseph-quic-comparison-quic-sctp-00, Mar.
2018, work in Progress. [Online]. Available: https://datatracker.
ietf.org/doc/html/draft-joseph-quic-comparison-quic-sctp-00

[14] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “Quic: Better
for what and for whom?” in 2017 IEEE International Conference
on Communications (ICC), May 2017, pp. 1–6.

[15] A. M. Kakhki, S. Jero, D. Choffnes, C. Nita-Rotaru, and
A. Mislove, “Taking a long look at quic: An approach for
rigorous evaluation of rapidly evolving transport protocols,” in
Proceedings of the 2017 Internet Measurement Conference, ser.
IMC ’17. New York, NY, USA: ACM, 2017, pp. 290–303.
[Online]. Available: http://doi.acm.org/10.1145/3131365.3131368

[16] P. Wang, C. Bianco, J. Riihijärvi, and M. Petrova, “Implementation
and performance evaluation of the quic protocol in linux kernel,”
in Proceedings of the 21st ACM International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems,
ser. MSWIM ’18. New York, NY, USA: ACM, 2018, pp. 227–234.
[Online]. Available: http://doi.acm.org/10.1145/3242102.3242106

[17] A. Ford, C. Raiciu, M. J. Handley, and O. Bonaventure, “TCP
Extensions for Multipath Operation with Multiple Addresses,”
RFC 6824, Jan. 2013. [Online]. Available: https://rfc-editor.org/
rfc/rfc6824.txt

[18] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain, “TCP
Fast Open,” RFC 7413, Dec. 2014. [Online]. Available:
https://rfc-editor.org/rfc/rfc7413.txt

[19] G. Greenwald, “NSA collecting phone records of millions of
Verizon customers daily,” Jun. 2013, [Online; accessed 21-June-
2019].

[20] K. Roose, “Facebook Emails Show Its Real Mission: Making
Money and Crushing Competition,” Dec. 2018, [Online; accessed
21-June-2019].

[21] “Transmission Control Protocol,” RFC 793, Sep. 1981. [Online].
Available: https://rfc-editor.org/rfc/rfc793.txt

[22] E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3,” RFC 8446, Aug. 2018. [Online]. Available:
https://rfc-editor.org/rfc/rfc8446.txt

[23] “Http/2 frequently asked questions,” https://http2.github.io/faq/
#does-http2-require-encryption, [Online: accessed 10-June-2019].

[24] A. Langley and W.-T. Chang, “Quic crypto,” https://docs.
google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_
L2f5LTaDUDwvZ5L6g, 2013, [Online: accessed 10-June-2019].

[25] T. Rutkowski and S. Compans, “ETSI TS 103 523-
3,” https://www.etsi.org/deliver/etsi_ts/103500_103599/
10352303/01.01.01_60/ts_10352303v010101p.pdf, European
Telecommunications Standards Institute, Technical Specification,
Oct. 2018, [Online; accessed 16-June-2019].

[26] “CVE-2019-9191,” https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2019-9191, 2019, [Online; accessed 23-June-2019].

[27] M. Tüxen, “usrsctp,” https://github.com/sctplab/usrsctp, [Online:
accessed 15-June-2019].

[28] D. Stenberg, “http2 explained,” https://daniel.haxx.se/http2/, 2014,
[Online; accessed 15-June-2019].

[29] C. Paasch, “Network Support for TCP Fast Open,” 2016, presented
at NANOG67 in Chicago, IL. [Online]. Available: https://archive.
nanog.org/sites/default/files/Paasch_Network_Support.pdf

[30] Q. De Coninck and O. Bonaventure, “Multipath quic: Design and
evaluation,” in Proceedings of the 13th International Conference
on Emerging Networking EXperiments and Technologies, ser.
CoNEXT ’17. New York, NY, USA: ACM, 2017, pp. 160–166.
[Online]. Available: http://doi.acm.org/10.1145/3143361.3143370

[31] Q. D. Coninck and O. Bonaventure, “Multipath Extensions for
QUIC (MP-QUIC),” Internet Engineering Task Force, Internet-
Draft draft-deconinck-quic-multipath-03, Aug. 2019, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-deconinck-quic-multipath-03

[32] “The chromium projects,” https://www.chromium.org, [Online; ac-
cessed 18-June-2019].

[33] “MultiPath TCP - Linux Kernel implementation,”
http://multipath-tcp.org/pmwiki.php/Main/HomePage, [Online;
accessed 16-June-2019].

Seminar IITM SS 19,
Network Architectures and Services, October 2019 31 doi: 10.2313/NET-2019-10-1_06

Seminar IITM SS 19,
Network Architectures and Services, October 2019 32

Porting ixy.rs to Redox

Simon Ellmann, Paul Emmerich∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ellmann@in.tum.de, emmericp@net.in.tum.de

Abstract—Drivers are traditionally written in C and make
up a huge part of every operating system. 66% of all
code in the Linux kernel is driver code, and the current
number of drivers and their complexity are still increasing.
However, this complexity comes at a price of decreasing
readability of the code and greater vulnerability. Some of the
problems related to drivers, especially concerning their safety
and security, can be mitigated by running drivers in user
space. This is especially beneficial on modern microkernel
architectures where the operating system can seamlessly
interact with user space drivers. A good example for such an
operating system is Redox, a Unix-like OS written in Rust.

In this paper, we implement the first 10 Gbit/s user space
network driver for Redox by porting an existing Linux imple-
mentation, ixy.rs. We evaluate the driver’s overall structure,
integration into the operating system and performance and
compare it to the original implementation and Redox’s other
network drivers. We show that our driver is many times
faster than Redox’s other drivers although it uses less unsafe
code. Our code is available as free and open source under
the AGPL-3.0 license at https://github.com/ackxolotl/ixgbed.

Index Terms—Rust, User Space Driver, Redox, Performance,
Microkernel

1. Introduction

Up until the 1940s, computers could only perform
series of single tasks. Today well known features like
scheduling, memory management and multitasking did not
exist in operating systems – as far as programs were run in
operating systems at all – until the 1960s when hardware
abstraction became prevalent. In 1969, the development
of Unix started, an operating system containing most of
its functionality inside a big kernel, thus forming one of
the first monolithic kernel architectures. The development
of Unix set a variety of standards for today’s operating
systems. Popular operating systems like Windows, macOS
and Linux-based ones like Debian or Ubuntu are still built
on monolithic or hybrid kernel architectures.

Although monolithic kernels are very common and
might be easier to implement, they are considered obso-
lete by researchers since the 1990s (see the Tanenbaum–
Torvalds debate). This is due to various flaws in their
architecture: Programming mistakes in the kernel can take
down the whole system or corrupt other processes since
every piece of software in the kernel is executed with
full privileges, development of new software is tedious
because common libraries and debuggers are missing and

maintenance of the kernel can be challenging if its com-
plexity is rapidly increasing (e.g. like the Linux kernel).

A more temporary approach to operating system de-
sign are microkernels. Unlike monolithic kernels, micro-
kernels try to minimize the amount of software running
in kernel space by moving almost all applications to user
space. This includes (but is not limited to) the following
services running in user space: Drivers, file system and
inter-process communication. Keeping the kernel small
yields various advantages: Kernel components tradition-
ally written in C can be rewritten in other programming
languages, execution of this software can be easily de-
bugged in user space and faults in user space daemons
have no impact on the overall system.

So why is all this relevant? In 2019, Cutler et al.
evaluated security bugs leading to arbitrary code execution
in the Linux kernel [1]. Of the 65 bugs published in the
CVE database in 2017 with patches available, 40 were
memory bugs that could have been prevented by using
a memory-safe language like Go or Rust. Of these 40
memory bugs, 39 were located in device drivers. Since
66% of the code in the Linux kernel is driver code [2],
the findings of Cutler et al. reveal that drivers offer a large
attack surface and many possibilities for improvement.

Rewriting drivers in memory-safe programming lan-
guages can mitigate many safety and security faults. An
example for such a driver is ixy.rs [3], a rewrite of the
simple user space network driver ixy [4] in Rust for Linux.
Unfortunately, Linux is not particularly suitable for user
space networking due to its monolithic kernel design: The
OS network stack cannot be used by user space drivers and
memory allocation for the PCIe device is only possible by
using a quirk in Linux. However, there are other operating
systems based on microkernels like Redox [5], a Unix-
like operating system written in Rust, that implement full
network functionality in user space.

In this paper, we try to combine the advantages of
a user space network driver and an operating system
based on a microkernel, both written in a memory-safe
programming language, by porting ixy.rs to Redox. The
common denominator of ixy.rs and Redox is Rust [6],
a novel programming language illustrated in Section 2.
Section 3 introduces Redox, while the following Section is
about ixy. In Section 5 we evaluate ixy on Redox, Section
6 presents related work to the inclined reader. We sum-
marize our results in Section 7 and present opportunities
for future work in the area of ixy.rs on Redox.

The main contribution of this paper is the first 10
Gbit/s network driver on Redox [7].

Seminar IITM SS 19,
Network Architectures and Services, October 2019 33 doi: 10.2313/NET-2019-10-1_07

2. Rust

Rust is a relatively new systems programming lan-
guage focusing on memory- and thread-safety. Its first
stable version was released in May 2015. While Rust
provides zero-cost abstractions like C++ and is also syn-
tactically similar, its main selling point is memory safety
due to its novel ownership system [6].

2.1. Type System

Rust is statically typed, i.e. the types of all variables
and functions are checked at compile time. Functions
have to be annotated by programmers explicitly, types
of variables can be inferred in most cases by the Rust
compiler. The type system provides “traits”, i.e. interfaces
that can be implemented by multiple types similar to type
classes in Haskell, and generic parameters to allow for
inheritance and ad hoc polymorphism.

2.2. Memory Management

Rust’s core feature is its unique ownership system
which enforces Rust’s guarantees of memory safety and
data-race freedom. While many programming languages
make use of garbage collectors, Rust ensures at compile
time that memory is allocated, handled and freed correctly.
This yields two major advantages compared to garbage
collection:

1) Memory handling, especially cleanup of re-
sources, is deterministic.

2) There are no performance issues for real-time
applications caused by garbage collection.

Unlike in C or C++, it is not possible in (safe) Rust to
build a program leading to undefined behaviour by free-
ing memory twice, accessing dangling pointers or other
operations violating memory safety due to the additional
rules that Rust enforces on memory handling. Since Rust
verifies memory safety at compile time and not at runtime,
there is no size or performance overhead in compiled
programs [8].

2.3. Ownership

The ownership system of Rust ensures that every value
in Rust has a unique owner and that the scope or lifetime
of a value depends on the scope/lifetime of its owner, i.e. if
the owner of a value goes out of scope the value is freed
(similar to Resource Acquisition Is Initialization (RAII)
from C++) [6]. Ownership can be transferred between
variables, values are either copied or moved in memory
depending on whether the value is stored on the stack (and
it is thus cheap to copy the value) or it is stored on the
heap. Where a value is placed in memory usually depends
on whether the size of a value is known at compile time
or not. Values can be passed to functions by immutable
or mutable references, or by value. As long as there is a
reference to a value, the value cannot be moved (to in-
hibit dangling pointers). There can be multiple immutable
references to a value or a single mutable reference. While
a mutable reference to a value exists, i.e. the value is

borrowed mutably, the value can only be modified through
that reference and not through its owner to prevent data
races.

2.4. Safe and Unsafe

The ownership system of Rust is very powerful. How-
ever, static analysis is quite conservative and still subject
to limited decision capabilities. There are valid programs
that are rejected by the compiler when the compiler is
unable to decide whether the code upholds the required
guarantees. This is always the case for programs that

• call foreign functions (e.g. from libc),
• dereference raw pointers,
• access and modify mutable static variables or
• call unsafe functions or implement unsafe traits.

These features can be used inside an unsafe block. In
unsafe code the developer has to ensure that the program
obeys the memory guarantees of Rust. Unsafe code in
Rust is nothing unusual, e.g. many parts of the Rust
standard library make use of unsafe code. Nevertheless, by
verifying parameters before and return values after unsafe
code, developers ensure that the unsafe operations are
actually safe, thus forming safe wrappers around unsafe
code.

3. Redox

Redox is an operating system written in Rust. It was
published in 2015 by Jeremias Soller, is actively main-
tained since then and has received over 2,000 contributions
by more than 70 developers. Similar to the Rust program-
ming language, Redox focuses on safety, reliability and
eventually performance [5]. To achieve these goals, the
Redox developers opted for a microkernel architecture
similar to MINIX [9]. Redox’s developers try to “gen-
eralize various concepts from other systems, to get one
unified design” [10], namely concepts from Plan 9 [11],
Linux and BSD.

3.1. Everything is a URL

Redox generalizes Unix’s “everything is a file” with
its concept of “everything is a URL” [10], i.e. URLs,
schemes and resources are used as communication primi-
tives between applications. URLs model segregated virtual
file systems that can be arbitrarily structured. They con-
sist of two parts separated by a colon, the scheme (e.g.
file) and a reference part (e.g. /usr/bin/ping). URLs
identify resources like genuine files in the filesystem,
websites, hardware devices and other primitives. Schemes
are created by the kernel or user space daemons. They are
registered by opening the name of the scheme in the root
scheme (which defaults to empty), i.e. to create the file
scheme a process has to open :file with the CREATE flag.
Accesses to a URL are processed by the scheme-registrar
which returns a handle to the requested resource, e.g. a
file descriptor. Resources behave either file- or socket-like,
i.e. reads and writes are buffer- or stream-oriented.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 34 doi: 10.2313/NET-2019-10-1_07

3.2. Drivers in Redox

As is to be expected with a microkernel architec-
ture, drivers in Redox operate as user space daemons.
PCI drivers are launched on boot by Redox’s PCI driver
manager, pcid which in turn is launched by Redox’s
init process. pcid parses a configuration file associating
PCI device vendors and classes with Redox’s drivers and
their command line parameters, i.e. name of the device,
location of Base Address Registers (BARs), etc. Drivers
have to implement various functions like open, read,
write, close, etc. to communicate with other applications
via Redox’s URL API. Network drivers have to register
the network scheme.

Communication between other user space programs
and the driver is handled via socket-like resources.

4. ixy

ixy is a light-weight user space network driver writ-
ten for educational purposes [4]. It is a custom re-
implementation of Intel’s ixgbe driver for 10 Gbit NICs.
ixy’s architecture is inspired by DPDK [12] and Snabb
[13]. ixy does not rely on a kernel module (like Snabb)
and features memory management of DMA buffers with
custom pools, polling instead of an interrupt-driven design
and an API that supports batch operations for receiving
and transmitting packets (like DPDK). ixy was originally
written in C by P. Emmerich et al. in 2017 but has been
ported to more than ten other programming languages
including Go, Haskell, Python and Rust (also known as
ixy.rs).

We will describe the architectural design and the im-
plementation of ixy on Redox in the following subsec-
tions. To understand how ixy and similar drivers work it
is necessary to understand how the driver and the device
communicate with each other. There are two communi-
cation channels for PCIe devices: The driver can access
the device’s configuration registers (BARs) to control the
device and the device can access main memory via direct
memory access (DMA) to read and write packet data and
packet status information [4].

4.1. Memory Management

While ixy makes use of custom memory pools which
are a reasonable choice for user space drivers on Linux
due to missing tools for allocating and managing DMA
memory in user space and to gain high performance, ixy.rs
on Redox does not use custom memory pools for two
reasons:

1) Redox provides an API for handling DMA mem-
ory in user space.

2) Performance of the driver is restricted due to its
interrupt-driven design and the fact that packets
cannot be processed in batches. These perfor-
mance barriers cannot be mitigated by custom
memory pools.

ixy.rs on Redox allocates all DMA memory via Re-
dox’s syscall API. Accesses to the device’s registers
(BARs) happen via memory mapped IO: The device is
mapped into the memory space of the driver, read and

...

ixgbe adv rx desc.read.pkt addr

receive queue packet buffers

Figure 1: DMA memory containing receive queue with
descriptors pointing to packet buffers.

write operations on the registers lead to data transfer on
the PCIe bus.

4.2. Receiving Packets

NICs provide multiple ring buffers to receive and
transmit packets. Incoming traffic can be split with fil-
ters if multiple queues are configured [4]. For the sake
of simplicity, ixy on Redox uses only one receive and
one transmit queue. Receive and transmit queues work
in a similar way: Every queue is a ring buffer filled
with descriptors that point to the memory address of the
corresponding packet and contain status information about
the packet, i.e. size of a received packet or an indicator
whether a packet queued for transmittion has been sent
out by the NIC yet. The structure of a receive queue is
illustrated in Figure 1. Transmit and receive queues are
managed by the driver and the device on a rotating basis.
The device indicates its current position in the ring via
the head pointer, the driver via the tail pointer [4]. Both
pointers can be accessed through the BARs of the device.

Before receiving packets, the driver has to initialize the
descriptors in the receive queue with physical addresses.
For every incoming packet, the NIC writes the packet’s
data to the memory address given in the descriptor, up-
dates the descriptor and increases the queue’s head pointer.

Whether new packets have arrived can be checked by
reading the head pointer. This is what the e1000 driver and
rtl8186 driver of Redox do [14]. Since accessing the head
pointer of the queue incurs a PCIe round trip, a better way
to check for new packets is to read the descriptor status
field from DMA memory that is effectively kept in the
CPU cache [4].

With its custom memory pools, ixy on Linux maintains
a stack of free buffers and tracks which buffers are cur-
rently in use by the device and the driver. When reading
a packet, the corresponding buffer is passed to the user
application and the physical address of the descriptor is
updated to an unusued buffer from the free stack. Unfor-
tunately, ixy on Redox cannot pass its memory to other
user space applications and thus has to copy all received
data. However, this obviates the need for a free stack
and simplifies the driver: All buffers can be immidiately
reused after copying the packet data, no addresses in the
descriptors have to be changed.

4.3. Transmitting Packets

Transmitting packets works similarly to receiving
packets but is more complicated as packets are sent

Seminar IITM SS 19,
Network Architectures and Services, October 2019 35 doi: 10.2313/NET-2019-10-1_07

asynchronously for performance reasons. The transmit
functions consists of two parts: verifying if packets from
previous calls have been sent out and putting the current
packet in the transmit queue. The first part is usually called
cleaning and is executed for the first time when every
descriptor of the transmit queue has been used once, i.e.
the transmit functions keeps track of used descriptors and
runs its cleaning part when the counter of free descriptors
equals zero. Cleaning works as follows: The status flag of
the descriptor after the last cleaned descriptor is checked.
If the descriptor is done, i.e. the packet has been sent out,
the next descriptor is checked and the clean index and the
counter of free descriptors are increased by one. If the
descriptor is not done yet or the whole queue was cleaned,
cleaning is finished and the packet to be sent is put into
the transmit queue by copying the packet’s data to the
descriptor’s buffer, updating the descriptor (e.g. setting the
packet size) and increasing the tail pointer of the transmit
queue.

4.4. Interrupts

The official ixy driver works in poll-mode only [4]
and does not support interrupts yet. This is not a technical
restriction but a performance decision since Linux offers
full interrupt support in user space. However, T. Zwickl
has implemented interrupt-handling for the original ixy
driver [15]. Based on his work we have added support for
MSI-X interrupts to ixy on Redox as well. Unfortunately,
Redox does not feature MSI-X interrupts yet (which will
hopefully change in the future).

4.5. Offloading Features

Although NICs of the ixgbe family support various
offloading features, and frameworks like DPDK make
use of these features, ixy only enables CRC checksum
offloading to keep the driver’s complexity low [4].

5. Evaluation

Redox is still in an experimental development state
and subject to major changes. No stable version has
been released yet. It is possible to boot Redox on real
hardware but this requires a hard disk with no partition
table [10]. For development purposes it is preferable to
run Redox in a virtual machine, e.g. in QEMU which we
used to conduct some performance measurements. The
results of the following subsections confirm that Redox
and its components (e.g. its other network drivers) are
still in a very premature development state. However, our
implementation is a valuable contribution to Redox from
both the performance and the operational safety point of
view.

5.1. Performance

We wrote a simple packet forwarder and packet gener-
ator application called rheinfall1 to assess the transmit
capabilities of our driver. All measurements were per-
formed on commit bccd1ca of our implementation.

1. https://github.com/ackxolotl/rheinfall

e1000 ixy
0

20000

40000

60000

80000

100000

120000

822

119800

579

95522

P
ac
k
et

ra
te

[P
p
s]

60 Byte packets
1500 Byte packets

Figure 2: Packet transmit rates measured on AMD Ryzen
7 1800X with Intel 82574L (e1000) and Intel 10G X550T
(ixy).

We run rheinfall on an AMD Ryzen 7 1800X at
3.6 GHz with Redox 0.5.0 in QEMU with KVM using an
Intel X550T NIC via PCIe passthrough through the AMD
IOMMU. rheinfall bypasses Redox’s network stack
smoltcp by accessing the driver directly, i.e. receiving and
sending raw ethernet frames from/to network, the scheme
registered by the driver. Our measurements show that ixy
on Redox can transmit up to 120,000 packets per second
with a size of 60 Bytes or up to 100,000 packets per
second with a size of 1,500 Bytes which is equivalent to
a transmit rate of about 1.1 Gbit/s.

Reasons for this rather poor performance are probably
OS-dependent: a not extensively optimized kernel, slug-
gish interprocess-communication, many context switches
for large queues of packets and the fact that data has
to be copied multiple times from the application to the
driver to the NIC and the other way around. Nevertheless,
compared to Redox’s two other network drivers, the e1000
and rtl8168 driver, this is a very reasonable packet rate.
Figure 2 shows the transmit capabilities of Redox’s two
Intel network drivers, the e1000 and our implementation.
The transmit rates of Redox’s e1000 and rtl8168 driver
are many times smaller than ixy’s (around 90 to 150 [!]
packets per second on emulated hardware or up to 1,000
packets on real hardware) due to the fact that – unlike
in ixy – their transmit functions block until a packet has
been sent out. This simplifies the transmit function but
also has a massive impact on performance.

5.2. Safety

Code Unsafe
Driver NIC Speed [Lines] [Lines] % Unsafe
Our implementation 10 Gbit/s 901 68 7.5%
e1000 1 Gbit/s 421 117 27.7%
rtl8168 1 Gbit/s 399 114 28.6%

TABLE 1: Unsafe code in different Redox drivers, counted
with cloc.

Another point to note is the different amount of unsafe
code in our implementation and the other two network
drivers in Redox shown in table 1. Unlike the e1000 and

Seminar IITM SS 19,
Network Architectures and Services, October 2019 36 doi: 10.2313/NET-2019-10-1_07

rtl8168 driver, our implementation provides safe functions
to read and write the device’s registers by asserting that
the memory address of a register is indeed inside of the
mapped memory region. This optimization alone leads to
a few hundred lines less unsafe code.

6. Related Work

As early as 1993, researchers proposed to move net-
work software traditionally implemented in kernel space
to user space. Exemplary for these efforts is the work of
Chandramohan A. Thekkath, Thu D. Nguyen, et al. [16],
in which they suggested to rewrite transport protocols as
user-level libraries. Their work already includes a multi-
tude of observations on different kernel designs and the
resulting advantages and disadvantages for software. They
claim that it is possible to implement protocols in a highly
performant and secure way in user space.

Another scientific paper is “The Case for Writing Net-
work Drivers in High-Level Programming Languages”,
in which P. Emmerich, S. Ellmann et al. present a net-
work driver written in various high-level programming
languages [2]. They propose to rewrite drivers instead of
the whole operating system in memory-safe languages.

7. Conclusion and Future Work

Many bugs in current operating systems are located
in driver code. By moving driver code to user space
and using high-level languages (preferably memory-safe
ones like Go and Rust), many safety and security related
bugs can be mitigated. However, this requires a different
kernel design. Modern microkernel architectures like the
Redox kernel provide such a design. They form a safe
alternative to the deprecated monolithic kernel design of
the Linux kernel. In line with the proposal of P. Emmerich,
S. Ellmann et al. to port drivers to high-level languages
and user space, we present the first 10 Gbit/s user space
network driver on Redox written in Rust. Our evaluation
shows that the driver is a great contribution to Redox.
However, there is still a huge potential and need for
optimization on part of the operating system.

Future work on the driver might include implementing
the use of multiple receive and transmit queues, further
reducing the amount of unsafe code or enabling more
hardware offloading features like VLAN tag offloading.
Furthermore, depending on the development status of

Redox, more detailed performance measurements could be
performed, possibly using a high-speed packet generator
like MoonGen [17].

References

[1] C. Cutler, M. F. Kaashoek, and R. T. Morris, “The benefits and
costs of writing a posix kernel in a high-level language,” in 13th
USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18), 2018, pp. 89–105.

[2] P. Emmerich, S. Ellmann, F. Bonk, A. Egger, T. Günzel, A. Obada,
M. Stadlmeier, S. Voit, S. Huber, and G. Carle, “The Case for
Writing Network Drivers in High-Level Programming Languages,”
2019.

[3] S. Ellmann, “Writing Network Drivers in Rust,” 2018.
[4] P. Emmerich, M. Pudelko, S. Bauer, and G. Carle, “User Space

Network Drivers,” in Proceedings of the Applied Networking Re-
search Workshop. ACM, 2018, pp. 91–93.

[5] “Redox,” https://www.redox-os.org/, accessed: 2019-06-23.

[6] S. Klabnik and C. Nichols, The Rust Programming Language. No
Starch Press, 2018.

[7] S. Ellmann, “Ixgbe user space driver for Redox,” https://github.
com/ackxolotl/ixgbed, 2019, accessed: 2019-06-24.

[8] J. Blandy and J. Orendorff, Programming Rust: Fast, Safe Systems
Development. " O’Reilly Media, Inc.", 2017.

[9] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Minix 3: A highly reliable, self-repairing operating system,” ACM
SIGOPS Operating Systems Review, vol. 40, no. 3, pp. 80–89,
2006.

[10] “The Redox Operating System,” https://doc.redox-os.org/book/, ac-
cessed: 2019-06-23.

[11] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson,
H. Trickey, and P. Winterbottom, “Plan 9 from bell labs,” Comput-
ing systems, vol. 8, no. 2, pp. 221–254, 1995.

[12] “DPDK Website,” https://www.dpdk.org/, accessed: 2019-06-23.

[13] L. Gorrie et al., “Snabb: Simple and fast packet networking.”

[14] “Redox OS Drivers,” https://gitlab.redox-os.org/redox-os/drivers,
accessed: 2019-06-23.

[15] “Interrupt Handling in Ixy,” https://github.com/tzwickl/ixy/tree/
vfio-interrupt/, accessed: 2019-06-23.

[16] C. A. Thekkath, T. D. Nguyen, E. Moy, and E. D. Lazowska,
“Implementing network protocols at user level,” IEEE/ACM Trans-
actions on Networking, vol. 1, no. 5, pp. 554–565, 1993.

[17] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and
G. Carle, “Moongen: A scriptable high-speed packet generator,” in
Proceedings of the 2015 Internet Measurement Conference. ACM,
2015, pp. 275–287.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 37 doi: 10.2313/NET-2019-10-1_07

Seminar IITM SS 19,
Network Architectures and Services, October 2019 38

Peer-to-Peer Matrix

Quirin Heiler, Richard von Seck∗, Jonas Jelten∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: q.heiler@tum.de, jelten@net.in.tum.de, seck@net.in.tum.de

Abstract—The current version of the Matrix network proto-
col relies heavily on the Domain Name Service and a Public
Key Infrastructure, which stands in conflict with its overall
decentralised design and makes it prone to censorship. This
paper discusses a possible adaption to the Matrix APIs,
which allows homeservers to operate in a self organized Peer-
to-Peer manner, without the loss of any security assurances
or the need for a centralized authority. The introduced
approach will be based on the GNU Name System and tries
to achieve a proper usability by allowing users to create
human meaningful names for known conversation partners.

Index Terms—matrix, p2p, gnu name system

1. Introduction

The Matrix network tries to provide a generic and
openly available service for message based communica-
tion. From the launch in 2014 [1], the network size has
grown rapidly and is confirmed to have already reached
a scale of more than one million users and 2500 home-
servers by the year of 2017 [1]. The overall concept has
thereby successfully proven to work in a real world, large
scale application. However, at the current state of the
project, the network is still inherently reliant on the use
of the Domain Name Service (DNS) and consequently
on a Public Key Infrastructure (PKI) to address and au-
thenticate its homeservers. We believe that the removal
of the dependence on these external, central authorities
would benefit the system in several ways and comply
with the projects core philosophies [2]. The key idea is
that, given the ability launch Matrix homeservers in self
a contained fashion and without having to rely on or even
pay for an external service like DNS, more users will be
able to operate their own servers, which would further
increase the desired openness and decentralization of the
network. Launching a personal homeserver comes with
the additional advantage of allowing users to privately
host their own conversations, thereby increases the control
the user has over his personal data. Ultimately it is to
mention that central authorities and DNS in particular
[3] leave room for potential censorship, which should
also be avoided when developing an open platform for
communication.

This paper will propose an adaption to the current
version of Matrix, which allows the operation of the
underlying federation of homeservers in an open, in a fully
decentralized and self controlled Peer-to-Peer (P2P) man-
ner, without the need for a central authority. Additionally,

it ensures, that our design fulfils the same standards of
security and scalability as the original system, while also
maintaining a reasonable degree of usability.

The introductory sections and the above mentioned
statics are based on the well maintained documentation on
the official matrix.org website [1], [2], [4]–[9]. The article
about the Great DNS Wall of China, was published by
Graham Lowe, Patrick Winters and Michael L. Marcus
[3], it gives an example for the possible risk of DNS
censorship. The central resource for this paper and the
fundamental bases of the proposed concept was the mas-
ter thesis of Martin Schanzenbach [10] about the GNU
Alternative Name System. The habilitation of Christian
Grothoff [11] about the GNUnet System contains the
further descriptions of the GNU Name Service (GNS),
which is the implementation of GADS, that we used in
our design.

The paper will start by giving a basic introduction
to the structure and functionalities of the Matrix network
in Section 2., before Section 3. will discuss the chal-
lenges which have to be overcome when trying to find
a suitable substitute for DNS. Section 4. and 5. give a
short overview over GNS and present the actual design
of our P2P network. The paper is concluded by a short
introduction in available alternatives to GNS (Section 6.)
and an evaluation (Section 7.) of the proposed solution.

2. Matrix

Matrix is an open standard developed by the Ma-
trix.org Foundation. It defines a set of APIs with the goal
to provide a free, globally available and decentralized
service with no single point of control, allowing users
to exchange persistent data in real time. The security
of the system and the user’s privacy is ensured through
end-to-end encryption. Even though Matrix is still under
development, there is already an implementation of the
network available. Matrix tries to provide a simple generic
interface, applicable to a variety of different use cases
like instant messaging, IoT communication or to provide
a signalling layer for webRTC based applications [4].

2.1. Basic functionality

The basic service provided by the Matrix network to
an outside user is comparable to ordinary chat services.
After generating an account at the Matrix homeserver

Seminar IITM SS 19,
Network Architectures and Services, October 2019 39 doi: 10.2313/NET-2019-10-1_08

of choice and acquiring a globally unique ID, users can
start to access the system. All communication in Matrix
is organized in rooms, which allow their members to
publish/retrieve persistent data among/from all other users
within. To enhance the user privacy, all room communica-
tion may optionally be end-to-end encrypted. Note how-
ever, that this communication is not limited to plain text
messages. In fact Matrix can be used exchange arbitrary
data between its users.

2.2. Network structure

While the current version of a matrix supports the use
of webSockets and even includes a CoAP based ultra-
low-bandwidth mode [4], we will focus on the default
configuration and assume that all messages sent within
the matrix network are HTTPS packages with JSON-
objects (events) as their payload [4]. Going from there,
the actual matrix network is formed between two main
entities: Clients and homeservers.

2.2.1. Client Applications. Client [8] applications are
important to the network in the sense that they represent
the entry point for all user input. Aside from that, clients
face a complete black box view of the actual Matrix
network. Once connected to the user’s homeserver, the
further communication does not differ from the usage of
contralised, server based web services. In that sense, the
client only pushes events to the server as POST messages
and stages pre-emptive GET requests to wait for answers.
The crucial point is, that different clients in Matrix do
never communicate to each other directly, even if they
share the same homeserver.

2.2.2. Homeservers. The homogenous web of home-
servers [9] is what actually makes up the network. They
are responsible for storing their users’ profile information
and room state. Therefore every homeserver of all mem-
bers of a room holds its own copy of the current room
state. Since clients will only inform their own homeserver
about new events, it is also the duty of every server to
spread these events across all other servers in the room,
while ensuring that every affected server will eventually
obtain the exact same room state. This process of merging
all incoming events of a room to a globally consistent state
is called federation [9] and because it takes a vital role in
the design of Matrix, the next section will be dedicated
to explain the underlying processes.

2.3. Federation

This section will explain the algorithms behind the
process of federation between multiple homeservers with
the help of a simple example. We will assume a network
layout as depicted in Figure 1.

Alice:serverA.com

serverA.com serverB.com

Bob:serverB.com

Figure 1: Network layout

The two users Alice:serverA.com (Alice) and
Bob:serverB.com (Bob) try to exchange messages with
the help of their respective homservers serverA (SA) and
serverB (SB). The room they are using is assumed to
be !roo:serverA.com (roo) (For more information about
the naming scheme, see section 2.4). Each server models
the room state as a directed, acyclic graph with a single
root. We assume that the room was just created, hence
the initial room state is empty (Fig. 2):

root

(a) Room state of SA

root

(b) Room state of SB

Figure 2: Initial state. Empty rooms.

Alice now pushes an event EA to her homeserver. SA

examines its state graph and adds an edge from all existing
events without an immediate child to the new event. In
our scenario this results in exactly one edge from the root
to EA. Simultaneously, Bob pushes an event EB to his
homeserver. SB reacts analogously to SA. The resulting
room state can be seen in figure 2:

root

EA

(a) Room state of SA

root

EB

(b) Room state of SB

Figure 3: Room state after receiving first packages

Both homeservers now face the task of informing their
respective counterpart about the newly received event. If
they just forwarded the incoming messages to each other
and treated the events received by other servers just like
events from their own clients, both would end up with
inconsistent versions of the state graph (Fig. 4):

root

EA

EB

(a) Room state of SA

root

EB

EA

(b) Room state of SB

Figure 4: Invalid federation. Inconsistencies marked red.

To circumvent this scenario, the servers do not only
inform their counterparts about the existence of the new
events, but also about the according parents of said event
in the state graph. This will lead to the versions of the
state graphs as depicted in figure 5.

Now each server holds a consistent copy of the room
state and can pass the newly received events to their
clients. However, this approach might not always be suf-
ficient, as two messages in independent branches of the
event graph might contain competing events. Imagine the
events EA and EB in our example would both be attempts
to rename the room to different names. To maintain a

Seminar IITM SS 19,
Network Architectures and Services, October 2019 40 doi: 10.2313/NET-2019-10-1_08

root

EA EB

(a) Room state of SA

root

EA EB

(b) Room state of SB

Figure 5: Invalid federation. Consistent room states.

consistent room state, these events have to be handled
identically at every involved homeserver. Specifically for
situations like this, Matrix features so called room versions
[5], which define a set of deterministic algorithms to
resolve such situations. Different room versions can be
applied to every room.

Note that the federation algorithm only ensures even-
tual consistency, but in no way the stability or immutabil-
ity of any section of the graph, since new messages might
have been delayed on their way through the network,
they can reference any node in the state graph as their
predecessor [5].

2.4. Discovery

As we already stated out, connections in the Matrix
network are only established from client to server or from
server to server. Therefore no network entity will ever
have to resolve the IP address of a client before being able
to build up a new connection. Servers on the other hand
need to provide a static identifier as their name. This name
can be either a static IP/Port-combination or a domain
name with an according DNS Service record [9], [12].
User- and room-IDs are a triplet of three different values,
containing: The address of a homeserver responsible for
this user/room; A name which is locally unique within
the scope of the homeserver; A specifier for the type of
the address (i.e. room or user). This structure ensures
that you will always be able to deduce the name, and
with the help of DNS ultimately the IP-address of the
server, responsible for a certain user or room, from the
corresponding ID. To illustrate the concrete format, we
will again look at the room from the example in section
2.3: !roo:serverA.com. In this case, "!" declares the type
of the address and states out that it belongs to a room,
while "roo" resembles the specific name of the entity and
"serverA.com" is the address of the server where it was
first allocated.

2.5. Third Party Integration

A key property of Matrix is that it does not simply
provide a substitute for existing messaging platforms, but
it creates possibilities to interoperate Matrix with other
third party services.

2.5.1. Identity Service. The Matrix Identity Service API
[7] allows users to create mappings from third-party iden-
tifiers like email addresses or phone numbers to Matrix
IDs. These associations are managed by the so called
identity servers. Other Matrix users can consult the iden-
tity servers to resolve a stored mapping, which allows

to lookup a user’s unknown Matrix ID from an already
known third-party address. To ensure that users can only
setup associations from third-party IDs that they actually
own, the identity server provides a challenge which can
only be solved by the owner of the given ID. In the
scenario of creating a mapping from an email address
to a matrix ID, the identity server would send an email
containing a token to the given address. This token is then
required to confirm the association.

2.5.2. Bridging. Matrix provides a whole variety of func-
tionalities for the exchange of messages with third party
services (e.g. email, facebook messenger, telegram, what’s
app, ...). So called Bridges [6] take the role of mediating
between Matrix and third parties. Bridges can be designed
as simple virtual users (bridge bots) [6], which take all
received messages from one service and forward it to the
other. More sophisticated approaches like Server-Server-
Bridges [6] can be able to interconnect Matrix with other
federated protocols (e.g. SMTP, SIP), by taking part in
both server federations (matrix & third-party) and take the
role of a general gateway between the two services. The
overall advantage of Bridging is that it allows the usage
of Matrix as a unified interface to communicate with arbi-
trary internet users, independent of what communication
services they use.

3. Challenges

The central idea for our design of a P2P matrix is
to keep the overall network structure and communication
logics of matrix untouched and to only make minimal
changes to the system. To achieve this, our approach will
focus specifically on finding a reasonable P2P substitute
for the DNS based naming system of Matrix. This section
investigates the challenges and limitations, which arise
when trying to build a fully decentralized naming system.
Note that the considerations in the upcoming paragraph
are based on [10] and are only applied to the context of
Matrix.

Zooko’s trilemma [13] is a hypothesis by Zooko
Wilcox-O’Hearn, which suggests that there is always a
trade off between three different special properties regard-
ing the name system of a network protocol. To be more
precise, these properties are decentralisation, memorabil-
ity and security. Their meaning will be explained on the
example of the current version of matrix:

Memorability. Matrix allows every user to freely
pick a desired server name in the form of a web domain.
As we expect that most users will prefer to pick simple
and concise names, we can assume that these names are
easily memorable.

Decentralisation. The name resolution process for
server names is based on DNS, which is a fairly decen-
tralised system. However, pure DNS does not impose any
security features [10] like cryptographic authentication.

Security. To close this gap of security and to enable
users to verify the authenticity of a DNS reply, additional
mechanisms like TLS certificates [14] or the DNS Secu-
rity Extension [15] are required, both of which rely on
a Public Key Infrastructure (PKI) to issue, revoke and
verify cryptographic certificates. The resulting hierarchy

Seminar IITM SS 19,
Network Architectures and Services, October 2019 41 doi: 10.2313/NET-2019-10-1_08

of certificates, leads to a centralisation of trust [13], which
originates from one or multiple trusted third parties. This
means that in compliance with Zooko’s trilemma, the gain
in security is bought by sacrifices in decentralisation.

These considerations lead us to the following conclu-
sion for the design of a P2P based Matrix system: If we
want to no longer be reliant on a central, trusted third
party, while also keeping Matrix resilient to adversaries,
we will have to make sacrifices on the memorability
of identifiers in order to increase the decentralisation of
the network. However, keeping up a certain degree of
memorability will be necessary for the usability of the
system. The GNU Alternative Domain System (GADS)
[10], is a fully decentralized naming system which was
developed on exactly these considerations. The upcoming
section will give a brief introduction into the GNU Nam-
ing System (GNS), which is a concrete implementation of
GADS and part of the GNUnet alternative network stack.

4. GNU Name System

In GNS, every user is identified by a private-public
key pair (Kuser

priv ,K
user
pub) and manages its own root zone.

The ID (fingerprint) of a user’s root zone is generated
by hashing the public key of a user with SHA256 [16]
(BASE32 [17] notation), it is considered globally unique.
Zone files are comparable to their DNS counterpart and
contain, among others, PKEY-records (reference the fin-
gerprint of another zone file) and A/AAAA-records (for
IPv4/IPv6). Each record of a zone file has a locally unique
(A and AAAA records with the same name are allowed)
name, picked by the owner of the zone. By creating
additional key pairs, a single user can create and manage
multiple zones. Users may sign their local zone files with
the corresponding private key and make them publicly
available for the network with the help of a censorship
resistant Distributed Hash Table (DHT).

4.1. Name Resolution

The example network in figure 6 will be used to
illustrate the address resolution process of GNS:

DHT

Alice

(Bob,PKEY,A3BY)

LZAlice (QZ2E)

(srv,A,1.3.3.7)

PZBob (A3BY)

Figure 6: GNS example network state.

Bob wants to use his public zone file PZBob with
the fingerprint A3BY to advertise his server with the IP
address "1.3.3.7". Therefore he creates an A record named
"srv" in his zone file and uploads it into the DHT under
its fingerprint "A3BY". Alice talked to Bob the other day
and now she knows his zone’s fingerprint. If Alice wants
lookup the address of Bob’s server, she has two equivalent
options:

4.1.1. .zkey zone. With Bob’s fingerprint in hand Alice
can directly lookup Bob’s server, analogously to DNS
lookups by passing "srv.A3BY.zkey" to her GNS resolver.
The ".zkey" Top Level Domain (TLD) is used to indicate
that she wants to start the name resolution at the root of the
global namespace. Thus the resolver will start by looking
up Bob’s zone file in the DHT, based on the identifier
"A3BY" and afterwards retrieves the A record with name
the name "srv".

4.1.2. .gnu zone. Unfortunately, the real fingerprint of
a zone is way more complex than in our simple 4-digit
example and therefore difficult to memorize. Luckily on
the other hand, Alice has inserted a PKEY record named
"Bob", which contains Bob’s fingerprint in her local zone
file LZAlice. She can now tell her resolver that it should
start the address resolution process from LZAlice, by
picking the ".gnu" TLD. The full GADS link would
therefore be "srv.Bob.gnu". The resolver would now start
by searching for entries in LZAlice named "Bob". Since
"Bob" is a PKEY record the resolver will retrieve the
contained finger print. The rest of the resolution process
will then happen analogously to the ".zkey"-method.

In contrast to ".zkey"-addresses, which are valid glob-
ally, ".gnu"-addresses are only valid for a specific user, but
at the same time allow the user to organize known own
addresses by creating meaningful and easily memorable
aliases.

5. P2P Matrix

This section presents our actual concept for establish-
ing a fully decentralized, self organized, GNS based Ma-
trix homeserver network (P2P Matrix). As a prerequisite
we will assume that all clients and homeservers take part
in the GNUnet system and thereby grant access to the
GNS, while also providing bandwidth and storage for the
GNS DHT.

5.1. Identification

We found that even in the current version of Matrix,
it can be difficult to remember the address of a known
user, because you do not just have to provide the actual
username (which is possibly rather cryptic), you also need
to know the name of the user’s homeserver, which usually
does not stand in any relation to the user. By introducing
IDs that are created from public keys and therefore hard
to remember, we expect this problem to get even more
immediate. To address this issue, we want to minimize
the contact a user has with these cryptographic identifiers
and instead encourage the creation of personal aliases (pet
names) for our system.

5.1.1. Homeserver IDs. Homeservers in P2P Matrix
maintain a public GNS zone (Zserver). They are iden-
tified by their zone’s fingerprint (Fserver). This zone
has to contain at least one A/AAAA record called
"matrix", storing the IP address of the server. Every
server can therefore be routed globally, by querying "ma-
trix.FINGERPRINT_OF_THE_SERVER.zkey".

Seminar IITM SS 19,
Network Architectures and Services, October 2019 42 doi: 10.2313/NET-2019-10-1_08

5.1.2. Users IDs. When a user allocates a new account
at a homeserver H. H will generate a public-private
key pair (Kuser

priv ,K
user
pub) and publish a new zone file

Zuser with the according fingerprint Fuser. Zuser ini-
tially contains only one PKEY entry, which is called
"home" and points to ZH . Similarly to servers, users
can now be globally identified by this fingerprint and
their homeserver can be resolved by querying "ma-
trix.home.FINGERPRINT_OF_THE_USER.zkey".

5.1.3. Room IDs. Similarly to user IDs, a room will
also be associated with the fingerprint of a zone file
containing a single PKEY entry pointing to the zone file
of the server, which initially allocated the room (root).
To distinguish room zones from user zones, this entry
has to be called "root". As a result, the root server of
a given room can now be looked up by querying "ma-
trix.root.FINGERPRINT_OF_THE_ROOM.zkey".

5.2. Contact List

As already stated out in the preceding sections, every
GNS user maintains at least one local zone file, which can
be used to generate human readable mappings to known
resources. Of course a user could now create mappings to
known contacts in a private zone file at the client side, but
since all the data in Matrix is stored at the homeservers
and should be available even if the client logs in from
another device, this approach would be rather insufficient.

"Remote local zone file". To address this issue,
we will expand the Matrix client-server interface, by
operations which allow a user to read and manipulate
the Zuser file, stored at its homeserver. The user can
therefore create easy to remember aliases which will then
be resolved locally by the homeserver. The following
example illustrates this concept (figure 7):

HAliceAlice

(home, PKEY, ZHAlice
)

(bob,PKEY,ZBob)

ZAlice (QZ2E)

Figure 7: Example remote local zone file

Alice already knows Bob’s ID and set a PKEY record
named "bob" in her "remote local zone file" ZAlice, lo-
cated at her homeserver HAlice. From this point on Alice
will no longer need to specify Bob’s ID when talking to
her homeserver. Because the server knows that it is talking
to Alice, which is identified by her zone file fingerprint
ZAlice, it can resolve the address of Bob’s homeserver
by looking up "matrix.home.bob.ZAlice.zkey". The GADS
resolver will realise, that the zone file ZAlice is already
present locally and will not have to resolve this first zone
over the network. Bob’s ID on the other hand can be read
directly from the according PKEY entry in ZAlice.

Note again, that GNS also allows users to create
private records in their local zone files, which will not
be published. As Alice probably does not want to share
all her contacts with the entire network, she would be able
to only set private records in ZAlice (excluding the home
record). Nevertheless, since the homeserver only performs
local lookups on her zone file, this change would not
impair the overall functionality.

By the introduction of the "remote local zone file",
we enable users to maintain a listing of known IDs and
rename them to locally unique and easily memorable
aliases, which can be accessed even when accessing the
homeserver from different devices. While the above ex-
ample only mentioned user IDs, the concept works for
room IDs analogously.

6. Alternatives to GNS
The concept of introducing a fully decentralized al-

ternative for DNS is not entirely new to the domain
of P2P networking. To serve as a bases for upcoming
comparisons, this section will introduce two well known
P2P alternatives to our GNS based approach.

6.1. TOR

".onion"-addresses are used by the TOR [18] net-
work to advertise hidden services. Conceptually, they are
comparable to GADS ".zkey"-addresses, they follow the
form "CRYPTOGRAPHIC_IDENTIFIER.onion" and are
advertised over a Distributed Hash Table. Note, that each
such DHT entry does not contain a full zone file, but
only an individual IP address. ".onion"-addresses do not
provide a way for users to create human memorable
aliases. In that sense, they might be considered a minimal
archetype of P2P naming systems.

6.2. Invisible Internet Project

The Invisible Internet Project [19] (I2P) differentiates
between two address types. The basic type works similar
to the aforementioned ".onion"-addresses, with the only
difference that the top level domain is ".i2p" instead.
The second type are locally valid aliases, which can be
set by the user and are being stored in the so called
address book. Aside from being able to manually read
and write entries to their own address book, users can
also subscribe to public address book files of other users.
The latter feature allows users to discover new addresses
without ever coming in contact with the underlying cryptic
identifiers.

7. Evaluation
This section evaluates the P2P matrix design, estab-

lished in Section 5, against the initially proclaimed prop-
erties of security, usability and scalability.

7.1. Security

The presence of malicious notes in open P2P networks
is an unpleasant, yet unavoidable truth. Consequently, it
is vital for our system to prove resilience against a variety
of different attacks.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 43 doi: 10.2313/NET-2019-10-1_08

7.1.1. Authenticity.
Secure Addresses. Since Matrix can be used to

exchange highly confidential data, the naming system has
to allow users and servers to safely authenticate their
communication partners. This is ensured in the original
Matrix with the help of cryptographic certificates, which
are issued by an external certification authority. All of the
introduced P2P naming systems on the other hand do not
require such certificates, since the information necessary
for validating cryptographic signatures of a domain owner
is already contained in the cryptographically generated
domain itself. In that sense, GNS/TOR/I2P addresses can
be considered secure by design [10]. To put this into
the perspective of the previous considerations on Zooko’s
trilemma: The described P2P services are sacrificing the
memorability of their domains to achieve a high level of
security and decentralization. TOR hidden services de-
mand similar authenticity assurances as ordinary websites.
The large scale deployment of TOR and its hidden services
can therefore be considered a proof of this concept of self
certifying addresses.

Fuzzy fingerprinting. The preceding considerations
about authenticity in ".onion"-addresses are based on the
assumption that every address is bound to a globally
unique key pair and can therefore not be claimed by
any entity other than the actual owner of said key pair.
However, this assumption does no longer hold for par-
tially matching addresses. As a result, it is a practice
for attackers to generate ".onion"-addresses with a similar
appearance to an actual address [20]. The aim of this
attack is to abuse the user’s laziness, when comparing
the attacker’s address to the original and thereby trick
the user into inadvertently accessing the attackers address.
Notice that this attack becomes increasingly effective if
the user frequently accesses the same service and assumes
to recognise its correct address by just quickly skimming
it.

While an attacker could still try to perform a similar
attack in our P2P Matrix, it is expected to be way less
effective. A custom pet name system like in GNS or I2P,
helps to minimize the risk for users to fall for this attack,
since it enables the user to access the given address with-
out the need of constantly supplying its cryptic and easily
mistakable identifier, thus avoiding the risk to mistake it
with a similarly looking ID [10].

7.1.2. Censorship. The strong authenticity assurances of
GNS, combined with the randomized routing algorithm
and the redundant storage of entries of its R5N [21], [22]
based DHT make it difficult for attackers to manipulate
or deny access to other user’s zone files [11], [21]. This
property makes P2P Matrix resilient to potential censor-
ship by manipulation or denial of its naming system.

7.2. Usability

An important goal of our design was to maintain a
high level of usability by minimizing the exposure a user
has with the cryptographic GNS IDs, yet providing an
understandable naming scheme. As a result, every Matrix
entity can be addressed with only a single GNS ID, while
the corresponding addresses of an entities homeserver (see

sections 5.1.2 & 5.1.3), provide the same information
as addresses in the original Matrix, as they: Provide a
globally unique identifier for the entity; Resolve to the
IP address of the responsible homeserver; Hold type in-
formation (i.e. "home" for users/ "root" for rooms). This
structure even yields advantages to the current version of
Matrix, where users have to memorize pairs of arbitrarily
chosen server and user/room IDs. The introduced pet name
system allows users to setup easily memorable aliases for
already known conversation partners and further enhances
the usability.

However, this simplification will not improve the over-
all discovery of previously unknown users/rooms. Espe-
cially the field of verbally exchanging ID information is
expected to suffer from the newly introduced, hard to
memorize GNS identifiers. The impact of this problem
could be reduced by encouraging to exchange public key
information with the help of mobile devices and tech-
nologies like QR-codes or by using the Matrix Identity
Service to create mappings from third party addresses (e.g.
email) to Matrix IDs. While the latter option would allow
users to reach a user experience comparable to the current
version of Matrix, it can not be considered an optimal
solution, since P2P Matrix is aimed to function without
the dependence on third party services.

7.3. Scalability

An important aspect, which is yet to be covered is the
question whether GNS yields the ability to work in real
world, large scale environments. R5N is an extension of
the Kademlia [23] algorithms and inherits the capabilities
of dealing with the dynamics of leaving and joining peers
in large scale networks [24] (churn). The R5N routing
algorithm allows looking up and depositing zone files in
the time complexity O(√n ∗ log n) [21](where n is the
number of peers in the network), thus manages to maintain
efficient lookups, even in large scale networks.

8. Conclusion and Future Work

The central goal of the Matrix network to build a
decentralized platform for communication which gives the
user maximum control over his personal information align
with the benefits which would arise from rebuilding matrix
into true P2P system, which does not rely on central
authorities. This paper introduced the design for such a
P2P matrix, which utilizes the GNU Naming System as
a secure and scalable alternative to the Domain Name
System to create a simple, hierarchical naming scheme.
Even though the approach focused heavily on the use of
a pet name system to maintain a high usability, the effects
of using "randomly generated" IDs will be noticeable by
the users (especially without making use of 3rd party IDs
and the Matrix Identity Service), as it will become more
difficult to discover new users within the network.

A proposal for a future extension of the introduced
design could be to reduce this problem by allowing users
to find new contacts within Matrix itself. Following a
simple "friends-of-friends" logic it can be assumed that
users are likely to interact with the contacts of their

Seminar IITM SS 19,
Network Architectures and Services, October 2019 44 doi: 10.2313/NET-2019-10-1_08

own contacts. Users could be allowed to subscribe to the
contact list of other users in the style of I2P address books,
in order to automatically accumulate new contacts without
relying on cryptographic identifiers at all.

To actually find out how our design works in a real
world application and whether it resembles an improve-
ment to the current state of Matrix, it would be the next
logical step to actually build and test a minimal prototype.
Since both services follow a similar internal structure, it
should even be rather simple to create a Server-Server-
Bridge between the official version of Matrix and a P2P
prototype to run them in full interoperability.

References

[1] “Matrix statistics,” https://web.archive.org/web/
20190515055721/https://matrix.org/blog/2017/07/07/
a-call-to-arms-supporting-matrix/, accessed: 2019-05-15.

[2] “Matrix manifesto,” https://web.archive.org/web/20190808012751/
http://matrix.org/foundation/, accessed: 2019-08-08.

[3] G. Lowe, P. Winters, and M. L. Marcus, “The great dns wall of
china,” MS, New York University, vol. 21, p. 1, 2007.

[4] “Matrix Main Page,” https://web.archive.org/web20190620111226/
http://matrix.org/, accessed: 2019-06-20.

[5] “Matrix specification,” https://web.archive.org/web/
20190611230822/https://matrix.org/docs/spec/, accessed: 2019-06-
11.

[6] “Matrix Types of Bridges,” https://web.archive.org/
web/20190803182830/https://matrix.org/docs/guides/
types-of-bridging/, accessed: 2019-06-20.

[7] “Matrix Identity Service,” https://matrix.org/docs/spec/identity_
service/r0.2.1, accessed: 2019-08-08.

[8] “Matrix client-server-api,” https://web.archive.org/web/
20190808012751/https://matrix.org/docs/spec/client_server/r0.5.0,
accessed: 2019-08-08.

[9] “Matrix server-server-api,” https://web.archive.org/web/
20190808012750/https://matrix.org/docs/spec/server_server/r0.1.3,
accessed: 2019-08-08.

[10] M. Schanzenbach, “Design and implementation of acensorship
resistant and fully decentralizedname system,” 2012.

[11] C. Grothoff, “The gnunet system,” Ph.D. dissertation, 2017.

[12] A. Gulbrandsen and L. Esibov, “A dns rr for specifying the location
of services (dns srv),” 2000.

[13] “Zooko’s trilemma,” https://web.archive.org/web/20040616080110/
http://zooko.com/distnames.html, accessed: 2019-08-28.

[14] P. Saint-Andre and J. Hodges, “Representation and verification of
domain-based application service identity within internet public
key infrastructure using x. 509 (pkix) certificates in the context of
transport layer security (tls).” RFC, vol. 6125, pp. 1–57, 2011.

[15] M. Larson, D. Massey, S. Rose, R. Arends, and R. Austein, “Dns
security introduction and requirements,” 2005.

[16] T. Hansen, “Rfc 6234-us secure hash algorithms (sha and sha-based
hmac and hkdf),” 2011.

[17] S. Josefsson, “The base16, base32, and base64 data encodings,”
2006.

[18] D. McCoy, K. Bauer, D. Grunwald, T. Kohno, and D. Sicker,
“Shining light in dark places: Understanding the tor network,”
in International symposium on privacy enhancing technologies
symposium. Springer, 2008, pp. 63–76.

[19] F. Astolfi, J. Kroese, and J. Van Oorschot, “I2p-the invisible
internet project,” Web Technology Report, 2015.

[20] “Fuzzy Fingerprints - Attacking Vulnerabilities in the
Human Brain,” https://github.com/vanhauser-thc/THC-
Archive/blob/master/Papers/ffp.pdf.

[21] N. S. Evans and C. Grothoff, “R5n: Randomized recursive routing
for restricted-route networks,” in 2011 5th International Confer-
ence on Network and System Security. IEEE, 2011, pp. 316–321.

[22] C. Grothoff, “The gnunet dht.”

[23] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” in International Workshop
on Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[24] Z. Ou, E. Harjula, O. Kassinen, and M. Ylianttila, “Performance
evaluation of a kademlia-based communication-oriented p2p sys-
tem under churn,” Computer Networks, vol. 54, no. 5, pp. 689–705,
2010.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 45 doi: 10.2313/NET-2019-10-1_08

Seminar IITM SS 19,
Network Architectures and Services, October 2019 46

A Comparison of OPC UA vs. VSL for IoT

Tobias Leibbrand, Christian Lübben∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: tobias.leibbrand@tum.de, luebben@net.in.tum.de

Abstract—The basis of the Internet of Things (IoT) is
Machine-to-Machine (M2M) communication. In order to
enable this communication, the machines must know on
what basis they can communicate with each other. In order
to standardise this communication across platforms middle-
ware is used. In the following two different approaches are
compared, the OPC Unified Architecture (OPC UA) and
Virtual State Layer (VSL). OPC UA follows the client-server
approach, whereas VSL builds on peer-to-peer technology.

The two standards are compared regarding accessing,
storing, discovering and transporting data as well as due to
data structure and security aspects. The comparison shows
that OPC UA is particularly suitable for observation tasks
and VSL when communication between all devices in the
network is required.

Index Terms—OPC UA, VSL, IoT Middleware

1. Need of IoT Middleware

According to research from the Statista Research
Department, more than 30 billion devices around the
world will be connected to the internet in 2020 [1]. To
give that some perspective, that is more than three devices
for every person on earth. The Internet of Things (IoT) is
indispensable. With this number of devices it goes without
saying that not all of these devices can be controlled
by humans, but the devices also have to communicate
with each other by using machine-to-machine (M2M)
communication. In order to enable the communication
of devices from different manufacturers, it is necessary
to create special interfaces. This task is fulfilled by IoT
middleware frameworks. In the following, two different
approaches, OPC Unified Architecture (OPC UA) and
Virtual State Layer (VSL) are compared to each other,
to discuss the pros and cons and to elaborate on the
application purposes.

OPC is an industry standard that has been developed
in close cooperation with the automation industry and
is now implemented by almost all major companies
[2]. It enables secure and lossless data exchange
and is platform independent since the introduction
of the Unified Architecture extension. The main
advantage of standardization is that devices from
different manufacturers can communicate with each
other out of the box [3]. But it is more than just a
protocol for data exchange. OPC UA also specifies the
rules for communication between computers or devices.
In this client-server-model, there are two roles that a

communication partner can assume. These two partners
communicate with each other, whereby the establishment
of the connection can only be started from the client. He
can make inquiries to the server and then receives an
answer or he can make a subscription to be notified about
changes. This construction is called service-oriented.
There is no restriction on how many clients can talk to
one server or how many servers can be connected to one
client. No matter what the configuration is, clients send
message requests to servers and servers respond. OPC UA
also does not specify how two servers can communicate
with each other, therefore horizontal communication is
not natively supported.

Virtual State Layer (VSL) has been designed and
developed by the team led by Marc-Oliver Pahl at the
Technical University of Munich (TUM). In contrast
to the OPC approach it does not pursue the classic
client-server approach but follows the approach of
peer-to-peer networks which has become increasingly
popular in recent years. It was designed specifically in
order to enable distributed Smart Space Orchestration
(S2O). Therefore, the framework became very much
data-centric. Fully focussing on this concept VSL offers
a full separation of service logic and data. [4]
The network is made up of Knowledge Agents (KA).
These take control over all connectivity tasks and data
access in the background. The data access is designed to
be fully transparent. Therefore the data access can take
place in such a way, as if these would be locally available
on the current host. VSL also fully decouples data
producers and data consumers. This allows completely
new approaches in development. As a consequence a
hardware sensor is independent of the orchestrating
control software and does not have to run at the same
time. This increases the robustness and possibly the
energy efficiency of IoT nodes. [4]

The aim of this work is a comparison of the M2M-
communication standards OPC UA and VSL. Therefore,
important aspects of the communication standards are
used to obtain a basis for comparison. The selected as-
pects are: data access, data structure, data storage, data
discovery, data transport, and security.

This work is structured as follows. Section 2 mentions
other major work dealing with one of the two standards.
Section 3 deals with how existing data can be accessed.
Section 4 focuses on the data structure. Datastorage is dis-
cussed in section 5. Chapter 6 describes how the recogni-
tion of new devices and their provided data works. Chapter

Seminar IITM SS 19,
Network Architectures and Services, October 2019 47 doi: 10.2313/NET-2019-10-1_09

7 introduces the protocols used and Chapter 8 introduces
the security mechanisms. The conclusion shows which
specification is more suitable for which use case.

2. Related Work

Since OPC UA is a widespread communication stan-
dard, there are all kinds of documentation and textbooks
such as [5], [6] and [7]. These describe the OPC UA
standard in all details and also give practical application
tips. There are also numerous papers dealing with this
standard. Article [8] gives a short overview which aspects
of OPC UA are relevant. Paper [9] analyses the standard in
terms of performance and paper [10] compares approaches
with other IoT middelware approaches. Paper [11] dis-
cusses possible extensions of the OPC standard to enable
bidirectional communication.

Since VSL is an in-house development of the Chair
of Network Architectures and Services and has not been
on the market for long, there are only publications on this
topic from the Chair itself, such as the doctoral thesis [12]
of Dr. Marc-Oliver Pahl and some papers like [4] and [13]
to which he contributed.

3. Data Access

Since data exchange is a central component of IoT
communication, this chapter is considered right at the be-
ginning. In the following we will consider the possibilities
available for interacting with data in the network.

3.1. Data Access in OPC UA

Within the Client-Server-Architecture the classic way
to query or write data is by using the Read and Write OPC
UA services, which enable an OPC UA Client to read
and/or write several attributes of nodes and are focused
on bulk read/write operations. To be notified when a value
is changed subscription methods are available. Within a
subscription data are transported to the client contingent
on events or evaluations of data and data changes. For this
purpose an OPC UA Client has the ability to create mon-
itored items in the OPC UA Server. Those items monitor
AddressSpace Nodes and their real world counterparts.
Fig. 1 shows the relationship of monitored items and nodes
in the AddressSpace on the one hand side and to a specific
subscription on the other hand. [9, p. 166f.]

3.2. Data Access in VSL

In VSL the data access is handled transparently and
offers a data-centric, semantic interface as Application
Programming Interface (API). The addresses in VSL
are structured in a hierarchical tree structure. An ad-
dress that supports worldwide distribution looks like this
vsl://[siteID]/[kaID]/[serviceID]/[subNodeAddress]/. The
distributed VSL IoT spaces are connected and are iden-
tified by the siteID. The servers that take over the task
of data distribution are the Knowledge-Agents and are
identified over the kaID. Several services can be connected
to one KA which are independent from each other and
are identified by the serviceID. All identifiers are unique.

Figure 1: OPC UA Server [9, p. 166]

The rest of the address is also inheritance hierarchical
and depends on the respective service. The data can be
accessed via get and set calls and it is possible to subscribe
to changes. [4]

3.3. Comparison Regarding Data Access

Data access is structurally the same for both frame-
works. Data can be queried, data can be changed or
subscreened for changes. However, the effectiveness of
the individual queries differs considerably. OPC UA is pri-
marily designed to query complex data structures, which
means that if only one value is to be queried, all other
values still have to be passed. VSL, on the other hand, is
designed to process individual sensor data and therefore
has no problems and is therefore more efficient.

4. Data Structure

In addition to data access it is of course also important
how the data structure is organized in order to create the
balancing act between clarity and flexibility.

4.1. Data Structure in OPC UA

The special thing about the OPC UA is, that it is
reasonably flexible as well as simply structured compared
to other approaches. The basic element is a node which is
simply a highly structured data consisting of a set of pre-
defined attributes and relationships. Using this very simple
data element, an OPC UA address space can be created
allowing for very complicated processes to be represented.
The flexibility of the address space allows a designer
to present not only raw process data, but also extensive
information about the state of the underlying process and
the process environment. This flexibility ensures that even

Seminar IITM SS 19,
Network Architectures and Services, October 2019 48 doi: 10.2313/NET-2019-10-1_09

complicated systems can be exposed using OPC UA. It
also enables that every device could use a different data
structure. [7]

4.2. Data Structure in VSL

The overall complexity is reduced significantly by hav-
ing one data type per semantic functionality. An object-
oriented information model is used to enable complex data
objects and still keep them flexible enough. These models
are called VSL Context Models. A library with basic data
types is already available. The developer can create a
suitable model for each service, which can then be reused
for similar services in the future. The Context Models
are stored in a global Context Models Repository, which
distributes them once when the network ist initialised.
Once the network is running, each KA stores them in a
local context models repository which is kept synchronous
with the other KA. [4]
All data can only contain the actual state and no time
series data. Therefore, for example, it was not sufficient
to have only one date for a lamp, whether the light is on
or off, because the control logic of the lamp never knows
when the status was changed. Also, it is a problem that the
digital status can deviate from the real status. Therefore
it is necessary to add a desired status to the lamp so that
the logic can compare and set the current status to match
the real event.

4.3. Comparison Regarding Data Structure

Both approaches are very similar here as both are
based on an object-oriented information model. This ap-
proach allows a good standardisation of as many variants
as possible without losing the necessary flexibility. The
major difference is that OPC UA comes with a lot of
models, whereas VSL only provides the developer with
the basic data types and gives him a free hand to specify
them. Over time, a publicly accessible and comprehensive
Context Model Repository could compensate for this.

5. Data Storage

If large amounts of data are to be processed or data
histories are to be created, it is interesting to know whether
the data is stored locally or has to be requested each time
via the network.

5.1. Data storage in OPC UA

An OPC UA server stores all data locally. These data
can only be queried by connected clients and cannot be
viewed by other servers. In addition to the current live
data, a historical dataset can be implemented, which logs
the live data. A simultaneous working on the same dataset
is not provided.

5.2. Data Storage in VSL

In VSL, data is always stored locally with the respec-
tive Knowledge Agent. To have the data prompt or as
close as possible is advantageous for performance reasons.

Because of the data transparency it can be queried at
every other Knowledge Agent like locally available. For
reasons of consistency, data cashing has not been used in
the current implementation.

5.3. Comparison Regarding Data Storage

Although the way both implementations regulate data
access is slightly different and VSL provides distributed
access to the data, none of the implementations provides
an inherent ability for long-term archiving of the data. This
task must be done by an extra client that is subscribed to
changes.

6. Data Discovery

Since networks are adapted or renewed according to
their requirements with varying frequency, it is interesting
to see how new devices and their data are handled in the
network. If the active devices are changed with a high
frequency, it would therefore be cumbersome if they had
to be configured manually each time, whereas it would
not be a problem with only a few devices.

6.1. Data Discovery in OPC UA

In OPC UA every service offered by a server will be
represented as an endpoint. An endpoint is a connection
to a device that offers some specific functionality that is
sometimes only available through that specific connection.

Any server that wants to offer a service opens a
discovery port for messages from the client after booting.
When a client wants to connect to a server, it scans for the
servers discovery endpoints and filters out the appropriate
server. The service discovery endpoints data also contain
transport and security information [7]

6.2. Data Discovery in VSL

In the IoT area it is not untypical to work with con-
stantly changing devices. Therefore the devices in VSL are
not addressed directly, but typed via the offered service. A
node can consist of several types. The KA can search for
these types at runtime in order to determine whether new
devices have been added to the network.The typesearch
is handled by the VSL and automatically is forwarded to
the relevant KA. The information about all available data
nodes is periodically exchanged in the background, which
accelerates the search because it can be done locally. [4]

6.3. Comparison of Data Discovery

On this point the two standards differ due to the
different applications. In the OPC UA, the service detec-
tion serves mainly the one-time configuration during the
installation of the network. Therefore it doesn’t matter
if discovery process is not so efficient. In VSL, on the
other hand, service detection has a much more central
significance, since the network is increasingly designed
for interchangeable components.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 49 doi: 10.2313/NET-2019-10-1_09

7. Data Transport

Besides the structural points, it can also be interesting
which protocols were used to implement the correspond-
ing standard. This is particularly important if, in addition
to the local implementation, external access via the Inter-
net is also required.

7.1. Data Transport in OPC UA

There are currently two protocols, as well as a mixed
variant that combines both of them. All variants can
be used in parallel without any functional disadvantage.
The standard protocol UA-Binary, which all OPC UA
implementations must support, is the binary protocol.
This offers the best performance, because it has a low
overhead and is specified exactly, and consequently has
only few degrees of freedom. The second variant XML-
SOAP has the advantage that it is firewall friendly, because
the communication works over HTTPS. It is also easier
to process the received data for implantation. Since this
variant has a higher overhead, however, it has almost no
acceptance with embedded devices. The hybrid variant
combines the advantages of both protocols by binary
coding of the payload in the HTTPS frame. The ANSI-C
stack implemented by the OPC Foundation supports the
UA binary protocol and the hybrid protocol. The standard
protocol should be the efficient binary protocol and only
in special cases the hybrid protocol should be used. The
Web service implementation is available for applications
that require Web services. [14]

7.2. Data Transport in VSL

The Knowledge Agents in VSL have the task of
maintaining the network structure and exchanging data.
To be compatible with other approaches, connectivity is
implemented as peer to peer overlay. VSL uses multi-
cast to maintain the structure, and unicast for direct data
exchange. The Transport Manager, Connection Manager,
and the Overlay Manager maintain the P2P overlay. The
entire inter-node connectivity is encapsulated in these
modules. The transport manager in the current implemen-
tation uses standard protocols such as HTTP over TCP/IP
as transport, but this can easily be exchanged with other
communication protocols. However, all protocols used are
interchangeable, so that scaling is not an obstacle. [4]

7.3. Comparison of Data Transport

Both types of implementation do not really differ, as
they use standard protocols for large parts of the com-
munication. Since the protocols have been implemented
interchangeably, it is always possible to weigh universal
applicability against performance.

8. Security

Since sensitive data is also always exchanged in the
Smart Home sector, it is very important that appropriate
security mechanisms are implemented. Which ones are
available will be discussed in the following.

8.1. Security in OPC UA

Safety in OPC UA ist based on multiple layers. UA
Security is a multi-layered concept. The most impor-
tant protection goals such as authentication, authorization,
encryption and integrity are maintained. Access at the
application level is ensured either by using certificates
or by logging in with a user name and password. Ac-
cess rights can be assigned group-specifically. In order to
perform intrusion detection, all login procedures can be
logged. At the transport level, corresponding algorithms
from the Web communication are used for encryption.
However, the most secure specifications are of no use if
they are not implemented or only partially implemented by
the manufacturer. To avoid this, every OPC UA certified
product must meet these specifications. [15]

8.2. Security in VSL

The special thing about VSL is that it is built on a
self-organizing P2P network, unlike other data-centric IoT
designs. Access control for read and write actions can be
specified for each class of data nodes. To establish a secure
communication between the KA, X.509v3 certificates are
used in the current implementation, which establish a TSL
connection. This connection is used to exchange the keys
required for data encryption. Each service and each KA
has its own certificate which is automatically exchanged
in the background. [4]

8.3. Comparison Regarding Security

Security is a top priority in both approaches. Both offer
secure data transfer as well as access control through au-
thorization. The prevention of unauthorized data access is
also guaranteed. As a weak point one could consider that
access control can be deactivated with OPC UA, which
may become a security problem with careless handling.

9. Conclusion

Both frameworks were designed to enable machine-to-
machine communication. There are no major differences
with regard to data structure, data storage, data transport,
and security. However, the fact that both approaches were
designed for different purposes can be seen not only in
the different details when comparing the approaches, but
also in the chosen type of network communication.

The implementation of OPC UA with its client-server-
model, on the one hand, is ideally suited for monitor-
ing processes. The well-structured object model enables
a smooth interaction of industrial plants from different
manufacturers without having to invest a lot of time and
money in the installation. With its holistic data objects, the
protocol is ideally suited for monitoring and controlling
process sequences. Data access is primarily designed to
query complex data structures and is less efficient in
processing individual (sensor) data. Data and device dis-
covery is not the major task as OPC UA is used in the con-
text of one-time configurations. Therefore an inefficient
discovery process is not a major issue. There is still room
for improvement in direct communication from server to

Seminar IITM SS 19,
Network Architectures and Services, October 2019 50 doi: 10.2313/NET-2019-10-1_09

server, since there is no standardised communication for
this, but only an improvised solution with a bundle of
clients and servers on both sides.

Peer-to-peer communication at VSL, on the other
hand, enables horizontal communication between the
individual Knowledge Agents. This makes it possible
for the servers to communicate with each other, thus
enabling Distributed Smart Space Orchestration. This
means that the actual sensors can be separated from the
logical programming and can therefore be operated in an
energy and cost-efficient way, optimal for Smart home
implementations. Data access is designed to process
individual (sensor) data efficient and the service detection
has a much more central significance as the network
has to work with a growing number of interchangeable
components.

In short, the two implementations OPC UA and VSL
cover their respective intended tasks very well. Further
research could explore those theory based hypotheses
empirically.

References

[1] S. R. Department, “Internet of Things (IoT) connected devices
installed base worldwide from 2015 to 2025 (in billions),” Tech.
Rep., 2016, https://www.statista.com/statistics/471264/iot-number-
of-connected-devices-worldwide/.

[2] OPC Foundation. Major Automation Industry Players
join OPC UA including TSN initiative. 2019-08-31.
[Online]. Available: https://opcfoundation.org/news/press-releases/
major-automation-industry-players-join-opc-ua-including-tsn-initiative/

[3] OPC Foundation. What is OPC? 2019-06-19. [Online]. Available:
https://opcfoundation.org/about/what-is-opc/

[4] M.-O. Pahl and S. Liebald, “Information-Centric IoT Middleware
Overlay: VSL,” in 2019 International Conference on Networked
Systems (NetSys) (NetSys’19), Garching b. München, Germany,
Mar. 2019.

[5] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architec-
ture. Springer, 2009.

[6] J. Lange, F. Iwanitz, and T. J.Burke, OPC - Von Data Access
bis Unified Architecture, 5th ed. Berlin, Offenbach: Vde Verlag
GmbH, 2013.

[7] J. S. Rinaldi, OPC UA Unified Architecture - The Everyman’s
Guide to the Most Important Information Technology in Industrial
Automation, 1st ed. CreateSpace Independent Publishing Platform,
2016.

[8] S.-H. Leitner and W. Mahnke, “OPC UA - Service-oriented
Architecture for Industrial Applications,” Softwaretechnik-Trends,
vol. 26, 2006.

[9] F. C. Salvatore Cavalieri, “Analysis of OPC UA performances,”
Computer Standards & Interfaces, 2013.

[10] S. Profanter, A. Tekat, K. Dorofeev, M. Rickert, and A. Knoll,
“OPC UA versus ROS, DDS, and MQTT: Performance Evaluation
of Industry 4.0 Protocols,” in Proceedings of the IEEE Interna-
tional Conference on Industrial Technology (ICIT), Feb 2019.

[11] D. Torben, P. Florian, G. Sten, and P. Julius, “Bidirektionale
Kommunikation mit OPC Unified Architecture,” Softwaretechnik-
Trends, vol. 26, 2016.

[12] M.-O. Pahl, “Distributed Smart Space Orchestration,” Ph.D. dis-
sertation, Technische Universität München, München, 2014.

[13] M.-O. Pahl, S. Liebald, and C. Lübben, “DEMO: VSL: A Data-
Centric Internet of Things Overlay,” in 2019 International Con-
ference on Networked Systems (NetSys) (NetSys’19), Garching b.
München, Germany, Mar. 2019.

[14] ascolab GmbH. OPC UA Protokolle. 2019-06-19. [On-
line]. Available: http://www.ascolab.com/de/unified-architecture/
protokolle.html

[15] ascolab GmbH. OPC UA Sicherheitskonzept. 2019-06-19. [On-
line]. Available: http://www.ascolab.com/de/unified-architecture/
sicherheit.html

Seminar IITM SS 19,
Network Architectures and Services, October 2019 51 doi: 10.2313/NET-2019-10-1_09

Seminar IITM SS 19,
Network Architectures and Services, October 2019 52

Quality Enhancement in Written Examinations
by Automatic Recognition of Correction Results

Arian Mehmanesh, Stephan Günther∗, Johannes Naab∗, Maurice Leclaire∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: arian.mehmanesh@tum.de, guenther@tum.de, naab@net.in.tum.de, leclaire@in.tum.de

Abstract—An examination score determined by human cor-
rectors can be erroneous in multiple ways. In this case
the focus is on errors caused by miscalculating the score
manually. The goal is to estimate a rate of exams with
calculation mistakes and determine which factors are likely
to increase this error rate when designing an exam. To
achieve this, 525 sample exams are digitized by hand with
help of an automated system detailed herein. Afterwards,
the digital exam scores are scanned for errors automatically.
Statistical analysis of these errors yields the following results:

The quote of exam points miscalculated in this sample
is determined to be 4.2%, resulting in a confidence interval
between between 2.7% and 6.4% (95% conf. level). On aver-
age, the correctors made an error when a problem has 10.4
subproblems distributed over 3.9 pages. The mean impact
of an error is 0.8% of the total credits. Considering the
time it takes to manually add the points and determine the
grade, in combination with this error rate, automated score
calculation systems for exams are proposed as a solution.

Index Terms—examinations, human error, correction, mis-
calculation, scoring

1. Introduction

Human error is unavoidable in the correction of ex-
aminations by hand. While these faults can occur by
overlooking correct answers or grading similar responses
differently, the last step of every evaluation is to sum all
points and determine the final grade. This paper focuses
on quantifying the errors made in calculating the exam
scores since they are measurable and comparable across
all forms and topics of examinations. These arithmetical
errors are also chosen because they are computationally
detectable.

To achieve this, a sample examination is analyzed in
its entirety for falsely calculated credits. This analysis
requires an optimized interface to facilitate quick acqui-
sition of the recognized scores. After the recognition of
handwritten exam scores the correctors’ faults are detected
by an automated validation algorithm.

After all errors are found, the percentage of miscal-
culated exams and by how much the error deviates from
the correct credits on average are of interest. Additionally,
relations between the error rate of a problem and the count
of its subproblems (or how many pages the problem spans,
respectively) are inspected.

The content of this paper is structured as follows: In
Section 2 a related study is presented. The dataset used
in this project is detailed in Section 3.1, followed by a
description of the software used to extract numerical score
values from exam images in Section 3.2. These values
are statistically analyzed in Section 3.3. The results of
this analysis are presented in Section 4, amounting to the
conclusion in Section 5.

2. Related work
Studies discussing errors in examinations are common,

but for comparison to this analysis they are required to
differentiate between score calculation mistakes and other
errors. Phillips & Weathers have analyzed 5017 standard-
ized tests (Stanford Achievement Test) in 1958 [1]. They
quantified and distinguished different types of errors, like
correctors not following the instructions or falsely comput-
ing the final grade based on the students total score. The
focus of this paper, the incorrect summing up of scores,
was observed aswell but referred to as "counting error".
Out of the total 5017 tests, 630 of them were miscounted
(13 %). This was the most prominent fault, causing 45 %
of all errors.

3. Methods
After the description of the dataset used for this

project, the two main parts of the methodology are de-
tailed. They consist of the interface used for recognizing
the written scores and how these determined values are
analyzed for errors.

3.1. Dataset

The analyses herein are based on a digitized endterm
examination of 2014 provided as scanned images. It was
held at the Technical University of Munich (TUM) on
the topic of "Basics in Networking and Distributed Sys-
tems" [2], consisting of 525 individual exams.

Figure 1a shows the front page of the exam, the points
noted here sum up to yield the final grade. The first
problem of the exam is demonstrated in Figure 1b, where
the scores of the subproblems are added and are written
in the top box. This result of problem 1 is carried over to
the front page (Fig. 1a).

Every exam consists of 68 score boxes, resulting in
35700 total boxes available. This examination was eval-
uated twice by the correctors, in a first and second run.
The result of the second run determines the final grade.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 53 doi: 10.2313/NET-2019-10-1_10

Name Vorname

Studiengang (Hauptfach) Fachrichtung (Nebenfach)

Matrikelnummer

Unterschrift der Kandidatin/des Kandidaten

TECHNISCHE UNIVERSITÄT MÜNCHEN
Fakultät für Informatik

Midterm
× Endterm

Wiederholung

Prüfungsfach: Grundlagen Rechnernetze und Verteilte Systeme

Prüfer: Prof. Dr.-Ing. Georg Carle Datum: 22.07.2014

Hörsaal: Reihe: Platz:

Note

I II

1

2

3

4

5

6

7

8

9

10

∑

Nur von der Aufsicht auszufüllen:

Hörsaal verlassen von : bis :

Vorzeitig abgegeben um :

Besondere Bemerkungen:

(a) Front page score boxes and total sum.

1 Name:

Aufgabe 1 Fourierreihe (10 Punkte)
10Gegeben sei der in Abbildung 1.1 dargestellte, periodische Dreiecksimpuls. Dieses Signal soll im

Folgenden als Fourierreihe

s(t) =
a0
2

+

∞∑

k=1

(ak cos(kωt) + bk sin(kωt))

dargestellt werden. Die Koeffizienten für alle ganzzahligen k > 0 lassen sich, wie aus der Vorlesung
bekannt, wie folgt bestimmen:

ak =
2

T

∫ T/2

−T/2
s(t) cos(kωt) dt, bk =

2

T

∫ T/2

−T/2
s(t) sin(kωt) dt.

t

s(t)

π

−3π −2π 2π 3π−π π

Abbildung 1.1: Periodischer Dreiecksimpuls s(t)

1a)* Geben Sie einen analytischen Ausdruck für den Sendegrundimpuls an, also für das Signal s(t) im
Intervall t ∈ [−π;π].

1b)* Bestimmen Sie die Periodendauer T und Kreisfrequenz ω = 2π/T des Signals.

1c)* Bestimmen Sie den Gleichanteil a0.

Grundlagen Rechnernetze und Verteilte Systeme – SoSe 2014

(b) Problem score box with subproblems.

Figure 1: Sample pages from the studied exam.

3.2. Recognition

The optical character recognition (OCR) of the writ-
ten credits is performed manually. Automated OCR or
interpretation by a machine learning approach exceeds
the scope of this analysis. To optimize this process it is
necessary to automate the displaying of score boxes to
the reviewer and recording the recognized score for each
problem. Additionally, metadata should be tracked for
every box, such as the page on which the box was located
and the time interval it took the reviewer to recognize and
enter its numerical values. For the implementation of this
automation the programming language Python [3] is used
due to its ease of use and legibility.

The structure of the program can be reduced to the
Model-View-Controller pattern [4] which allows these
three components to be detailed separately.

3.2.1. Model. The model replicates the dataset and con-
sists of the whole ExamBatch, a single Exam and the
individual Problem which represents a score box. An
ExamBatch manages a list of Exams, whereas an Exam
stores a tree of Problems.

In the example of Figure 2, the root node of the tree is
the score box of the total exam credits. Subordinated are
Problem 1 and 2 on the front page, which are the scores of
Problem 1 and 2 carried over from the inside of the paper
exam sheet. Each Problem contains two subproblems.

The tree structure is chosen because every Problem
can have an arbitrary amount of subproblems in a generic

Total Score

Problem 1, Front Page

Problem 1

Problem 1.a

Problem 1.b

Problem 2, Front Page

Problem 2

Problem 2.a

Problem 2.b

Figure 2: An example tree of Problems.

Dashed lines indicate a score being carried over, not computed.

paper exam.
To iterate through the problems, a depth-first search

approach is used [5] as it is similar to the way a paper
exam is usually corrected.

3.2.2. View. The graphical interface for the user is kept
simple to support fast recognition.

As shown in Figure 3 of the program in execution, a
cropped score box and the user input can be seen. The
credits of the first correction pass are marked in red, the

Seminar IITM SS 19,
Network Architectures and Services, October 2019 54 doi: 10.2313/NET-2019-10-1_10

Figure 3: View of the User Interface.

second pass in green. At this stage, the user has entered
the values of both scores below the box. After this step
the software jumps to the next box immediately.

3.2.3. Controller. The responsibility of the controller is
to manage the control flow. The following pseudocode is
used to describe its algorithm.

load all exam scans into an ExamBatch
for every Exam in the ExamBatch do

repeat
display the next Problem (depth-first search)
start the timer
await user input
stop the timer
store user input and metadata

until no Problem left in Exam
store Exam as JSON file [6]

end for

Figure 4: The control flow in pseudocode.

As indicated in Figure 4, the controller basically per-
forms a slideshow of score boxes awaiting user input of
float values at every step.

3.3. Analysis

To detect miscalculations in the JSON files stored
in the recognition phase (Section 3.2), a second python
program is used. It is tasked with iterating through the
digitized exam data and recompute the scores for every
exam. If a mismatch between the calculated and the
written credits is detected, an error is recorded. Since this
task is significantly less complex than the first program,
it is not detailed further.

The main target estimation to be provided by this doc-
ument is the likelihood p of an exam being falsely graded.
Every exam can assume two states, namely being correctly
or incorrectly scored. This leads to the assumption of a
binomial distribution with parameter p. There are multiple
methods for estimating a confidence interval (CI) for a
binomial distribution. While the Wald interval method
is very prevalent in textbooks, Vollset [7] discourages
its use and recommends the Wilson score interval with
continuity correction. This method can be applied, because

the binomial distribution can be approximated by a normal
distribution for large sample sizes.

Let p̂ = 22
525 be the realisation of p in this sample,

n = 525:

np̂(1 − p̂) ≥ 9

≈ 21 ≥ 9 (1)

As shown in the Equation (1) our sample is large enough
for this continuity correction [8]. The Wilson score inter-
val with continuity correction is determined by [9]:

L =
2np̂ + z2 − 1 − z

√
z2 − 2 − 1/n + 4p̂(n(1 − p̂) + 1)

2(n + z2)

U =
2np̂ + z2 + 1 + z

√
z2 + 2 − 1/n + 4p̂(n(1 − p̂) − 1)

2(n + z2)
(2)

Where L is the lower and U the upper bound of the
confidence interval. For a confidence level of 95% the
value z is the 1 − 1−0.95

2 quantile of the standard normal
distribution (Φ is its cumulative distribution function):

z = Φ−1(1 − 1 − 0.95

2
)

= 1.96

Equation (2) is later used for the computation of the
CI.

In an attempt to interpret the nature of the mistakes
made by the correctors, the errors are further dissected.
The following attributes of an error are averaged:

1) amount of subproblems that had to be added
2) number of pages the mistake was distributed over
3) absolute offset of the noted score versus the

correct one

Finally, the average time needed to recognize a score
box or a whole exam is determined. This assesses the
effort of a human reading score boxes.

4. Results

The confidence interval of the likelihood of an exam
being wrongly corrected is between 2.7% and 6.4% with
a mean estimate of 4.2%.

On average, an error is based on 10.5 subproblems
that were erroneously added. Furthermore, these values
were generally added over 3.9 pages (requiring avg. 1.6
physical page turns). Errors deviate from the correct score
by 0.7 points (0.8% of the total score).

All 22 detected errors result from falsely summing
subproblem points to a problem, none were made adding
the credits on the front page. The score of a Problem was
never incorrectly carried over to the front page.

Recognizing a single score box takes about 1.6 sec-
onds, resulting in 85 seconds total per exam. Since a
program to facilitate recording of credits is used, these
time measures do not include:

1) flipping through the pages
2) localizing score boxes
3) computing the addition

Seminar IITM SS 19,
Network Architectures and Services, October 2019 55 doi: 10.2313/NET-2019-10-1_10

4) fixing own mistakes in this process
Thus the measured time of over 12 hours total is signifi-
cantly lower than the time required by a human correcting
paper exams by hand.

5. Conclusion and future work

Concerning the rate of falsely added exam scores, an
interval of 2.7% to 6.4% is high (95% CI). Assuming
this value is representative for all university exams and a
student participates in four exams on average per semester,
from 48% to 80% of bachelor students have at least one
of their exam credits miscalculated. Although the impact
of 0.8% of the score in these errors seems to be low, exam
grading is discrete. This leads to such a deviation having
either no effect or result in a significant grade change.

The results of this study indicate that exams containing
problems with many subproblems or problems which are
distributed over several pages are more prone to error.
Further research is needed to validate this claim.

Recognizing all credit values of an exam took 85
seconds, so the total time required for evaluating all exams
amounts to over 12 hours. As explained in Section 4,
correcting a paper exam without the tools for automation
described herein takes significantly longer.

There is a solution for minimizing computational er-
rors and drastically decreasing the required time to eval-
uate exams. Phillips & Weathers have already pointed
out in 1958 that "An alternative would be to have all
standardized tests machine-scored" [1]. Automating the
recognition and addition of exam scores in the present

and future is inevitable and extended research to enhance
such software is recommended.

References

[1] B. N. Phillips and G. Weathers, “Analysis of errors made in scoring
standardized tests,” Educational and Psychological Measurement,
vol. 18, no. 3, 1958.

[2] G. Carle, “Vorlesung Grundlagen Rechnernetze und Verteilte
Systeme,” https://www.net.in.tum.de/teaching/ss14/vorlesungen/
vorlesung-rechnernetze-und-verteilte-systeme/index.html/, 2014,
[Online; accessed 12-June-2019].

[3] Python Software Foundation, “Python language reference, version
3.7,” https://docs.python.org/3.7/, 2019, [Online; accessed 17-June-
2019].

[4] G. E. Krasner and S. T. Pope, “A cookbook for using the model-
view controller user interface paradigm in smalltalk-80,” J. Object
Oriented Program., vol. 1, no. 3, pp. 26–49, Aug. 1988.

[5] K. Mehlhorn and P. Sanders, Algorithms and Data
Structures: The Basic Toolbox. Springer, Oct. 2007.
[Online]. Available: https://people.mpi-inf.mpg.de/~mehlhorn/ftp/
Mehlhorn-Sanders-Toolbox.pdf

[6] ECMA International, “The json data interchange syntax,”
http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-404.pdf, Dec. 2017, [Online; accessed 18-June-2019].

[7] S. E. Vollset, “Confidence intervals for a binomial proportion,”
Statistics in Medicine, vol. 12, no. 9, pp. 809–824, 1993.

[8] M. Sachs, Wahrscheinlichkeitsrechnung und Statistik. Hanser Fach-
buchverlag, Sep. 2003.

[9] R. G. Newcombe, “Two-sided confidence intervals for the single
proportion: comparison of seven methods,” Statistics in Medicine,
vol. 17, no. 8, pp. 857–872, 1998.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 56 doi: 10.2313/NET-2019-10-1_10

Network Emulation using Linux Network Namespaces

Daniel Schubert, Benedikt Jaeger∗, Max Helm∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ga59tek@mytum.de, jaeger@net.in.tum.de, helm@net.in.tum.de

Abstract—Testing the behaviour of computer networks can
be done with specialized testbeds but they can be expensive
and are hard to reconfigure. Therefore other methods like
network emulation are used. In an implementation of an
emulator, virtual machines can serve as network nodes.
However, a more lightweight approach is based on Linux
network namespaces. In this paper we describe fundamen-
tal emulation features of the Linux operating system that
are useful in network emulation. Furthermore, we present
Mininet, an emulator that harnesses those features. We
examine the API of Mininet and show what happens in the
background on a lower level. Finally we present data on the
performance of Mininet.

Index Terms—network emulation, virtualization, software-
defined networks, OpenFlow

1. Introduction

Computer networks are already quite complex systems
when they contain only a few nodes, with larger network
topologies their behaviour gets even more unpredictable
and so there is a need for testing. One option is to make
use of a testbed consisting of several machines connected
to each other but this approach is expensive, inflexible
and does not scale very well. Therefore, simulation and
emulation frameworks are useful especially in situations
where the effects of introducing changes to the network
have to be evaluated dynamically. These changes could
relate to a protocol, the network architecture or the address
scheme. In software defined networks where the function-
ality of the network can in principle evolve very quickly,
such a platform for rapid prototyping can be helpful.
Various prototyping environments are already available.
In many of those, virtual machines represent nodes which
then are connected into a network by virtual interfaces.
However there is a different approach that was chosen
for the open source network emulator Mininet. There
the network is built from processes running in separate
Linux network namespaces which are connected by pairs
of virtual Ethernet devices. This offers a more lightweight
way of network emulation. The remainder of this paper is
organized as follows. Section 2 gives a detailed description
of network namespaces and other emulation features of the
Linux operating system. The Mininet network emulation
platform is presented in Section 3, focussing on its API
and inner workings. In Section 4 other simulation and
emulation tools are discussed. Finally, a conclusion is
given in Section 5.

2. Linux virtualization features

In this section we explain the virtualization features
of the Linux operating system that are used for the im-
plementation of Mininet.

2.1. Linux Network Namespaces

The concept of namespaces comes in different vari-
eties in the Linux operating system. The common purpose
is to offer spaces where processes can be executed in iso-
lation of others regarding various system resources. One
of those varieties are network namespaces. They provide
processes or groups of processes with their individual
network stack including routing tables, network devices,
ports and firewall rules among other things. A new net-
work namespace can be created in different ways using the
namespace API. One way is to use the clone system call
which creates a new process. If the CLONE_NEWNET flag is
given as an argument the process is provided with a new
namespace. Another way is to use the unshare system call
from a child process again with the CLONE_NEWNET flag to
separate it from its parent. At the time of their creation
namespaces just contain a private loopback device. Phys-
ical network devices can be moved between namespaces
but they can always only belong exactly to one of them
[1] [2].

2.2. Virtual ethernet devices

In order to enable communication between different
network namespaces there exist virtual ethernet devices
(veth). They come as pairs and can be thought of as a pipe
connecting two namespaces. Using the command shown
in Listing 1 a pair of veth interfaces named <name1>
and <name2> can be created and the latter is put in the
network namespace <netns>. As a result, a connection
between the root namespace and the namespace <netns>
is established [3].

Listing 1: Shell command to create a virtual ethernet
device pair

1 ip link add name <name1 > type veth
2 peer name <name2 > netns <netns >

2.3. Control groups

Control groups (cgroups) are to some extent similar
to namespaces because they form an environment for

Seminar IITM SS 19,
Network Architectures and Services, October 2019 57 doi: 10.2313/NET-2019-10-1_11

processes with a modified view on system resources. Their
purpose is to track and limit the access of processes to
resources like cpu time, memory and devices or restrict the
number of processes that can be created. Control groups
are a hierarchical structure implemented as a pseudo-file-
system. To create a new cgroup a folder is added to that
file-system. Processes can be assigned to a cgroup by
adding their process id to the group’s cgroup.procs file. A
process can only be part of one group and is automatically
removed from any other group on its reassignment. The
actual limitation of the resources is carried out by kernel
components called controllers or subsystems which are
mounted on the file-system. The limits of a cgroup are
defined by values written in attribute files of a cgroup
folder. [4]

2.4. Traffic control

Apart from controlling the environment a process is
running in, it is also possible to influence the network
traffic between network namespaces. This is done by
influencing the handling of packets at the interfaces of
namespaces using Linux traffic control (tc). This way for
example the bandwidth of a link can be decreased [5].

3. Mininet

Mininet is an emulator that aims at providing a plat-
form for rapid prototyping of large software defined net-
works consisting of hundreds of nodes. By using vir-
tualization features on the operating system level it is
very lightweight and can therefore be run on commodity
hardware. It can be used interactively through a command
line interface but there also exists a Python API that allows
for the creation of complex network structures by small
scripts. In fact almost the complete project itself is written
in Python with only some time critical parts implemented
in C [6].

3.1. Components

The components emulated by Mininet are hosts,
switches, controllers and links. Mininet hosts are simply
shell processes that have been given their own network
namespaces. Software OpenFlow switches take over the
tasks of hardware switches in real networks. By default
they run in the root namespace. Typically, controllers
are the parts that are tested and therefore beside using
emulated ones, it is possible to connect real controllers
to the virtualized network. This only requires IP-level
connectivity between the controllers and the emulated
switches. In order to connect the different nodes of the
network virtual links are used. Each link consists of a
virtual Ethernet device pair that acts like a tunnel between
two virtual interfaces of two different network namespaces
[6].

3.2. API

The Miniet API is divided into three levels of ab-
straction. The low-level API which comprises the base
classes for the nodes and links that make up the network,

the mid-level API that offers methods that help with the
construction of a network as well as with its configuration
and eventually the high-level API that provides a class
representing a reusable network topology that can be
parametrized and instantiated using the command line
interface [7].

3.2.1. Low-level API. The most interesting things for us
happen at the low-level API because there we can observe
the utilization of the operating system’s virtualization
features. In Listing 2 you can see how the most basic
network, containing only two hosts, a connecting switch
and a controller can be constructed. The resulting network
topology can be seen in Figure 1.

Listing 2: Construction of a simple network using
Mininet’s low-level API. (Modified from [7])

1 h1 = Host(’h1 ’)
2 h2 = Host(’h2 ’)
3 s1 = OVSSwitch(’s1’, inNamespace=

False)
4 c0 = Controller(’c0’, inNamespace=

False)
5 Link(h1, s1)
6 Link(h2, s1)
7 h1.setIP (’10.1/8 ’)
8 h2.setIP (’10.2/8 ’)
9 c0.start()

10 s1.start([c0])
11 print h1.cmd(’ping -c1’, h2.IP())

Figure 1: Simple network created by Mininet [6].

At this level, the base classes for the network’s com-
ponents are used directly. In Figure 2 you can see that
the classes for three of the four main components of
the network e.g. hosts, switches and controllers share a
common parent class which is an abstraction for a network
node. In the class constructor a new process is spawned
that calls a subprogram written in C to create its own
new network namespace by using the unshare system call
with the CLONE_NEWNET flag. The basic Host class which
is used in line 1 and 2 in Listing 2 does not differ from
its superclass. There are neither new fields nor any new
methods. This is different to the CPULimitedHost class
where the id of the process started during the instantiation
is moved to a cgroup file in order to control the CPU time

Seminar IITM SS 19,
Network Architectures and Services, October 2019 58 doi: 10.2313/NET-2019-10-1_11

Figure 2: Class diagramm of a part of the Node class
hierarchy.

allocated to it. In line 3 an open vSwitch is instantiated
that eventually should bridge the two hosts and in line
4 an instance of a controller is created to determine the
behaviour of the switch. In order to connect the switch
to the hosts two Link objects are used. The basic Link
object is just a pair of virtual Ethernet devices which is
created as shown in Listing 1. In line 7 and 8 the IP
adresses of the default interfaces of the hosts are set to
10.0.0.1 and 10.0.0.2 respectively. The default interface is
the one with the lowest port number. In this case it is equal
to the virtual Ethernet interfaces that were set up before
because the network namespaces of the hosts are created
empty except for a loopback interface that is not taken
into consideration here. After that the controller’s start
method is called which brings up an OpenFlow reference
controller that listens on port 6653 of the root network
namespace. In line 10 an open vSwitch is started using
the command shown in Listing 3.

Listing 3: Shell command to start an open vSwitch
1 ovs -vsctl add -br <name >
2 -- set bridge <name >
3 controller =[<controllerIds >]
4 -- add -port <name > <intf >

Line 1 in Listing 3 shows the basic command to
add a bridge called <name>. In line 2-3 the controllers
responsible for the switch’s behaviour are set and in line 4
an interface is added to the bridge. Line 4 is executed two
times in this example adding the two different interfaces
that have been created during the instantiation of the two
links between the switch and the hosts. Finally, in line
11 of Listing 2 host h2 is pinged from host h1. The cmd
method of the Node superclass takes a list of arguments
that are combined to a string and run in the shell of the
respective node [8].

3.2.2. Mid-level API. If we want to build the same simple
network using the mid-level API we can use the code that
is shown in Listing 4.

Listing 4: Command to start an open vSwitch
1 net = Mininet ()
2 h1 = net.addHost(’h1’)
3 h2 = net.addHost(’h2’)
4 s1 = net.addSwitch(’s1’)
5 c0 = net.addController(’c0’)
6 net.addLink(h1, s1)
7 net.addLink(h2, s1)

8 net.start()
9 print h1.cmd(’ping␣-c1’, h2.IP())

10 net.stop()

When we compare it to the code written using the
low-level API we can see some differences. First of all
there is a Mininet object which is an abstraction of the
network. The network can be started and stopped as a
whole as done in line 8 and 10 respectively. Therefore, it
is not necessary to start switches or controllers separately.
Furthermore, there is no need to manually set IP addresses
of interfaces.

3.2.3. High-level API. In the high-level API there is a
Topo class that represents a reusable network topology
that can be parametrized. This class contains a build
method that can be overwritten which orchestrates the
creation of a network in essentially the same way as in
the mid-level API. A Topo object can be handed to the
Mininet constructor as a parameter or can be used as an
argument for the command line interface.

3.3. Evaluation of Performance and Accuracy

The inventors of Mininet themselves published a re-
port where they compared the bandwidths that were mea-
sured in small networks in the emulator with those of
equivalent topologies on a testbed with eight machines.
They observed similar TCP results but the results of the
emulator were more repeatable and consistent [9].

In a larger study Isaia and Guan [10] examined
Mininet with regard to nine different performance cate-
gories, including setup time, teardown time, CPU usage,
CPU cores load balancing, RAM usage, initial ping delay
(IPD), average ping delay, no response failure rate and fair
share of resources. Setup and teardown time describe how
long it takes to create and destruct a given network topol-
ogy. To evaluate the CPU usage they took two different
measures: the initial CPU usage which is the CPU load
after creating the network but before starting to send data
across it and the CPU usage during experimentation which
is the average CPU load during a specified experiment. For
measuring the CPU cores load balancing, an experiment is
divided into time intervals. For each of them the standard
deviation of core usage is calculated and finally the aver-
age is taken. It is a measure of how well the CPU load
can be distributed to different cores which is important
for scalability. The initial ping delay is the time it takes to
ping a node at the start of an experiment. It is significantly
larger than at later time points because at the beginning
the OpenFlow switches do not contain the necessary flow
table rules which first have to be added by a controller.
Therefore, in the average ping delay measure the IPD is
excluded. No response failure rate is the percentage of
unsuccessful ping commands. Fair share of resources in
that study was calculated as the coefficient of variation
of ping delay between all the hosts when performing a
ping command simultaneously. Five different setups with
their own network topologies and communication patterns
have been tested in 4 different network sizes and each
experiment was done 30 times on two different systems
that differed in the number of cores, the amount of RAM
and the size of the hard disk. The setups covered various

Seminar IITM SS 19,
Network Architectures and Services, October 2019 59 doi: 10.2313/NET-2019-10-1_11

bottlenecks in network communication. The data gener-
ated from the experiments showed that the setup time of a
network is strongly influenced by the number of switches.
In a network of 1000 hosts and one swith the setup time
was under ten seconds whereas in a network comprised
of two hosts and 1000 switches it reached almost four
minutes. But setup time did not always increase linearly
with the size of the network and there was no benefit
from using the more powerful system. The authors of the
study also stated that CPU usage is generally good and
that load balancing worked well being positively effected
by the number of switches. The initial ping delay is very
large compared to the average ping delay and it grows
as the number of nodes in the network increases. This is
natural because when a connection is used for the first
time the forwarding rules have to be added to the switch
by a controller. The no response failure rate played a role
in larger networks or when the path of a ping packet was
long. The fair share of resources measure also gets worse
with an increasing number of network nodes. [10]

4. Related work

Apart from Mininet there exist other tools to simulate
or emulate computer networks. Simulators try to mimic
the behavior of a system model in a more abstract way
whereas with emulators the same code can be executed as
in the real system. A disadvantage of emulators may be
that they run slower than the actual hardware and therefore
are not always able to reproduce a realistic timing. In
simulators the execution is more flexible and can even be
faster then in the real system [11]. On the side of the sim-
ulation tools, there is ns-3, an open source discrete-event
simulator that was mainly created to support education and
research [12]. Others are fs-sdn [13], which as Mininet is
targeted at SDN prototyping and the commercial EstiNet
X Simulator [14]. An example for network emulation
is Mahimahi, a record-and-replay tool that can be used
for recording traffic from HTTP-based applications. Later
Mahimahi can replay the traffic emulating the network
structure that produced it. Linux network spaces are used
here as well [15].

Although hundreds of nodes can be emulated on a
single machine with Mininet at some point the resources
come to an end where it is not possible to make the
network larger. To handle this problem Blankstein et al.
developed a distributed version of Mininet where the
topology of a virtual network is split between multiple
computers automatically [16]. This approach has now also
been followed by the Mininet community and there is a
cluster edition prototype available in the repositiory.

5. Conclusion

In this paper we explained fundamental emulation
features of the Linux operating system that are useful
in network emulation including network namespaces, vir-
tual Ethernet devices, control groups and traffic control.
Furthermore we presented the Mininet emulator, which is
based on those features, and described the implementation
of its main components. We examined Mininet’s API
that is divided into three abstraction levels and inspected

how it interacts with the operating system to create a
simple network. Finally we presented data on performance
and accuracy of Mininet and mentioned other tools for
network simulation and emulation.

References

[1] “namespaces(7) - linux manual page,” http://man7.org/linux/
man-pages/man7/namespaces.7.html, [Online; accessed 2019-06-
11].

[2] network_namespaces(7) - linux manual page. [On-
line]. Available: http://man7.org/linux/man-pages/man7/network\
_namespaces.7.html

[3] veth(4) - linux manual page. [Online]. Available: http://man7.org/
linux/man-pages/man4/veth.4.html

[4] “cgroups(7) - linux manual page,” http://man7.org/linux/
man-pages/man7/cgroups.7.html, [Online; accessed 2019-06-
13].

[5] tc(8) - linux man page. [Online]. Available: https://linux.die.net/
man/8/tc

[6] B. Lantz, B. Heller, and N. McKeown, “A network in
a laptop: Rapid prototyping for software-defined networks,”
in Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, ser. Hotnets-IX. New York, NY,
USA: ACM, 2010, pp. 19:1–19:6. [Online]. Available: http:
//doi.acm.org.eaccess.ub.tum.de/10.1145/1868447.1868466

[7] mininet. Introduction to mininet. [Online]. Available: https:
//github.com/mininet/mininet/wiki/Introduction-to-Mininet#api

[8] ——. Mininet sourcecode. [Online]. Available: https://github.com/
mininet/mininet

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Mininet performance fidelity benchmarks,” 2012.

[10] P. Isaia and L. Guan, “Performance benchmarking of sdn exper-
imental platforms,” in 2016 IEEE NetSoft Conference and Work-
shops (NetSoft), June 2016, pp. 116–120.

[11] C. Seifert, S. Reißmann, S. Rieger, and C. Pape, “Evaluation
von virl, gns3 und mininet als virtual network testbeds in der
hochschullehre,” in 11. DFN-Forum Kommunikationstechnologien,
P. Müller, B. Neumair, H. Reiser, and G. Dreo Rodosek, Eds.
Bonn: Gesellschaft für Informatik e.V., 2018, pp. 103–112.

[12] T. Henderson and M. Lacage. Network simulator 3. [Online].
Available: https://www.nsnam.org

[13] M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation
for sdn prototyping,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM,
2013, pp. 31–36. [Online]. Available: http://doi.acm.org.eaccess.
ub.tum.de/10.1145/2491185.2491202

[14] EstiNet. Estinet. [Online]. Available: https://www.estinet.com/ns/

[15] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein,
J. Mickens, and H. Balakrishnan, “Mahimahi: Accurate record-and-
replay for HTTP,” in 2015 USENIX Annual Technical Conference
(USENIX ATC 15). Santa Clara, CA: USENIX Association,
2015, pp. 417–429. [Online]. Available: https://www.usenix.org/
conference/atc15/technical-session/presentation/netravali

[16] A. Blankstein, S. A. Erickson, and M. Melara, “Mininet clustering,”
2013.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 60 doi: 10.2313/NET-2019-10-1_11

What is Deterministic Network Calculus?

Tobias Wasner, Max Helm∗, Dominik Scholz∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: mail@wasnertobias.me, helm@net.in.tum.de, scholzd@net.in.tum.de

Abstract—This paper gives a short introduction to Deter-
ministic Network Calculus. Explains how service guarantees
can be provided to error-free packet-switching networks and
the limitations of this process. Discusses alternative mathe-
matical approaches, their limitations and corresponding use
cases.

Index Terms—deterministic network calculus, worst-case
performance, guaranteed service, packet-switching network,
traffic shaping, schedulability

1. Introduction

As shown by Cruz in [1] and [2], Deterministic
Network Calculus (DNC) is used to calculate theoretical
worst-case performance guarantees for error-free packet-
switching networks of queues and schedulers.

DNC, other than Stochastic Network Calculus
(SNC), does not use probabilistic terms to characterize
performance guarantees. This means that performance
guarantees calculated using DNC will hold in any case.
This is why DNC is especially useful for hard real-time
systems, as those systems assume that missing a single
deadline results in a total system failure. [1]

In section 2 the required mathematical background
for the application of DNC will be introduced.
In section 3 the application of DNC will be explained.
In section 4 examples for limitations of the application
of DNC will be given.
In section 5 alternative frameworks will be briefly
introduced and their limitations will be compared to
those of DNC.
In section 6 the main results of this paper will be
summarized.

2. Background

In order to be able to calculate performance bounds,
certain mathematical models have to be applied to the
network, which will be described in this section.

2.1. Flows

A comprehensive introduction of the term flow is
shown by Boudec et al. in [3]. The notation of this section
of the paper is derived from Geyer in [4]. The term
flow is used to describe a unidirectional set of packets

which are being sent from a single sender to a single
receiver in a packet-switching network [4]. Cumulative
arrival functions are used to mathematically model flows.
They need to be a member of the following set: [4]

F = {f : R+ → R+ | ∀0 ≤ t ≤ s : f(t) ≤ f(s), f(0) = 0}

In the formular s is the time of the end of the flow. This
implies that every A ∈ F is a non-decreasing strictly
positive function. A represents the amount of data being
sent by the flow in the time interval [0, t).

Furthermore, a flow has a deterministic arrival curve
α ∈ F if its cumulative arrival function A satisfies: [4]

∀0 ≤ s ≤ t : A(t)−A(s) ≤ α(t− s)

In the formular s is the time of the beginning of the
constraint and t is the the time of the end of the flow. It is
said that the flow A is constrained by α in that case [3].
The cumulative arrival function A can also be used to
describe the sending rate as DNC assumes that no packet
loss happens.

2.2. Traffic shaping

As shown by Tanenbaum in [5], traffic shaping is
needed to constrain flows. Constraining of flows is the
basis of all calculations of DNC. Traffic shaping is a tech-
nique which smooths out the traffic on the senders’ side,
rather than on the receivers’ side [5]. Two different traffic
shaping algorithms will be explained in the following.

Figure 1: Cumulative byte arrival (solid black line) con-
strained by a token bucket arrival curve (dashed blue line)
and a leaky bucket arrival curve (dashed green line).

Seminar IITM SS 19,
Network Architectures and Services, October 2019 61 doi: 10.2313/NET-2019-10-1_12

2.2.1. Leaky bucket algorithm [5]. This traffic shaping
algorithm derives its name from the idea of a bucket being
constantly filled with an irregular rate of water (water
abstracts packets to be sent over the network) and with
one little hole at the bottom of the bucket (packets actually
being sent over the network).
The filling of the buffer, therefore, is expressed as the
filling of the bucket. The outflow through the little hole
is happening with a constant rate r, at least if the bucket
is not empty. Once the bucket is fully filled, any further
input will simply spill over and is therefore lost.
The rate r can either have the unit number of packets
per time frame or data size per time frame. The second
approach is useful in the case where not all packets have
a fixed data size.

2.2.2. Token bucket algorithm [5]. The content of this
bucket are tokens. A token is the allowance to send data
in the form of a certain number of packets or bytes.
If data has been sent over the network, the number of
tokens in the bucket is reduced accordingly. Tokens are
added to the bucket at a constant rate r, however, if the
bucket is full, no more tokens can be added. If the bucket
is empty, data cannot be sent out to the network, it is
necessary to wait for tokens to be added in this case.

This algorithm is more flexible in comparison to
the leaky bucket algorithm as the output rate is not fixed
and the token bucket is fully filled at the time of the
beginning of the constraint. Therefore this algorithm
allows bigger bursts to happen in comparision with the
leaky bucket algorithm. This can also be seen in Figure 1,
where different minimum rates r (slopes) are required to
constrain the given flow, due to the offset of the token
bucket algorithm.

2.3. Servers and service curves

Figure 2: Visualization of the service curve concept [6].

Every single node in a network has a queue and a
scheduler, which is an algorithm which decides which
packet will be sent next, in case there are multiple packets
in the queue waiting to be transferred. The term server
is used to describe a whole network or certain parts
of a network, e.g. a link, a scheduler or a traffic shaper. [4]

Given a deterministic arrival curve A, a server is
characterized by its deterministic service curve β, such

that the output curve A∗ of a flow after traversing the
server is defined as: [4]

A∗(t) ≥ inf
t≥s≥0

{A(s) + β(t− s)} = A⊗ β

This definition is illustrated by Bemten et al. in [6],
correspondingly Figure 2.
As the departure of some data cannot occur before its
arrival it is implied that ∀t ≥ 0 : A(t) ≥ A∗(t).

3. Application

In this section the application of DNC will be ex-
plained.

3.1. Service guarantees

DNC provides two different kinds of service guaran-
tees, namely delay bounds and backlog bounds. Both will
be introduced in the following.

3.1.1. Delay bounds. The virtual delay d at time t is
defined by the following equation: [3]

d(t) = inf
τ≥0
{A(t) ≤ A∗(t+ τ)}

The term delay bound corresponds to the maximum time
that incoming data has to wait before being processed by
the server. In mathematical terms this can be expressed
using the following equation: [4]

A∗(t)−A(t− s) ≤ sup
t≥0
{d(t)}

3.1.2. Backlog bounds. The backlog b at time t is defined
by the following equation: [3]

b(t) = A(t)−A∗(t)
The term backlog bound corresponds to the maximum
amount of data that will have to wait before being pro-
cessed by the server. In mathematical terms this can be
expressed using the following equation: [4]

A(t)−A∗(t) ≤ sup
t≥0
{b(t)}

3.2. Generalized Processor Sharing

Generalized Processor Sharing (GPS) is the ideal form
of per flow queuing. Per flow queuing provides isolation
of flows and therefore service guarantees differentiated
per flow. Numerous practical implementations of GPS
have been proposed in the literature. Each differs in
their provided service guarantees and their implementation
complexity. Practical implementations of GPS will be
introduced in the following. [3]

3.2.1. Practical Generalized Processor Sharing. Prac-
tical Generalized Processor Sharing (PGPS) implements
GPS using one First In First Out (FIFO) queue per
flow [3]. Each queue is assigned a priority [4]. Based
on the assigned priority the available bandwidth is shared
accordingly [4].

Seminar IITM SS 19,
Network Architectures and Services, October 2019 62 doi: 10.2313/NET-2019-10-1_12

3.2.2. Guaranteed Rate Schedulers. All practical imple-
mentations of GPS fit in the framework Guaranteed Rate
Schedulers (GRS). This approach considers a server with
FIFO-scheduling and a constant bit rate r. [3]
Furthermore, Ti is defined as the arrival time, T ′i as the
departure time and li as the length in bits of the ith packet,
ordered by arrival time [3].
Assuming T1 ≥ 0, where T1 is the arrival time of the
packet which arrived earliest, the definition of T ′i is the
following: [3]

T ′i =

{
0 if i = 0
max{Ti, T ′i−1}+ li

r if i > 0

This means that packet i starts its service at
max{Ti, T ′i−1} and ends at max{Ti, T ′i−1}+ li

r [3].

3.3. Schedulability

Networks are not usually built in the way that a
single piece of hardware is being exclusively used by one
single flow. Quite the opposite, it is extremely common
that a single node in a network has to handle transfers
for multiple flows in parallel. Schedulability enables that
service guarantees can still be made in that case. This is
done in the following way: [3]

When a node is affected by a new flow it has to
reserve two kinds of resources locally: bandwidth and
buffer size. In order to be able to reserve those resources
the quantity has to be determined. To calculate the
needed bandwidth and buffer size we have to keep the
service curve and the arrival curve constraints of the
flow in mind. The most general framework which is
making those calculations possible is named Service
Curve Earliest Deadline First. [3]

3.3.1. Earliest Deadline First. The concept of Earliest
Deadline First (EDF) schedulers assumes that there is
a list for every corresponding flow which contains the
arrived packets which are waiting to be transferred further.
Furthermore, a deadline Dn

i is allocated to every nth
packet of every ith flow. [3]
At every time slot the scheduler picks one packet with
the earliest deadline out of all packets independent of the
flow. This general concept contains no further assumption
of how the deadline is mathematically allocated. For that
reason multiple concepts of other scheduler types - e.g.
FIFO - can be fit in this concept as well. [3]

3.3.2. Service Curve Earliest Deadline First Sched-
ulers. As shown in subsection 3.3.1 EDF schedulers
assume that there is a deadline allocated to every packet.
Service Curve Earliest Deadline First (SCEDF) schedulers
allocate the deadlines for every packet in that way that
every ith flow does have βi as a service curve. [3]

3.4. Time Analysis Methods

It is explained in section 3.1 how service guarantees
can be calculated for individual servers. The Time Anal-
ysis Model enables to calculate delay bounds for flows
which traverse multiple servers.

3.4.1. Total Flow Analysis. As shown by Heidinger
in [7], this method of calculating delay bounds is done
in the following way: The delay bounds are calculated
per traversing node and then added up. For that reason
this method is also known as node-by-node analysis.
The problem with this method is that the delay bounds
will be calculated overly pessimistic, because bursts are
not only paid at the first traversing node, but at every
traversing node. [7]

3.4.2. Separate Flow Analysis. This method of calcu-
lating delay bounds is done in the following way: The
service curves are calculated per traversing edge, added
up and then the horizontal deviation is used as a delay
bound. [7]
In that way bursts will be only paid at the first traversing
node. The problem with this method is that the delay
bounds will be calculated overly pessimistic, if a flow is
multiplexed several times. [7]

3.4.3. Pay Multiplexing Only Once. As shown by
Schmitt et al. in [8], with this method overly pessimistic
calculations of delay bounds do not happen, if a flow
is multiplexed several times. This method is based on
separate flow analysis as shown in section 3.4.2.

4. Limitations

In this section the limitations of the application of
DNC will be explained.

4.1. Cyclic dependencies

As shown by Schiøler et al. in [9], cyclic dependencies
in dataflows can not be modeled using DNC without any
modifications. This problem is still under active research
and there is already an approach named Cyclic Network
Calculus (CyNC) which aims to support that use case, but
has not yet produced correct results in every case [9].
CyNC is based on DNC but extends the theoretical basis.
Several modifications of DNC are already proposed and
even more are needed in the future to fully support this
application area. [9]

4.2. Feedback loops

One might think that protocols which include feedback
loops - e.g. TCP - cannot be modeled using DNC. In fact,
this assumption has been proven wrong, as Baccelli et
al. have shown in [10] that TCP can be modeled using
max-plus algebra. However this is not a common use case
for DNC, because the used traffic shaping in DNC is
about regulating the average rate and burstiness of data
transmission whereas the sliding window protocols, such
as TCP, only limit the amount of data in transit at once [5].

4.3. Overprovisioning

DNC aims to determine the actual worst case which
can be seen in Figure 3. Practically the calculation of
overly pessimistic upper bounds can be observed fre-
quently using DNC as shown by Fidler in [11]. However,

Seminar IITM SS 19,
Network Architectures and Services, October 2019 63 doi: 10.2313/NET-2019-10-1_12

Figure 3: Visualization and naming of delay bounds. [4]

determining the exact actual worst-case is NP-hard [4].
For systems which are not of the type hard real-time -
e.g. best-effort or soft real-time systems - those overly
pessimistic calculations of the actual worst case can easily
make the calculations of DNC worthless. Even if the
actual worst case is not calculated overly pessimistic it
still may be attained rarely and may not even have the
effect of breaking the whole system as silently assumed
by DNC. [11]

5. Alternative approaches

In this section alternative approaches to calculate per-
formance guarantees will be briefly introduced and their
limitations will be compared to those of DNC.
Figure 4 provides a broad overview of the different use
cases of several alternative approaches. Some approaches
will be explained further in the following subsections.

Figure 4: An overview of the use cases of several alter-
native approaches [4].

5.1. Stochastic Network Calculus

As described in section 4.3, DNC is not designed to
model systems which are not of the hard real-time type.
SNC characterizes performance bounds in probabilistic
terms [1], which makes it more suitable to model firm
or soft real-time systems [4].

5.2. Queuing theory

As shown by Lipsky in [12], this approach uses proba-
bilistic terms to characterize performance bounds, as well
as SNC. Furthermore, it does not analyze the worst-case,
as DNC or SNC does, but the average-case [12], which
makes it more suitable to model best-effort systems [4].

6. Conclusion and future work

In this paper we have shown how Deterministic
Network Calculus can be used to calculate theoretical

worst-case performance guarantees for error-free packet-
switching networks of queues and schedulers.

In section 2, we started to define the term flow, which
is used to describe a unidirectional set of packets which
are being sent from a single sender to a single receiver.
We showed what it means that a flow is constrained and
how constrains of flows can be calculated.
In section 3, the concept of servers and service curves,
delay bounds and backlog bounds have been defined and
explained. We put all concepts together and showed how
service guarantees can be calculated even when multiple
traversed servers and active flows are involved.
In section 4, we have shown what the limitations of the
application of DNC are.
In section 5, we briefly introduced alternative approaches
to calculate performance bounds and compare their
limitations and corresponding use cases.

Overall we have seen that the analysis of the network is
bound to the exact requirements of each individual flow.
Therefore the exact requirements have to be known in
beforehand to be able to calculate performance bounds
using DNC. Therefore the constructed network is bound
to the initial planned use case, also in terms of hardware.
That fact makes the use cases of DNC inflexible. The
effort of defining those exact requirements and making
the calculations is only worth it in special real-world
applications.
On one hand, the calculated performance guarantees of
DNC can be valuable whenever the criticality is high,
e.g. when even lives are at stake. On the other hand,
the calculations of DNC assume that the network is
error-free, which means that a single point of failure
could break calculated performance guarantees partly or
even fully. This problem still has to be taken into mind.
One real-world application is the validation of embedded
networks inside the Airbus A380 and A350 [4].

References

[1] R. L. Cruz, “A calculus for network delay. i. network elements
in isolation,” IEEE Transactions on Information Theory, vol. 37,
no. 1, pp. 114–131, Jan 1991.

[2] ——, “A calculus for network delay. ii. network analysis,” IEEE
Transactions on Information Theory, vol. 37, no. 1, pp. 132–141,
Jan 1991.

[3] J. Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet, ser. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2003.

[4] F. Geyer, “Quality-of-service and network calculus,” 2019,
[accessed 20-May-2019]. [Online]. Available: https://acn.net.in.
tum.de/slides/190205_chap12_QoS_Network_Calculus.pdf

[5] A. Tanenbaum, Computer Networks, ser. Computer Networks.
Prentice Hall PTR, 2003, no. S. 3.

[6] A. V. Bemten and W. Kellerer, “Network calculus: A
comprehensive guide,” 2016, [accessed 23-June-2019]. [Online].
Available: https://mediatum.ub.tum.de/doc/1328613/1328613.pdf

[7] E. Heidinger, “Worst case analysis - network calculus,” 2012,
[accessed 20-May-2019]. [Online]. Available: https://www.net.in.
tum.de/pub/systemperformanz/ss2012/skript/networkcalculus.pdf

[8] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic, “Improving per-
formance bounds in feed-forward networks by paying multiplexing
only once,” in 14th GI/ITG Conference - Measurement, Modelling
and Evalutation of Computer and Communication Systems, March
2008, pp. 1–15.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 64 doi: 10.2313/NET-2019-10-1_12

[9] H. Schiøler, J. J. Jessen, J. D. Nielsen, and K. G. Larsen, “Net-
work calculus for real time analysis of embedded systems with
cyclic task dependencies,” in Computers and Their Applications.
Citeseer, 2005, pp. 326–332.

[10] F. Baccelli and D. Hong, “Tcp is max-plus linear and what it
tells us on its throughput,” SIGCOMM Comput. Commun. Rev.,
vol. 30, no. 4, pp. 219–230, Aug. 2000, [accessed 23-May-2019].
[Online]. Available: https://doi.acm.org/10.1145/347057.347548

[11] M. Fidler, “Survey of deterministic and stochastic service curve
models in the network calculus,” IEEE Communications Surveys
Tutorials, vol. 12, no. 1, pp. 59–86, First 2010.

[12] L. Lipsky, Queueing Theory - A Linear Algebraic Approach,
2nd ed. Berlin Heidelberg: Springer Science & Business Media,
2008.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 65 doi: 10.2313/NET-2019-10-1_12

Seminar IITM SS 19,
Network Architectures and Services, October 2019 66

Optimization of Decision Trees for TCP Performance Root Cause Analysis

Marco Weiss, Simon Bauer∗, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: marco.weiss@tum.de, bauersi@net.in.tum.de, jaeger@net.in.tum.de

Abstract—Identifying the root cause for TCP throughput
limitations helps to improve network performance and user
experience. In previous work, decision trees (DTs) have been
used as a tool for TCP performance root cause analysis
(RCA) based on passive network measurements. The topol-
ogy of those trees has been designed based on the working
principles of TCP and the decision thresholds were chosen
by inspection of measured data. We present how genetic
algorithms (GAs) can be used to further optimize those DTs
by fitting their threshold values to a dataset of synthetic
network traffic with known root causes. In the next step,
machine learning algorithms, namely decision tree learning,
random forest and extremely randomized trees, are used to
build DT-based classifiers in a purely data-driven fashion. It
is shown that the classification accuracy of the hand-crafted
DTs could be improved after optimizing their thresholds with
our GA approach. However, even the optimized hand-crafted
DTs were outperformed by the machine learning approaches
with a significant margin.

Index Terms—TCP IP, decision trees, machine learning,
evolutionary computation

1. Introduction

As TCP is one of the most widely used transport layer
protocols, any TCP performance issues might directly
impact its users. RCA tools help to identify and overcome
such issues. In [1] and [2], Siekkinen et al. and Stem-
plinger developed tools for TCP performance RCA based
on passive network measurements using DTs. DTs are
an intuitive and interpretable technique that employs the
divide-and-conquer strategy for decision making. Due to
their intuitive use, it is possible to design DTs from hand
by analyzing the functionality of the underlying system.
This is especially the case for "white-box" systems like
TCP, where all internal structures and functions are in
principal known. A different approach for building DTs
comes from the field of machine learning, where the tree
structure and its decision rules are purely based on statis-
tical properties of data generated by the system. Despite
having no knowledge of the data generating process, DT
learning algorithms perform quite well in practice.

In this work, we aim to evaluate both approaches
on the same dataset. To this end, we do not only use
the dataset to train classifiers with different DT learning
algorithms, but we also try to further improve the classi-
fication performance of the existing hand-crafted DTs by
fitting their threshold values to our data. This is in fact not

trivial because common DT learning algorithms need to
have control over both the tree topology and the decision
thresholds to achieve good performance. Thus, we need
to formulate the task as a general optimization problem.
To solve it, we chose to use GAs for two main reasons:
GAs are easy to implement and they impose almost no
limitations to the optimization problem at hand, compared
to e.g. gradient-based methods that require a differentiable
objective function or linear programming that requires a
linear objective function (both is not the case for DT
optimization which is in fact NP-complete [3]).

The remainder of this paper is organized as follows:
First, related work to the fields of TCP RCA, DTs and
GAs for DT oprimization is presented in section 2. Af-
ter introducing our dataset in section 3, we present the
baseline DTs, how they can be optimized with GAs and
different machine learning approaches in section 4. The
setup and results from our experiments are presented in
section 5 before summarizing our findings in section 6.

2. Related work

In [4], Zhang et al. were the first to perform a holistic
analysis on the limiting factors of throughput in internet
connections. Based on their findings, they developed T-
RAT, a tool for RCA based on trace files. Siekkinen et
al. extend this work in [1] to overcome limitations of T-
RAT that are discussed in [5] in detail. They introduce a
set of quantitative metric, called limitation scores, which
can be inferred from TCP headers and are then used in
a DT-based RCA tool. In [2], Stemplinger extends their
approach and uses synthetic training data generated by the
Mininet network emulator to adapt the decision thresholds
to more recent congestion control algorithms.

Closely related to the work done on throughput RCA
is [6], where Jaiswal et al. aim to estimate the sender’s
congestion window size and the connection round trip
time (RTT) from passive measurements. They explicitly
demarcate their work from [4], but claim that the lim-
itating factors of a TCP connection can be determined
based on congestion window size and RTT. This work
is of particular interest because in [7] and [8], Hagos
et al. use machine learning techniques, namely random
forest, gradient boosting and recurrent neural networks,
to significantly improve prediction performance compared
to the state machine approach from [6]. Quite similar to
the machine learning part of our work is [9], where El
Khayat et al. use decision tree boosting to discriminate
between TCP package loss due to overflow or link errors
in wireless networks.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 67 doi: 10.2313/NET-2019-10-1_13

The foundations of DTs, their extensions and learning
algorithms can be found in [10], [11]. Decision tree learn-
ing, i.e. finding the combination of optimal split dimen-
sions and thresholds, has been proven to be NP-complete
[3]. State-of-the-art decision tree learning algorithms, e.g.
classification and regression tree (CART) as implemented
in the scikit-learn machine learning library [12], use a
greedy heuristic to determine the split that maximizes the
purity of the resulting distributions or the accuracy for
every new node. In general, DTs have several advantages
as they are easy to interpret, robust to outliers and scale
well to large datasets. However, they are considered high-
variance estimators, meaning their prediction performance
might be worse than with other machine learning methods
in some cases. To deal with this issue, several extensions
to DTs have been proposed. The probably most-widely
known one is random forests by Breiman [13], where the
prediction is computed as the average of an ensemble of
different DTs. Building on that, Geurts et al. later intro-
duced extremely randomized trees (extra-trees), where the
construction of all trees in the ensemble is completely
randomized instead of using a split heuristic [14]. We
will refer to both techniques as ensemble methods in the
following.

A fundamental introduction to genetic algorithms is
given in [15]. In combination with DTs, GAs have pre-
viously been used for pre-processing, i.e. selecting the
best subset of a large feature space which is then used as
input for a heuristic-based decision tree learning algorithm
[16]. There exist also attempts to directly use GAs to
build DTs. In [17], Papagelis et al. achieved comparable
classification performance to heuristic-based approaches
when optimizing their DT with GAs. In [18], Cha et
al. used GA-based optimization to build compact, nearly-
optimal decision trees.

3. RCA Dataset

We train and evaluate all our models on the dataset
from [2]. It was generated using the network emulator
Mininet with different test setups and network topologies
to enforce different throughput limitations. In the context
of TCP performance RCA, those throughput limitations
will be referred to as the root causes. As in [1] and [2],
only bulk transfer periods (BTP), i.e. the time window in
which throughput is limited by the network connection
and not the sending application, are analyzed. After the
BTPs have been isolated from the application limited pe-
riods, five limitation scores were calculated for each BTP.
All limitation scores are based on information contained
in the TCP headers, so measurements can be obtained pas-
sively at any point in the connection [1]. In the following,
we will give a brief summary of the possible root causes
and limitation scores derived in [1], [2] and provide an
overview of the used dataset.

3.1. Root Causes

Capacity bottleneck: The throughput of a connection
can be limited by the bandwidth available at the bottleneck
link. We distinguish between unshared bottlenecks (ub),
where our connection uses the entire bandwidth of the

bottleneck link and shared bottlenecks (sb), where parts of
the bottleneck bandwidth are used for other transmissions.

Receiver window (rw): The receiver-side application
sets the size of the receiver window, i.e. the number of
possible bytes per packet, based on how fast it can process
incoming data. The receiver window can be static or dy-
namically scaled by the receiver application during trans-
mission. In the first case, a combination of small default
window size, high bandwidth and rather long transmission
times can limit the throughput unintentionally. In the latter
case, the application can limit throughput intentionally if
it cannot process incoming data fast enough.

Congestion avoidance (cw): On sender-side, the con-
gestion control algorithm tries to estimate the best sending
rate for the connection. Depending on its implementation,
there might be phases in which the throughput is solely
limited by the congestion control algorithm, e.g. at the
beginning of a connection or after the congestion window
was lowered due to detected packet loss.

3.2. Limitation Scores

Dispersion score: The dispersion score is defined as

sdisp = 1− TP

C
, (1)

where TP is the average throughput of the BTP and
C is the capacity of the bottleneck link. The dispersion
score can be used to determine whether a connection is
limited by an unshared bottleneck (sdisp ≈ 0) or a shared
bottleneck (sdisp > 0).

Retransmission score: The retransmission score is de-
fined as the ratio of retransmitted bytes to transmitted
bytes

sretr =
nretr

ntrans
. (2)

A high retransmission score is an indicator for a network
bottleneck where the link buffer is filled up until packets
are dropped and have to be retransmitted.

RTT score: The RTT score is an alternative to the
retransmission score for detecting network bottlenecks and
is defined as

sRTT =
avg(RTT)

min(RTT)
, (3)

where RTT is the round trip time measurement of a
packet, i.e. the time between sending the packet and re-
ceiving the acknowledgement. Essentially, the RTT score
indicates a bottleneck if the current RTT is higher than
the lowest possible RTT measured so far.

Receiver window score: The receiver window score
srwnd quantifies how much the sender is limited by the
advertised receiver window. This is done by comparing the
number of outstanding bytes and the receiver advertised
window size over time. If the difference between both
values is small, i.e. below a certain threshold, the conges-
tion window of the sender is close to the limit set by the
receiver. The receiver window score is then calculated as
the average number of occurrences for this event over the
duration of a BTP.

Burstiness score: The burstiness score (or b-score) sb
can be used to determine whether connections with high
receiver window score are actually limited by the size of

Seminar IITM SS 19,
Network Architectures and Services, October 2019 68 doi: 10.2313/NET-2019-10-1_13

the receiver window or by a bandwidth bottleneck. When
transmitting n packages in a receiver-limited setting, a
burst of n − 1 short inter-arrival times (IAT) is followed
by a long IAT because the sender has to wait for the re-
ceiver’s acknowledgement. If the transmission is however
bandwidth-limited, the distribution of the IATs is more
even due to buffering at the bottleneck link.

3.3. Overview

The complete dataset consists of 533 measurements
that were taken during different BTPs. Each measurement
vector x = (sdisp, sretr, sRTT , srwnd, sb) ∈ R5 is labelled
with the true root cause y ∈ {cw, rw, sb, ub}. It has to be
noted that different combinations of root causes are possi-
ble in theory. In practice however, there is usually a single
dominant root cause per connection [1]. To visualize the
dataset, principle component analysis (PCA) is applied to
the normalized data. Using the first two components, the
dataset can be plotted as shown in Figure 1. It has to
be noted that the visualization captures only 66% of the
variance in the data. Nevertheless, this still gives a first
impression how the data is structured. It can e.g. already
be seen that the all measurements with y = rw can be
linearly separated from the other classes.

Figure 1: Dataset visualization using the first two com-
ponents from PCA (capturing 66% of the variance in the
data). The number in brackets indicates the number of
data points per class.

4. Methodology

In the following, different strategies will be described
to derive DTs for TCP performance RCA from the avail-
able data. As baseline, we use two hand-crafted DTs from
[1] and [2], where decision thresholds were manually
defined in [2] based on inspection of the dataset. In the
next step, we aim to improve the classification accuracy
of those trees by using GA to optimize the thresholds.
To compare the performance of hand-crafted DTs with
a purely data-driven machine learning approach, we use
DT learning, namely CART, in chapter 4.3. In chapter
4.4, we use ensemble methods, namely random forest and
extra-trees, which are expected to improve classification
performance compared to single DT learning.

disp score
<th1

retr score
>th2

rwnd
score
>th3

b-score
>th4

rwnd
score=0
&& retr
score=0

unshared bottleneck

shared bottleneck

Receiver Window

Congestion Avoidance

mixed/unknown

yes

no

yes

no

yes

no

no

yes

yes

no

(a)

disp score
<th1

rtt score
>th2

rwnd
score
>th3

rwnd
score=0
& retr
score=0

unshared bottleneck

shared bottleneck

Receiver Window

Congestion Avoidance

mixed/unknown

yes

no

yes

no

yes

no

yes

no

(b)

Figure 2: Baseline decision tree (a) and baseline RTT
decision tree (b), both taken from [2].

4.1. Fitting by Inspection

In [1], Siekkinen et al. proposed a DT based on
dispersion score, retransmission score, receiver window
score and burstiness score. In [2], the threshold values of
this DT where refined by manually analyzing the dataset
described in the previous chapter. In the following, we
will refer to this as the baseline approach. Additionally, a
modified version of the baseline tree was presented using
the RTT score instead of retransmission and burstiness
score, called baseline RTT. The trees are depicted in
Figure 2. It has to be pointed out that threshold fitting of
both trees was done using the complete dataset. For our
other approaches below, we perform a 80/20 train-test split
to measure generalization performance on unseen data.

4.2. Optimization with Genetic Algorithm

The general idea of GAs is that evolution in biology
can be seen as an optimization problem: In a population
of individuals, the ones adapted best to their environment
survive the longest and the older an individual gets the
more time it has to reproduce. Thus, the genes of the
best-fitting individuals spread while "unsuitable" genes
vanish over many generations. In a more mathematical
sense, natural selection can be seen as a search heuristic to
find the best genes (hence the name Genetic Algorithms).
To apply this heuristic, candidate solutions to the opti-
mization problem have to be encoded in chromosomes.
Their fitness is evaluated based on an objective function
and the fittest candidate solutions generate new candidate
solutions based on genetic operators [15]. In the following,
we will describe how this process can be applied to the
decision threshold optimization problem. The resulting
DTs will be referred to as optimized and optimized RTT.

The first step is to define the encoding of candidate so-
lutions. Compared to other approaches e.g. in [17] where a
candidate solution has to encode a complete tree topology,

Seminar IITM SS 19,
Network Architectures and Services, October 2019 69 doi: 10.2313/NET-2019-10-1_13

our encoding is rather simple because we only want to
optimize the decision thresholds for a fixed topology. In
accordance with the notation of Figure 2, we have candi-
date solutions in the form of cbase = {th1, th2, th3, th4}
and cbaseRTT = {th1, th2, th3}, where ∀j thj ∈ Tj
and Tj denotes the set of possible threshold values for
the j-th dimension of the input vector. Using a set of
discrete threshold values instead of real-valued numbers
drastically reduces the search space without affecting the
training accuracy of the candidate solutions. Analogously
to heuristic-based DT learning [11], the threshold sets for
a given training dataset D are obtained by Tj = {xj : x ∈
D}.

After the encoding has been defined, a start population
is created by generating npop individuals with random
values from the threshold sets. To evaluate the fitness
of a candidate solution, accuracy on the training dataset
is used. Selection is done in an elitist way: The best
nelit individuals are kept for the next generation without
any changes. On the remaining npop − nelit individu-
als, crossover and mutation can be applied. In original
GA implementations, one or more crossover points are
chosen at which the parent chromosomes are split and
exchanged between both partners to maintain so-called
building blocks [15]. In our implementation however,
the order of the elements is completely arbitrary and
not meaningful, so we do not need to maintain any
building block structures in the solution. Therefore, we
choose parameterized uniform crossover with probability
of 50%, which essentially means that the elements in the
offspring chromosome are randomly chosen from both
parents. For every offspring, the event mutation happens
with a configurable probability. In case of mutation, one
element cj of the chromosome is replaced by a random
element in Tj . In nature, mutation can only happen during
reproduction. This does of course not apply to a virtual
implementation of such genetic operators, so it is possible
to apply mutation to any individual and not only to new
offsprings. In Figure 3, graphical examples for the genetic
operators described above are given.

Starting with the initial population, optimization is
an iterative process where every iteration corresponds to
a new generation. After a fixed number of generations,
i.e. when convergence is expected based on experiments
presented in the next section, the best candidate solution
of the final generation is returned. To avoid converging to
a local minimum, GAs try to maintain a set of good, but
possibly very different solutions. Random mutation also
helps solution candidates to overcome local minima. The
effectiveness of those concepts highly relies on a suitable
combination of hyperparameters, primarily the population
size and the probabilities for crossover and mutation. We
tune those hyperparameters by comparing the results from
multiple runs of GA optimization to the actual global
optimum obtained from brute force calculations. Detailed
setup and results of those experiments can be found in
section 5.1.

4.3. Decision Tree Learning Algorithm

For DT learning, we use the DT classifier class from
scikit-learn [12]. It uses the CART algorithm and the best
split is chosen based on the Gini score, a measurement

Figure 3: Schematic visualization of genetic operators.
White boxes with rounded corners represent candidate
solutions with four genes (squares on the left) and a fitness
score (right). Red and blue color indicate the origin of
a gene during crossover. After mutation, one gene in the
offspring is replaced by a random value from the threshold
set (green color). The dashed line indicates that depending
on the implementation, mutation is also possible for indi-
viduals that are not the result of a crossover operator. For
clarity, only a single crossover operation is shown and
only one individual is passed to the next generation. In
practice, both has to be done multiple times to keep the
population size constant.

for the impurity of a distribution. As pointed out in the
scikit-learn documentation, the training algorithm is bi-
ased towards the dominant classes when training a DT on
an unbalanced dataset, i.e. data with an uneven distribution
of class labels. To overcome this issue and still make use
of the complete dataset, each class is weighted with the
reciprocal of its relative occurrence. Before training the
tree on the complete training dataset, we perform grid
search with K-fold cross validation to find the set of
hyperparameters that performs best on the test data. A
good selection of hyperparameters is mainly important to
prevent overfitting. Without any limitations, the tree can be
grown until every leaf node is pure, thus giving a training
accuracy of 100 % but bad generalization performance.
We tune the following hyperparameters to control growth
of the tree: Maximum depth, maximum number of leaf
nodes, minimum impurity decrease and minimum number
of samples for a split.

It has to be noted that in contrast to our baseline
trees, the scikit-learn DT implementation does not output
mixed/unknown as possible root cause. The classifiers al-
ways predicts the most likely class, i.e. the one dominating
the distribution in the leaf node - a class which is not in
the training dataset cannot be predicted. If a classification
as mixed/unknown is desired, a discrimination based on
the likelihood of the predicted class could be a possible
solution.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 70 doi: 10.2313/NET-2019-10-1_13

4.4. Ensemble Methods

The scikit-learn library [12] also provides implemen-
tations of random forest and extra-trees that we use here.
The most important hyperparameters for both methods
are the number of trees in the ensemble and the num-
ber of features that are considered for every split. For
every tree that is built within the ensemble, the same
hyperparameters for DT learning apply as discussed in
the previous section. In contrast to a single DT however,
it is recommended to grow all trees to full size because
generalization is essentially achieved by averaging over
all trees in the ensemble.

5. Experiments

In the following, two different experiments are pre-
sented. First, it is shown on small subsets of the dataset
that our GA optimization converges to a nearly-optimal
solution with a high probability using a suitable set of
hyperparameters. In the second experiment, DT learning
and ensemble methods are trained on the dataset and
compared to the accuracy of the hand-crafted DTs.

5.1. Convergence of Genetic Algorithm

As motivated in section 4.2, we want to obtain a good
set of hyperparameters for our GA-based DT optimization.
To this end, we create 3 subsets by randomly sampling
10% of the training dataset. We use a brute-force ap-
proach to obtain the parameter sets of the baseline and
the baseline RTT tree that maximize the training accu-
racy on every subset. The resulting accuracies, marked
as horizontal dashed lines in Figure 4, are then used as
benchmark for the GA-based optimization. To account for
the reduced search space by using only 10% of the data,
we scale down the population size to 30. We run the GA
10 times per subset and per DT with different random
seeds and show the average best-of-generation fitness in
Figure 4. It can be seen that the GA converges to a nearly-
optimal solution with high probability, while its average
training time is faster than the brute-force approach by
approximately factor 100. Due to the reduced number of
threshold parameters, optimization of the baseline RTT
tree with 3 parameters converges in fewer generations
than the baseline tree with 4 parameters. Based on tuning
the GA hyperparameters to good convergence, we use a
crossover probability of 0.5, mutation probability of 0.2
and an elitism ratio of 0.1. We found that a population
size of 100 is good compromise between final accuracy
and training time on the complete dataset.

5.2. Comparison to Decision Tree Learning Algo-
rithm and Ensemble Methods

As described in section 4.3, we perform grid-search
and K-fold cross validation to determine the best hyper-
parameter set for the DT learning algorithm. As it can be
seen in Figure 5, overfitting is in fact not a problem in
our case. Although training accuracy is at 100%, there is
no significant decrease of validation accuracy. This could
be an indicator that there might not be significant noise

Figure 4: Best-in-generation accuracy of DTs optimized
with GA compared to upper boundary (dashed line) for 3
small training data subsets.

Figure 5: Training accuracy (blue) and validation accuracy
(orange) of the DT learning algorithm as function of
maximum depth.

in the synthetic training data. However, a more detailed
analysis of this phenomena is required.

For our final evaluation, we use a maximum depth
of 15. It has to be noted that a smaller tree, e.g. with
depth of 5, achieves only slightly worse performance. In
Figure 6, the resulting DT is shown up to a depth of 2
for the sake of readability. It can be seen that the first
split separates all points of class rw in the training set
from the other classes as expected from Figure 1. This
leads to a missclassification rate of 0% for class rw on
the training data. The hand-crafted DTs, which have a
missclassification rate of over 34% for this class [2], could
maybe be improved by also performing the split on srwnd

first.

Figure 6: DT fitted to the training data shown up to a
depth of 2.

Training of both ensemble methods as implemented
in the scikit-learn library is comparable straight forward
using the default hyperparameters. The final accuracies of

Seminar IITM SS 19,
Network Architectures and Services, October 2019 71 doi: 10.2313/NET-2019-10-1_13

all presented approaches are listed in Table 1. It has to be
noted that the accuracy of both baseline trees is somewhat
biased. On the one hand, the decision thresholds were
determined using the complete dataset, whereas all other
approaches are tested on unseen data. On the other hand,
the baseline trees and their GA-optimized versions output
classifications of type mixed/unknown, which might be
useful in some cases in practice, but is always considered
a wrong prediction when calculating accuracy.

Method Train Time Accuracy Improvement
Baseline - 0.73 -
Baseline RTT - 0.70 -
Optimized 46.2s 0.79 8.2%1

Optimized RTT 44.2s 0.75 7.1%2

DT learning < 0.1s 0.92 26.0%1

Random Forest 0.1s 0.93 27.4%1

Extra-Trees 0.1s 0.94 28.8%1

TABLE 1: Train times on 1.6 GHz Intel Core i5, final ac-
curacies on test data and relative improvement compared
to the respective baseline tree accuracy.
1 Compared to baseline tree.
2 Compared to baseline RTT tree.

6. Conclusion and Future Work

The main goal of this work was to optimize existing
decision trees for TCP performance RCA on a given
dataset. With GA-based optimization, we were able to
improve their classification accuracy by up to 8%. We
could show for small subsets of the data that the GA-based
optimization of DTs converges to a near-optimal solution
with high probability. It can therefore be assumed that
the performance of the baseline DTs is limited by their
design. Consequently, we used DT learning to optimize
not only the decision thresholds of the DT but also its
topology. By doing so, we could improve classification
performance by 26% compared to the baseline trees. With
ensemble techniques, namely random forest and extra-
trees, we achieved marginally better performance than
with DT learning. However, it has to be considered that
interpretability and explainability of the predictions de-
crease significantly with more complex methods compared
to the original DTs: To explain why a certain prediction
has been made, it is in practice possible to trace every
step in a DT of depth 5. For an ensemble consisting of
100 full-grown DTs, this is very likely not the case. If
it is however desired to further increase the prediction
accuracy, the machine learning approach could be taken
even further in future work: Instead of using hand-crafted
features as input for classification, i.e. the limitation scores
in our case, classifiers like neural networks could be
trained directly on the temporal data extracted form the
TCP header files.

References

[1] M. Siekkinen, G. Urvoy-Keller, E. W. Biersack, and D. Collange,
“A root cause analysis toolkit for tcp,” Computer Networks, vol. 52,
no. 9, pp. 1846–1858, 2008.

[2] L. J. Stemplinger, “Tcp flow performance root cause monitoring,”
Bachelor’s Thesis, Technical University of Munich, 2019.

[3] S. K. Murthy, “Automatic construction of decision trees from
data: A multi-disciplinary survey,” Data mining and knowledge
discovery, vol. 2, no. 4, pp. 345–389, 1998.

[4] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the char-
acteristics and origins of internet flow rates,” in ACM SIGCOMM
Computer Communication Review, vol. 32, no. 4. ACM, 2002,
pp. 309–322.

[5] M. Siekkinen, “Root cause analysis of tcp throughput: Method-
ology, techniques, and applications,” in PhD thesis, Institut Euré-
com/Université de Nice-Sophia Antipolis, Sophia Antipolis, 2006.

[6] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring tcp connection characteristics through passive measure-
ments,” in IEEE INFOCOM 2004, vol. 3. IEEE, 2004, pp. 1582–
1592.

[7] D. H. Hagos, P. E. Engelstad, A. Yazidi, and Ø. Kure, “A machine
learning approach to tcp state monitoring from passive measure-
ments,” in 2018 Wireless Days (WD). IEEE, 2018, pp. 164–171.

[8] ——, “Recurrent neural network-based prediction of tcp trans-
mission states from passive measurements,” in 2018 IEEE 17th
International Symposium on Network Computing and Applications
(NCA). IEEE, 2018, pp. 1–10.

[9] I. El Khayat, P. Geurts, and G. Leduc, “Improving tcp in wireless
networks with an adaptive machine-learnt classifier of packet loss
causes,” in International Conference on Research in Networking.
Springer, 2005, pp. 549–560.

[10] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.

[11] K. P. Murphy, Machine Learning. A Probabilistic Perspective. The
MIT Press, 2012.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[13] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5–32, 2001.

[14] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized
trees,” Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[15] M. Mitchell, An Introduction to Genetic Algorithms. The MIT
Press, 1996.

[16] J. Bala, J. Huang, H. Vafaie, K. DeJong, and H. Wechsler, “Hybrid
learning using genetic algorithms and decision trees for pattern
classification,” in IJCAI (1), 1995, pp. 719–724.

[17] A. Papagelis and D. Kalles, “Ga tree: genetically evolved decision
trees,” in Proceedings 12th IEEE Internationals Conference on
Tools with Artificial Intelligence. ICTAI 2000. IEEE, 2000, pp.
203–206.

[18] S.-H. Cha and C. C. Tappert, “A genetic algorithm for constructing
compact binary decision trees,” Journal of pattern recognition
research, vol. 4, no. 1, pp. 1–13, 2009.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 72 doi: 10.2313/NET-2019-10-1_13

Virtio-Vsock - Configuration-Agnostic Guest/Host Communication

Johannes Wiesböck, Johannes Naab, Henning Stubbe
Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: johannes.wiesboeck@tum.de, {naab, stubbe}@net.in.tum.de

Abstract—Virtio-vsock provides zero-configuration commu-
nication channels to exchange data between a host and vir-
tual machines running on the host. It builds upon the Socket
API and the new addressing format AF_VSOCK, which
allows easy porting of network applications to virtio-vsock.
This paper explains the fundamentals of the new address
format, and shows a flexible approach, which enables existing
network applications to use virtio-vsock. This approach does
not implement vsock support in every application but instead
uses inetd-style socket activation to be applicable for many
existing applications without modifying their source code. We
focus on providing SSH connections to virtual machines over
virtio-vsock, which will allow access to the virtual machines
with almost no configuration. Additionally, we provide a
generic solution for TCP-based applications.

Index Terms—virtio, vsock, virtual machine socket,
guest/host communication, ssh

1. Introduction

Virtio-vsock is a zero-configuration communication
interface, which enables data exchange between a host
and virtual machines (VMs) running on it. It is designed
to be available on a system by default without any
configuration required. Further, it is based on the Socket
API, which is also used for traditional network protocols.

Possible use-cases for this communication channel
are guest agents, which run in a VM and interact with
the host system, like the qemu-guest-agent [1]. Another
use-case is to provide a host service to a VM like a
remote file system. In the implementation part of this
paper we will focus on running SSH connections over
virtio-vsock. The goal of running SSH over a vsock
connection is to provide an administration interface to
VMs, which is independent of a network configuration.
Thus, less configuration is needed and the interface can
work more reliably.

This paper is structured as follows: First, we introduce
the core concepts of virtio-vsock, which include both,
high-level features, such as the address format, and imple-
mentation details like the underlying protocol. Next, we
compare virtio-vsock with other alternatives for host/guest
communication and we also show a present project that
uses virtio-vsock. After that we describe an approach
for using existing protocols such as SSH or HTTP over
the vsock communication channel. Last, we evaluate the

implementation and give a conclusion of our work with
virtio-vsock.

2. Fundamentals of Virtio-vsock

This section introduces the basic concepts of virtio-
vsock and implementation details.

2.1. Addressing Scheme

With VM sockets a new address format for the
socket() system call named AF_VSOCK is added. An
AF_VSOCK address is a 2-tuple consisting of a Context
Identifier (CID) and a port. A unique CID is assigned
to the host and to every VM in order to identify the
individual machines. The CID is implemented as a 32-bit
integer given in host byte order. Table 1 gives an overview
of CIDs including CIDs which are reserved for special
purposes [2].

The port of a vsock address is used to differentiate
between multiple services running on one machine. Port
numbers are implemented as 32-bit integers in host byte
order [2], unlike TCP/UDP port numbers, which use 16-
bit integers in network byte order. Port numbers below
1024 are called privileged. Only root can bind a socket to
the privileged ports.

2.2. Socket Creation

Vsock connections can be managed using the Socket
API. Thus, a VM socket can be created by a call to the
socket() system call.
vsock = socket(AF_VSOCK, socket_type, 0);
According to version 5.2 of the Linux kernel source
code [3], the only supported value for socket_type is
SOCK_STREAM. This type provides reliable and stream-
based communication with guaranteed and ordered deliv-
ery.

CID Alias Purpose

0 VMADDR_CID_HYPERVISOR hypervisor
1 VMADDR_CID_RESERVED reserved
2 VMADDR_CID_HOST host
[3; 232 − 2] - virtual machines
232 − 1 VMADDR_CID_ANY binding

TABLE 1: Overview of special CIDs

Seminar IITM SS 19,
Network Architectures and Services, October 2019 73 doi: 10.2313/NET-2019-10-1_14

Option Description

REQUEST initiate connection
RESPONSE acknowledge connection initiation
RST connection reset or address not bound
SHUTDOWN request connection shutdown
RW application data
CREDIT_UPDATE updated credit data
CREDIT_REQUEST explicitly request a credit update

TABLE 2: Overview of operations

2.3. Implementation Details

This section provides an overview of the protocol,
which is used in vsock connections.

2.3.1. Flow Control. The stream-mode of virtio-vsock
features a credit-based flow control mechanism, which
prevents the sender from overloading the receiver [4].
The receiver informs the sender about its absolute amount
of allocated receive buffer (buf_alloc) with every packet
sent back or implicitly with a CREDIT_UPDATE packet,
which is introduced in Table 2. The receiver also informs
the sender about the amount of data, which was already
forwarded to the application (fwd_cnt). Additionally, the
sender keeps track of the absolute amount of data it has
sent to the receiver (tx_cnt). Using this information, the
sender can calculate its credit, which is the maximum
amount of data it may send without overflowing the
receivers buffer:

credit = buf_alloc− (tx_cnt− fwd_cnt) (1)

If the credit limit is reached, writing to the socket blocks
until the receiver updates the fwd_cnt value.

2.3.2. Protocol. In this section we describe the lifetime
of a stream-based virtio-vsock connection together with
the operations involved in the connection. An overview of
all possible operations is shown in Table 2. A connection
consists of two endpoints, a server and a client, where
the server runs on the VM and the client on the host or
vice-versa.

We will now look into the steps involved in a possible
vsock connection. Therefore, we will first look into
the connection from an application point of view and
later from the protocol point of view. First, the client
application initiates the connection. Second, the client
sends data to the server and third, closes the connection.
These three phases are visualized as colored areas in
Figure 1. Originally virtio-vsock used a different protocol
than the one shown in this section. However, according
to Hajnoczi [5] virtio-vsock protocol was partially
reworked from the original protocol shown in [1]. The
description of the protocol in this section was derived
from observations made while examining connections
using the packet analyzer Wireshark.

As shown in Figure 1, a connection is initiated with
a two-way handshake. It begins with the client sending
a packet of type REQUEST. If the server accepts the

Client Server
REQUEST

RESPONSE

RW

CREDIT_UPDATE
...

SHUTDOWN

RST

Initiation

Data Transfer

Teardown

Figure 1: Overview of a sample stream-based vsock con-
nection.

connection, it answers with an RESPONSE packet. The
connection is now established. Application data is sent in a
packet of type RW. Every time received data is forwarded
to the application, for example when the server application
reads data from the socket, the server sends a credit update
to the client. The credit update informs the client about
the updated fwd_cnt value. The connection is terminated
with a two-way tear-down. The disconnecting side sends
a packet of type SHUTDOWN, which is acknowledged
with a RST packet terminating the connection.

2.4. History

AF_VSOCK has originally been introduced to
the Linux kernel in 2013 by VMware for VMware
virtualization products [6]. AF_VSOCK was later
implemented in virtio to be used with the kernel-based
virtual machine (KVM) and QEMU. Virtio-vsock is
part of the mainline Linux kernel since version 4.8 [7].
Support for virtio-vsock was added to libvirt in version
4.4.0 [8].

3. Related Work

This section will give a brief overview of alternatives
to the virtio-vsock technology. Also an example where
virtio-vsock is used in practice is covered in this section.

3.1. Alternatives to Virtio-vsock

Virtio-vsock can be compared to other technologies
providing communication services between hosts and
VMs. Two alternatives shown by Hajnoczi [1] are virtio-
serial and virtual networking.

3.1.1. Virtio-serial. Virtio-serial is a virtual serial device,
which is used to establish connections between hosts and
guests [9]. A respective serial device is available on the
guest and on the host-side. Applications can open the
device and exchange data through the serial connection.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 74 doi: 10.2313/NET-2019-10-1_14

Compared to virtio-vsock, virtio-serial has a few dis-
advantages [1]. The first downside is the limited number
of channels, which equals the limited number of provided
serial devices. To cope with this problem, data would
have to be multiplexed on the application layer. Another
disadvantage of virtio-serial is its implementation as a
serial device. While this is not a problem per-se, it makes
porting networking applications based on the Socket API
more difficult than reusing the Socket API.

3.1.2. Networking. Another approach for guest/host com-
munication is the usage of a virtual network [10]. This
solution provides full network functionality to VMs. Thus,
it is not only usable for guest/host communication but it
also provides inter-VM networking and internet-access.
The virtual network enables network applications to run
between VMs without modifying them.This is possible, as
the virtual network uses the internet protocol (IP) and thus
supports all IP based applications. The downside of the
networking approach is that creating network interfaces on
the host and on the guests can be very complex and may
not be desired [1]. In our case, we explicitly want to avoid
additional network interfaces on the guest side, because
they might influence the results of network-related tests
or benchmarks running on the VMs.

3.2. NFS-vsock - File System over AF_VSOCK

Stefan Hajnoczi proposed support for the network file
system (NFS) in 2016 [11]. The goal is to support NFS
over vsock connections natively in the NFS implementa-
tion of the Linux kernel. For example, NFS over vsock
could be used for network attached storage (NAS) services
in cloud environments or to provide files to VMs during
installation. Unfortunately, patches for vsock support in
NFS have not been applied to the mainline Linux kernel
so far, so using it requires a patched kernel.

4. Implementation

In this section we present the motivation for our
implementation and possible implementation approaches.
We select one approach and implement it for use with
SSH and other protocols, such as HTTP and SMB.

4.1. Motivation

The motivation for this implementation is to enable
various applications to use virtio-vsock for transport be-
tween hosts and VMs. We specifically focus on running
SSH connections over VM sockets to provide a zero-
configuration interface for VMs that is independent of
a network configuration. Besides the SSH solution, a
generic solution for TCP based services is also provided.

4.2. Approaches

In the following we compare two possibilities to en-
able applications to use virtio-vsock, namely native sup-
port and inetd-style.

4.2.1. Native Support. As stated in Section 2.2,
AF_VSOCK reuses the existing Socket API, which sim-
plifies the porting of network applications, as it should
only require minor changes to the source code. By
changing the first parameter of the call to socket() to
AF_VSOCK and by updating the addresses accordingly,
a network application could be ported. In many cases, this
might not be sufficient to port the entire application, as
only the networking part of an application can be ported
easily, which might not apply to the entire application.
An application, which is tightly bound to the TCP/IP
protocol stack, can use the network configuration and
the address format internally. Therefore, changes to the
application logic are required to enable the AF_VSOCK
format. Also user interfaces may be influenced when an
additional protocol should be implemented. In general,
porting an application natively to AF_VSOCK is not
a trivial task and must be done for every application
separately. Changes have to be made to the server and
the client software respectively. A native implementation
of AF_VSOCK support can be complex and therefore
requires a lot of application knowledge.

4.2.2. Inetd-Style. An approach that can be applied to
many services without modifying the application code is
known as inetd-style socket activation.

When using socket activation, a super-server is set up
to listen to incoming connections on a configured port.
When a client connects to this port, the super server will
accept the connection, start the actual application server
and pass the connected socket to the application server.
In inetd-style socket activation the connected socket is
passed to the application by setting the servers standard
input and output to the connected socket. In this scenario,
the application server is not involved in the connection
establishment and can be provided with a connected VM
socket to communicate over AF_VSOCK. A possible
super server is systemd which supports VM sockets
since version 233 [12].

A disadvantage of the inetd-style is that it is not opti-
mized for a specific application and thus has restrictions.
Most importantly, it is required that an application server
supports inetd-style socket activation. Another restriction
is that additional ports can not be opened on behalf of the
application, since all relays have to be set up in advance.
This would make it unusable for example for FTP, which
opens additional ports while in operation. Advantages of
inetd-style are a simple implementation and support for
many different services.

4.3. SSH

As mentioned in Section 4.1, we have a large interest
in running SSH connections over VM sockets. SSH offers
many features which can be used to enable this ability
without port-forwarding and without modifying the source
code of the SSH components. We show these features
and how they are used in the following sections. Figure
2 shows the connection establishment, when a SSH client
on the host tries to connect to a server running on a VM.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 75 doi: 10.2313/NET-2019-10-1_14

ssh -o ProxyCommand='socat - SOCKET-CONNECT:40:0:x0000x16000000x04000000x00000000' user@vm

Listing 1: SSH command to connect to a server over a vsock connection

Host

ssh socat

systemd

sshd

VM1 (CID 3) VM2 (CID 4)

v:22 v:22

bind

pipe

conn
ect

act
iva

te

Figure 2: Establishment of a SSH connection from the
host to a guest over AF_VSOCK

4.3.1. Client-Side. For the client, we use the widely
installed OpenSSH client, which offers the ProxyCommand
command line parameter. ProxyCommand can be any ap-
plication that can connect to a remote SSH server and
forward traffic coming from its standard input to the server
and vice-versa. This proxy application will then connect
to the destination server and forward all traffic from the
client to the server and vice-versa. If this parameter is
used, all SSH traffic is then passed through this proxy
instead of the usual network connection. This creates
the possibility to use socat [13] to forward the SSH
connection to the destinations vsock. A possible command
to connect to a SSH server using this method is shown
in Listing 1. Here, socat connects to the SSH server
running on port 22 of CID 4 and forwards this connection
to the SSH client. Since socat does not offer special
syntax for AF_VSOCK, the generic syntax has to be
used. After SOCKET-CONNECT, socat is instructed to use
protocol number 40 (AF_VSOCK) and type 0. After that,
a hexadecimal representation of struct sockaddr_vm is
given, which contains the port 22 (0x16) and the CID 4
(0x04) of the destination.

4.3.2. Server-Side. On the server-side, the SSH server
sshd is started using inetd-style socket activation provided
by systemd as explained in Section 4.2.2. This way,
systemd is listening to incoming SSH connections on a
local vsock port. Once a connection arrives on this port,
systemd will accept the connection and start sshd. The
connected file descriptor, which represents the accepted
SSH connection, is passed to sshd as its standard input
and standard output. Sshd is now able to use the SSH
connection without being involved in the establishment of
the connection.

4.4. Generic Solution using Port-Forwarding

Many existing network applications have no native
support for the vsock protocol. Therefore, we imple-
mented a generic solution that can be used by many
applications using the TCP protocol but do not support
vsock. It is not necessary for the application server to

support inetd-style socket activation. This solution works
by mapping vsock addresses to local IPv6 addresses. Thus,
applications which are restricted to use TCP connections
can access the vsock protocol over the interface introduced
in Section 4.4.2.

4.4.1. Address Mapping. To make the vsock protocol
available to applications, which support only TCP
connections, CIDs of the vsock domain are mapped to
local IPv6 addresses. For this mapping we use the IPv6
subnet fc00::/7, that is assigned for unique-local-unicast
addresses, which are not routed on the internet. IPv6
addresses from this subnet can be chosen for local usage
without colliding with globally unique addresses. Before
CIDs can be mapped to IPv6 addresses, a random /64
prefix is chosen from the subnet fc00::/7. By definition,
a locally assigned prefix from this subnet should have
its eighth bit set to one [14]. Therefore, a possible valid
prefix would be fd00:abcd:ef12:3456::/64. After the
prefix is chosen, a CID is mapped to the IPv6 address
space by adding the value of the CID to the prefix. In
this example, this would result in CID 3 being mapped to
the IPv6 address fd00:abcd:ef12:3456::3 and vice-versa.

Port numbers are mapped to TCP ports without
changes if possible. Since AF_VSOCK offers 232 different
port numbers, all 216 TCP ports can be directly mapped
to vsock ports. Thus, if a service known from TCP is
offered over vsock, its well-known port number can be
reused. For example, a web server which usually listens
to TCP connections on port 80 or 443, should also be
available on the same vsock ports.

4.4.2. Forwarder Implementation. The implementation
of the generic forwarder extends the concept in Section
4.2.2 by adding a relay to the setup that can forward
traffic from TCP to vsock connections and vice-versa.
Also in this implementation socat [13] is used as a relay
software.

To add a relay to a TCP based server software, a
socket activated instance of socat is configured on the

Host (CID 2)

Samba

[::1]:445v:445

cifs

[fd00:abcd:ef12::2]:445 [fd00:abcd:ef12::2]:445

VM1 (CID 3) VM2 (CID 4)

1
socat

2

3

socat

4 5

Figure 3: Establishment of a connection using two socat
relays.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 76 doi: 10.2313/NET-2019-10-1_14

servers machine. The configured VM socket is monitored
by systemd for incoming connections. Once a client
connects to the monitored port, systemd will start a
socat instance and pass the connected vsock to it.
The socat relay will then connect to the actual server
listening on a local TCP port to establish the connection.

The client-side forwarder utilizes the address mapping
introduced in Section 4.4.1. A client, which only supports
TCP can connect to a socat relay via TCP. This relay
can then forward the connection to the destination
server via vsock. This socket activated relay is listening
on a IPv6 address corresponding to the destination
machines CID. If a client connects to a port on this
special IPv6 address, the address will be translated
into the corresponding CID. The socat relay will then
connect to the given CID and to the port and forward
traffic from the client to the server running on this address.

Figure 3 illustrates a possible scenario, where a Samba
server is running on the host machine providing a file
sharing service to VMs. If the SMB client software cifs
tries to connect to the SMB server running on the host
with CID 2, it actually connects to the IPv6 address
fd00:abcd:ef12::2 representing this CID. Once a connec-
tion arrives on this socket, a socat instance is started
via socket activation. This socat instance forwards the
connection to the host over a vsock connection. The TCP
port number is reused for VM sockets and is thus 445
for TCP as well as for vsock. When the host receives an
incoming connection on vsock port 445, it will also start
a socat relay to forward the traffic from this port to the
SMB server listening on the local host on port 445. The
connection is now established and data can be exchanged
between client and server.

4.5. Evaluation

The proposed concept was successfully tested with
SSH and worked reliably. The generic solution shown
in Section 4.4 was tested with HTTP and SMB. HTTP
was tested using a nginx web server running on a
VM and a browser on the host. The SMB test setup
included a Samba server running on the host system
and a volume mounted in a VM over the vsock forwarder.

4.5.1. Performance. The achievable throughput of the
forwarder was evaluated using the tool iperf3 with
patched-in support for vsock connections [15]. For com-
parison, also the throughput of both, a virtual network
interface and of a raw vsock connection was evaluated in
addition to the forwarder. The base system for evaluation
was a Lenovo ThinkPad T430 with a Intel Core i5-3320M
CPU clocked at 2.60 GHz. The iperf3 server was running
on a VM and the client was running on the host. In an
iperf3 run with a duration of ten seconds, the virtual
network connection achieved an average throughput of
14.2 Gbit/sec. The average throughput of a native vsock
connection was 12.9 Gbit/sec on average and thus slightly
slower than the network connection. In contrast to these
comparably high values the forwarder setup using two
socat relays only achieved an average throughput of

1.5 Gbit/sec. The considerably lower throughput may be
caused by the multiple times that data has to be copied
between buffers and the additional protocols involved.

4.5.2. Security Considerations. During development var-
ious connection scenarios were tested. As intended, we
were not able to establish vsock connections between two
VMs but only between the host and one VM. One ex-
ception is loopback connectivity. It is possible to connect
from a VM to the same VM via AF_VSOCK. While this
may be desired behaviour, it is to note that services, which
are exposed over vsock, have to be secured properly if
they should not be accessible from the VM itself. An
example scenario would include a VM that should be
configured via SSH over vsock. For configuration, a client
must be able to connect as root over this SSH interface.
Other than for configuration, the VM is operated by a
untrusted user, who should not have root access to the
machine. Because of the loopback connectivity, the user
can connect to the local SSH server over vsock, which
makes it necessary that the access is secured properly
with a password or preferably with public keys. Without
loopback connectivity, the SSH server would only be
accessible from the host machine an thus could not be
used by the user working on the VM. This might give
the opportunity to omit authentication for SSH connection
form the vsock interface, since it could only be access
from the host machine. Loopback connectivity was ex-
plicitly removed by Google for ChromeOS [16] to prevent
applications from connecting to other applications on the
same machine. Loopback connectivity is present in the
mainline Linux kernel and removing it would require a
patched kernel.

5. Conclusion

This paper gave a short introduction to the virtio-
vsock technology. We showed, that virtio-vsock provides
a reliable and user-friendly communication mechanism
for VM setups. We were able to enable vsock support
for different services using inetd-style socket activation.

Even though socket activation worked for all tested
services, we would like to see native support for
AF_VSOCK connections in the future, as it might out-
perform the shown implementation using two socat re-
lays. Native support would also make it easier to use
network applications between hosts and VMs, with zero-
configuration. So far, desirable features such as support
for NFS are not part of the mainline Linux kernel, which
would require building a custom kernel. Together with
the security considerations in Section 4.5.2, it has to be
considered if this effort is worth the benefits gained in
features and security. Future research should investigate,
if it is possible to increase the throughput of the forwarder-
setup, possibly by investigating if a specifically developed
and tuned forwarder would perform better than socat.

References

[1] S. Hajnoczi, “virtio-vsock Zero-configuration host/guest com-
munication,” Accessed on: 2019-06-05. [Online]. Available:
https://vmsplice.net/~stefan/stefanha-kvm-forum-2015.pdf

Seminar IITM SS 19,
Network Architectures and Services, October 2019 77 doi: 10.2313/NET-2019-10-1_14

[2] man 7 vsock, Accessed on: 2019-08-26. [Online]. Available:
http://man7.org/linux/man-pages/man7/vsock.7.html

[3] “virtio_vsock.h (kernel version 5.2),” Accessed on: 2019-06-01.
[Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/include/uapi/linux/virtio_vsock.h?h=v5.2

[4] A. He, “Introduce VM Sockets virtio transport,” LWN.net,
2013, Accessed on: 2019-06-01. [Online]. Available: https:
//lwn.net/Articles/556550/

[5] S. Hajnoczi, “Add virtio transport for AF_VSOCK,” LWN.net,
2016, Accessed on: 2019-06-01. [Online]. Available: https:
//lwn.net/Articles/695981/

[6] A. King, “VSOCK: Introduce VM Sock-
ets,” Accessed on: 2019-09-01. [Online]. Avail-
able: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=d021c344051af91f42c5ba9fdedc176740cbd238

[7] S. Hajnoczi, Features/VirtioVsock, Accessed on: 2019-06-09.
[Online]. Available: https://wiki.qemu.org/Features/VirtioVsock

[8] “libvirt: Releases,” Accessed on: 2019-06-09. [Online]. Available:
https://www.libvirt.org/news.html

[9] A. Shah, Features/VirtioSerial, Accessed on: 2019-06-12. [Online].
Available: https://fedoraproject.org/wiki/Features/VirtioSerial

[10] Documentation/Networking, Accessed on: 2019-06-12. [Online].
Available: https://wiki.qemu.org/Documentation/Networking

[11] S. Hajnoczi, “NFS over virtio-vsock Host/guest file sharing for
virtual machines,” Accessed on: 2019-06-22. [Online]. Available:
https://vmsplice.net/~stefan/stefanha-connectathon-2016.pdf

[12] “Systemd NEWS,” Accessed on: 2019-06-13. [Online]. Available:
https://github.com/systemd/systemd/blob/v233/NEWS#L303

[13] man 1 socat, Accessed on: 2019-08-26. [Online]. Available:
https://linux.die.net/man/1/socat

[14] R. Hinden and B. Haberman, “Unique Local IPv6 Unicast Ad-
dresses,” Internet Requests for Comments, RFC Editor, RFC 4193,
October 2005.

[15] S. Garzarella, “iperf,” Accessed on: 2019-08-27. [Online].
Available: https://github.com/stefano-garzarella/iperf-vsock

[16] “Chrome OS source: virtio_transport.c,” Accessed
on: 2019-06-22. [Online]. Available: https:
//chromium.googlesource.com/chromiumos/third_party/kernel/
+/refs/heads/chromeos-4.4/net/vmw_vsock/virtio_transport.c#188

Seminar IITM SS 19,
Network Architectures and Services, October 2019 78 doi: 10.2313/NET-2019-10-1_14

Deterministic Networking (DetNet) vs Time Sensitive Networking (TSN)

Xiaotian Yang, Dominik Scholz∗, Max Helm ∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ge25gad@mytum.de, scholzd@net.in.tum.de, helm@net.in.tum.de

Abstract—With increasing demands of highly reliable net-
works with bounded latency and low jitter, a lot of Ultra-
Low Latency Network studies are in progress. This paper
focuses on IEEE Time Sensitive Networking (TSN) and
IETF Deterministic Networking (DetNet). We analyze the
similarities and differences between these two networking
standards and give a survey of the published standards and
possible future work of the DetNet and TSN Task Groups.
Index Terms—Time Sensitive Networking, Deterministic Net-
working, Ultra-Low Latency, Network Standards

1. Introduction
Ethernet is a series of connectivity services, first stan-

dardized by IEEE 802.3 Ethernet Working Group (WG)
in 1983. Ethernet has been widely adopted for regular
Internet/Data center since the 1980s and for telecom-
munication and industry networks recently due to its
cost-effectiveness and flexibility [1]. However, with the
increasing demand on real-time capabilities in industrial
applications, tranditional Ethernet lacks Quality of Service
(QoS) metrics of end-to-end latencies. Therefore, markets
and customers turn their attention to Ultra-Low Latency
(ULL) networking standards, which can signaficantly re-
duce the latencies to milliseconds. [2]

Among these ULL networks, the IEEE Time-Sensitive
Network (TSN) Task Group (TG) and the IETF Determin-
istic Network (DetNet) TG are of interest. These two TGs
devote to providing deterministic networking standards
with low bounded latency and high reliability. While TSN
standards focus only on OSI model Layer 2 (LANs),
the DetNet standards extend the technologies to Layer 3
(IP) [3]. This paper aims to give an overview over these
two standards and discuss their current state and future.

The content of this paper will be organized as follows.
In Section 2 we will discuss the previously published
related work on this topic. The background studies i.e.
the history of TSN TG and DetNet TG will be reviewed
in Section 3. In Section 4 and Section 5, a basic overview
of TSN and DetNet will be introduced. To get further
insights into the research value, Section 6 demonstrates
a range of practical use cases. As a next step, we will
discuss the current state and the future work of TSN and
DetNet in Section 7. Finally, the conclusion of this TSN
and DetNet survey will be given in Section 8.

2. Related work
The documents on the official website of the TSN TG

[4], [5] only cover the published standards or in progress

projects of IEEE 802. The files of DetNet TG are currently
just Internet drafts [6], [7], [8]. Here [6] is the IETF
draft of DetNet problem statement. By contrast, a general
Introduction to TSN has been published in the IEEE Com-
munications Standards Magazine in [3]. Additionally, a
survey on Ultra-Low Latency networking including TSN,
DetNet and related 5G ULL Research has been presented
in [9]. In order to differ from all these previous literatures,
this paper provides a comparison of TSN and DetNet and
tries to summarize their corresponding features and up-to-
date progress.

Different from optimized Ehternet fieldbus, such as
EtherCAT (Ethernet for Control Automation Technology),
TSN or DetNet are add-ons to the best effort switched
environment. Besides IEEE TSN and IETF DetNet, there
are also some other related standards and researches in
the field of ULL Network, e.g. Wireless High Perfor-
mance (WirelessHp) and Multefire. [10] To meet the ULL
requirements in industrial sites, specifications like Wire-
lessHP are applied. The goal of Wireless HP is to realize
multi-Gbps data rate aggregation and lower the packet
transmission time within microseconds through physical
layer solution. Moreover, Multefire, a Long-Term Evolu-
tion (LTE) based technology can also be used to boost
data rate and reduce transmission time and latency. [10]

In contrast to these related studies, TSN and DetNet
mainly focus on deterministic latency and specify a series
of standards to achieve ULL and reliable networking over
best-effort Ethernet networks.

3. Background Studies

The predecessor of TSN standards was Audio Video
Bridging (AVB) industrial standards. Audio Video Bridg-
ing TG was established in 2007 by the IEEE 802.1 stan-
dards committee. This TG is chartered to specify time-
synchronized low latency streaming services over IEEE
802 networks. AVB standards specify the implementation
of a plug-and-play home or audio or video production
studio but only operate in OSI model Layer 2. [3]

Motivated by the great success of AVB standards, the
IEEE committee plans to expand AVB applications into
industrial fields. Therefore, in 2012 the AVB TG was
renamed as TSN TG [3]. The TSN TG aims to establish
deterministic network services and to reduce the latency
to microseconds or milliseconds to meet precise industrial
control or automation demands [9]. TSN also only works
in bridged Layer 2 networks.

With the increasing progress in TSN standards, people
want such ULL Networking not just confined to Layer 2.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 79 doi: 10.2313/NET-2019-10-1_15

In 2015 the IETF created its DetNet TG. The goal of the
DetNet TG is to extend bounded latency, low latency jitter
and highly-reliable services to both Layer 2 and Layer
3. [3]

As mentioned in Section 2, the TSN TG has already
published a series of networking standards, while the
documents of the DetNet TG are currently just Internet
drafts and still in progress.

4. Overview of Time Sensitive Networking

This section provides a survey of the features and
standards of TSN.

4.1. TSN Features

TSN TG is based on AVB TG and chartered to imple-
ment bounded latency, low latency jitter over traditional
Ethernet. The significant characteristics of TSN Networks
are as follows:

Time synchronization: In order to meet the requirements
of real-time control or automation, time sensitive network
is designed as a time-aware network. The clock of all de-
vices in a Time-Sensitive network must be synchronized.
This technique can be realized through various variants
of existing timing specific protocols like IEEE 1588. One
IEEE official offered synchronization standard is IEEE
802.1AS. Through network-wide shared time reference,
TSN is capable to fix the transition delays and send
packets at the time arranged. [9]

Bounded latency and zero congestion loss: Congestion
happens when there are overflowing streams in a node
that beyond the capability of the network. Network con-
gestion is the main reason of packet loss and latency. [3]
Thanks to buffer allocation, queuing algorithm and frame
preemption, TSN achieves bounded low latency and zero
congestion loss.

The principle of realizing zero congestion loss is
computation of buffers in the worst-case. Figure 1 defines
packet latency into five components: Output delay, Link
delay, Preemption delay, Processing delay and Queuing
delay. [3]

Figure 1: TSN Timing Model [3]

The uncertainties in networks during transmission like
abrupt interruptions of packets and states of forwarding
nodes lead to variability of these delay times. Buffers in
the queue are allocated to compensate the variations of
delay.

Additionally, the queuing delay is assumed to be
calculable according to the queuing algorithm applied to
TSN. Since the packet selection schedule of queuing algo-
rithm applied to TSN are mathematically analyzable, the
buffer requirement in the worst-case can be predicted. [3]

The queuing mechanism is mainly standardized in
IEEE 802.1Qav, which aims to constrain the number of
buffers required in a network. Credit-based shaper (CBS)
is the key concept of the queuing algorithm. When there
exists no frame in the queue, the credit is set to zero. The
credits increase when a frame is added into the queue and
decrease when a frame is sent. This mechanism allows
a queue to transmit only if the credits are nonnegative
and the channel is not occupied [9]. CBS also defines
constraint parameters such as maximum frame size, max-
imum reference size and maximum port transition rate.
Thus, the latency per bridge can be limited [3]. The flow
chart in Figure 2 clearly illustrates the CBS operation for
a given queue.

Figure 2: Flowchart of CBS operation for a given
queue [9]

Another mentionable technique here is frame preemp-
tion, specified in IEEE Std 802.1 Qbu and IEEE 802.3
br. In IEEE 802.1Qbv a guard band is added in front
of scheduled time-critical traffic to prevent low priority
traffic from transmission when that transmission cannot
be finished before the scheduled traffic window. The
preemption mechanism enables midway stop of frame
transmission before the start of a guard band and execute
the transmission of another frame with higher priority.
After accomplishment, the original transmission can con-
tinue. [9]

Ultra reliability: The core technique improving the reli-
ability of TSN is frame replication and elimination. This
technique reduces the packet loss caused by equipment
failure in network. The procedures of frame replication
and elimination are documented in IEEE 802.1CB: 1)
number the sequence of packets and replicate them in the
network, 2) identify the redundant and eliminate packages
at or near the destination. [11]

Moreover, as shown in the second case of Figure 3,
packets can also be re-replicated or eliminated at various
nodes, like node B and node E. Thus, a failure of node
A and E or node B and C will not affect the packet
end-to-end delivery in TSN. Through this mechanism,
TSN is capable to handle multiple errors and increase the
transmission reliability.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 80 doi: 10.2313/NET-2019-10-1_15

Figure 3: Mechanisms of packet replication and elimina-
tion [3]

4.2. TSN standards

Above survey only covers some key features of TSN.
The TSN TG also standardizes many other meaningful
techniques and mechanisms, these standards will be sum-
marized in this subsection.

Most of these standards are amendments for IEEE
802.1Q-2018: Bridges and Bridged Networks. Project
ID with capital letters indicates stand-alone documents,
such as IEEE 802.1CM. Lower case letters in project
ID means the standards are amendments, e.g. IEEE Std
802.1Qbu. [3] Based on introduced features in Section 4.1,
this paper splits published standards into three groups as
shown in Table 1:

TABLE 1: TSN published Standards Summary

Group Standard Name Features

Time Synchronization IEEE 802.1AS Timing models and
clock synchronization
for TSN

Zero Congestion Loss

IEEE 802.1Qbu Frame Preemption
IEEE 802.1Qbv Enhancements for

scheduled traffic
IEEE 802.1Qch Cyclic Queuing and

Forwarding, amend-
ment for IEEE Std
802.1Q

IEEE 802.1Qcp YANG Data Model
IEEE 802.1CM Time-Sensitive

Networking for
Fronthaul

IEEE 802.1Qcc Stream Reservation
Protocol (SRP),
amendment for IEEE
Std 802.1Q

Reliability
IEEE 802.1CB Frame Replication

and Elimination for
Reliability

IEEE 802.1Qci PerStream Filtering
and Policing

IEEE 802.1Qca Path Control and
Reservation

IEEE 802.1AS is based on IEEE 1588v2 and specifies
the precise timing model and clock synchronization in
TSN. Analog to Precision Time Protocol (PTP) defined
by IEEE 1588, IEEE 802.1AS defines generalized PTP
(gPTP), which enables synchronous transportation over
all media. The prerequisite of IEEE 802.1AS is that all
bridges and end stations in network should be time aware.

Then, IEEE 802.1AS selects one system as grandmaster
and assign the ports in the network as master, slave
or passive roles. This helps to form a synchronization
hierarchy in TSN. The grandmaster is expected to transmit
synchronization information on slave ports and loops can
be broken through passive role ports. This mechanism
ensures the network wide clock synchronization. [12]

IEEE 802.1Qbv is standardized as enhancements to
traffic scheduling Time-Aware Shaper (TAS). This stan-
dard helps to construct the well-defined QoS for TSN
through specified TAS. The mechanism of this standard
is as follows: 1) time-aware traffic windows are used to
schedule the critical traffic streams, 2) a guard band is
added before scheduled traffic windows to prevent trans-
mission interrupted by lower priority frames. [9]

IEEE 802.1Qch Cyclic Queuing and Forwarding
(CQF) aims to synchronize enqueue and dequeue opera-
tions in TSN. Through CQF synchronization, frames can
be transmitted in a cyclic manner. And the network transit
latency can be characterized by the cycle time. [9]

IEEE 802.1Qcp standardizes the YANG data model
and utilizes Unified Modeling Language (UML) represen-
tation. YANG is a formalized data modeling language
widely adopted in industries. Motivated by this, TSN
TG decided to establish standards supporting YANG data
modeling. IEEE 802.1Qcp is also applied to support other
specifications. [9]

IEEE 802.1CM refers to TSN profiles for fronthaul,
its application will be explained in Section 6.1.

IEEE 802.1CB specifies frame replication and elimi-
nation. The mechanism applied in this standard has been
covered in Section 4.1.

5. Overview of Deterministic Networking

This section intends to offer an overview of the fea-
tures and currently established internet drafts and RFCs
of DetNet.

5.1. DetNet Features

The IETF DetNet TG has similar charters to the TSN
TG. Therefore, DetNet also has features such as time
synchronization, zero congestion loss and reliability like
TSN. Additionally, DetNet devotes to extend the ULL and
highly reliable services to layer 3 networks. DetNet TG
also works on coexistence of DetNet with normal traffic
and DetNet misbehavior mitigation. [7]

Time synchronization: Like in TSN, devices in DetNet
should share common timing reference. DetNet time syn-
chronization is realized through existing IEEE 1588 and
IEEE 802.1AS.

Zero congestion loss and Reliability: Similar to TSN
techniques stated in Section 4, ULL characteristics and
zero congestion loss in DetNet are achieved through queu-
ing algorithms, buffer reservation and packet preemption.
Since queuing algorithms also fit well to routers, the
number of buffers in the worst-case is analogously math-
ematically analyzable in DetNet. [9]

One difference in DetNet is that in order to get
lower jitter, end-to-end latency DetNet has not only upper

Seminar IITM SS 19,
Network Architectures and Services, October 2019 81 doi: 10.2313/NET-2019-10-1_15

bounds but also lower bounds. The concrete methods of
jitter minimization include: 1) network-wide time syn-
chronization to sub-microsecond accuracy 2) count time-
of-execution fields into the application packet. To ensure
the reliability of DetNet, filters and policers are applied to
detect failures and error of packets. When fault is detected,
filters and policers will disrupt and adjust the transmission.
Moreover, packet replication and elimination techniques
are also applied in DetNet. [7]

To fix the coexistence issue with normal traffic, DetNet
assigns critical flows with higher priority than best-effort
flows. This will not threaten the network operation, since
both critical flows and best-effort traffic have bounded
latency and bandwidth in DetNet.

Security: Security considerations are another essential
feature in DetNet. To achieve request security and control
security of DetNet resources, authentication and autho-
rization should be used for devices connected to a DetNet
domain to ensure that the administrative configuration of
parameters is constrained to authorized devices. [7]

Control of DetNet can be classified as centralized or
distributed. For centralized control of DetNet, Abstraction
and Control of Traffic Engineered Networks (ACTN) is
used for security considerations. For distributed control
of DetNet, security considerations are expected to be
achieved through the security properties of the deployed
DetNet protocols. [7]

5.2. DetNet Internet-drafts

Since Deterministic networking TG has no pub-
lished standards, Table 2 lists up-to-date DetNet Internet
drafts and RFCs. (June,2019) Some critical Internet drafts
among them are selected to be explained further in this
section.

*-architecture introduces the overall DetNet architec-
ture and the mechanisms used to achieve DetNet QoS.
The DetNet QoS includes resource allocation, service
protection and explicit routes. Similar to TSN, provision
of sufficient buffer at each node and packet replication
and elimination are also used in DetNet to ensure ULL
services. [7]

*-data-plane-framework introduces the framework
for DetNet controller plane and its requirements. DetNet
services are currently specified on IP networks or MPLS
(Multiprotocal Label Switching) networks. Encapsulation
in DetNet enables the flows to be transmitted to other data
plane technology beyond its original stream type.

*-security discusses security problems in DetNet and
collects related considerations from other DetNet drafts.
Security is highly important in DetNet, since DetNet
which operates in higher OSI model layer owns more
potential of cyber-attack. Various threats such as delay
attack, path manipulation and their corresponding mitiga-
tions through path redundancy, encryption, performance
analytics or DetNet node authentication are all analyzed
in this documentation. [13]

DetNet TG has updated two RFCs in May 2019.
RFC8557 (was draft-ietf-detnet-problem-statement) illus-
trates the necessity of establishing DetNet for indus-
trial applications and RFC8578 (was draft-ietf-detnet-use-

TABLE 2: DetNet official Internet drafts Summary

draft-ietf-detnet Features

-architecture Introduce DetNet architecture
and the used techniques
to carry real-time
unicast/multicast data streams

-data-plane-framework Specify the framework for
DetNet controller plane and its
requirements

-dp-sol-ip DetNet IP Data Plane Encap-
sulation

-dp-sol-mpls DetNet MPLS (Multiprotocal
Label Swichting) Data Plane
Encapsulation

-flow-information-model an overview of DetNet model
for integration over Layer 2
and Layer 3

-ip Describe how can DetNet op-
erate over IP packet switched
network

-ip-over-mpls Describe how can DetNet op-
erate in an IP over MPLS
packet switched network

-ip-over-tsn Describe how can DetNet op-
erate in an IP over TSN

-mpls DetNet Data Plane: MPLS
-mpls-over-tsn DetNet Data Plane: MPLS

over IEEE 802.1 Time Sensi-
tive Networking

-mpls-over-udp-ip DetNet Data Plane: MPLS
over IP

-tsn-vpn-over-mpls DetNet Data Plane: IEEE
802.1 Time Sensitive Net-
working over MPLS

-security Deterministic Networking
(DetNet) Security
Considerations

-topology-yang Deterministic Networking
(DetNet) Topology YANG
Model

-yang Deterministic Networking
(DetNet) Configuration
YANG Model

cases) describes a series of DetNet use cases in various
fields.

6. Use Cases

Various applications in industries require deterministic
flows, which is exactly the core of TSN and DetNet [8].
Besides, DetNet enables interconnection between Layer 2
and Layer 3. Therefore, TSN and DetNet use cases cover
a wide range of industries including professional audio
and video, control and automation systems, industrial
machine-to-machine, vehicle applications etc. [8] We only
introduce selected examples in this section, more details
can be obtained from [3] and [8].

6.1. Use Case of TSN

One use case is the TSN applicability in 5G (5th
generation mobile/wireless networks). TSN with bounded
latency and high-reliability are necessary in 5G scenario.

TSN helps network slicing and realize the fronthaul
connection in Ethernet bridged networks [9]. Network
slicing implies that there is no interference between appli-
cations or users. Moreover, TSN techniques like resource
reservation and traffic scheduling are helpful to aggregate

Seminar IITM SS 19,
Network Architectures and Services, October 2019 82 doi: 10.2313/NET-2019-10-1_15

dataflow in 5G Bearer Networks. As shown in Figure 4
IEEE Std 802.1CM specifies TSN profiles for 5G fron-
thaul. [14] The detailed demonstration of 5G mechanism
exceeds the scope of this survey.

Figure 4: Fronthaul details with IEEE Std 802.1CM [14]

6.2. Use Case of DetNet

As DetNet standardization is still in progress, it has
appealing potentials in industrial applications but no con-
crete examples currently. Therefore, this subsection only
selects two typical applications from [8] to provide readers
a general overview of DetNet use cases.

One promising DetNet use case is industrial Ma-
chine to Machine (M2M). Industrial M2M communication
is mainly executed through Programmable Logic Con-
trollers. DetNet in this use case is deployed to ensure the
critical control/data flow is successfully delivered end to
end within demanded time constraints. Industrial M2M
with requirements like time synchronization, low packet
loss, ultra-low delivery time and reliability are exactly
corresponding to the characteristics of DetNet. [8]

Another typical use case is the professional audio and
video industry (ProAV), including broadcast and music
or film production. These industries are now faced with
the transition to packet-based infrastructure and integra-
tion with IT infrastructure. With the support of DetNet
services, ProAV applications will be able to interconnect
Layer 2 and Layer 3 and then achieve broadcast over wider
areas. [8]

7. Future work of TSN and DetNet re-
searches

In contrast to DetNet researches, the TSN studies
are currently isolated from external networks and only
restricted to small-scale domains like in-vehicle net-
works. However, the industrial use cases of TSN such as
Machine-to-Machine Communication or Industrial Con-
trol and Automation systems often are equipped with
highly complex infrastructure. Further TSN studies may
need to find a solution to enhance the interconnectivity
and simplify the network management mechanisms. [9]
Additionally, the standards considering security and pri-
vacy may also be interesting future research topics for
TSN.

Since the IETF DetNet is a rising study field in re-
cent years, DetNet architecture and standards still need a
long way to be implemented and improved. For example,
DetNet interconnection between Layer 2 and Layer 3 is
realized with support of TSN LAN services, hence DetNet

requires stable resource sharing techniques over Layer 2.
Another important future study will be the concrete use
cases of the integration of DetNet with traditional external
networks.

8. Comparison of Time-Sensitive Networking
and Deterministic Networking

IEEE TSN and IETF DetNet can be compared in the
following aspects:

OSI Layer: The most important difference between
TSN and DetNet is the OSI layer they operate on. While
TSN is confined to Layer 2, DetNet extends the corre-
sponding properties to Layer 3 or even higher layers.

Bounded Latency: Another difference is that in TSN
only upper bound is predefined to reduce latency. How-
ever, in DetNet exist both upper and lower bounds to
realize jitter minimization.

Data plane: DetNet nodes can connect to other sub-
networks including MPLS Traffic Engineering (TE), IEEE
TSN and Optical Transport Network (OTN). Also multi-
layer DetNet systems can be constructed in the future,
which cannot be achieved with TSN. [14]

Security: DetNet TG also pays more attention on
security considerations than TSN TG, since DetNet, which
expands its scope to higher OSI model layer, is faced with
higher cyber-attack probabilities.

Current status: The IEEE TSN TG has already spec-
ified and published a series of standards which have been
adopted to concrete use cases. By contrast, the IETF
DetNet TG is still immature and remains in its starting
stage.

9. Conclusion

Both TSN and DetNet TG aim to create highly re-
liable ULL networks with features like time synchro-
nization, zero congestion loss, reliability and security for
real-time industrial applications. DetNet TG is chartered
to expand TSN mechanisms beyond Layer 2 LANs to
higher layer, for example, time synchronization techniques
and frame replication and elimination mechanisms are
deployed both in TSN and DetNet. This survey also
discusses the possible future studies of these two net-
works include the enhancement of interconnectivity and
further security considerations. With increasing researches
in TSN and DetNet, more and more concrete use cases in
the field of industrial M2M communication and ProAV
etc. will be implemented in the future. Despite some
limitations of current standards or internet drafts, TSN
and DetNet combined with optimized Ethernet fieldbus
such as EtherCAT will impact the traditional IEEE 802
networks significantly.

References

[1] R. Santitoro, “ Metro Ethernet Services – A Technical Overview,”
2003.

[2] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of
industrial communication: Automation networks in the era of the
Internet of Things and Industry 4.0,” vol. 11, no. 1, pp. 17–27,
2017.

Seminar IITM SS 19,
Network Architectures and Services, October 2019 83 doi: 10.2313/NET-2019-10-1_15

[3] N. Finn, “Introduction to Time-Sensitive Networking,” vol. 2, no. 2,
pp. 22–28, 2018.

[4] IEEE LAN/MAN Standards Committe, “IEEE Standard for Local
and metropolitan area networks—Audio Video Bridging (AVB)
Systems ,” pp. 1–45, 2011.

[5] ——, “IEEE Standard for Local and metropolitan area net-
works–Bridges and Bridged Network,” pp. 1–1832, 2014.

[6] N. Finn and P. Thubert, “Deterministic Networking Problem State-
ment,” 2019, unpublished.

[7] ——, “Deterministic Networking Architecture,” 2019, unpub-
lished.

[8] E. E. Grossman, “ Deterministic Networking Use Cases,” 2018,
unpublished.

[9] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao,
M. Reisslein, and H. ElBakoury, “Ultra-Low Latency (ULL) Net-
works: The IEEE TSN and IETF DetNet Standards and Related
5G ULL Research,” pp. 1–59, 2018.

[10] X. Jiang, H. S. Ghadikolaei, G. Fodor, E. Modiano, Z. Pang,
M. Zorzi, and C. Fischione, “Low-Latency Networking: Where
Latency Lurks and How to Tame It,” pp. 1–24, 2018.

[11] IEEE LAN/MAN Standards Committe, “IEEE Standard for Local
and metropolitan area networks–Frame Replication and Elimina-
tion for Reliability,” pp. 1–102, 2017.

[12] Geoffrey M. Garner and Hyunsurk Ryu, “Synchronization of Au-
dio/Video Bridging Networks Using IEEE 802.1AS,” pp. 1–8,
2011.

[13] T. Mizrahi, E. E. Grossman, A. Hacker, S. Das, J. Dowdell,
H. Austad, K. Stanton, and N. Finn, “Deterministic Networking
Security Considerations,” 2019, unpublished.

[14] "Time Sensitive Networking for 5G". [On-
line]. Available: https://datatracker.ietf.org/meeting/103/materials/
slides-103-dmm-time-sensitive-networking-for-5g-01

Seminar IITM SS 19,
Network Architectures and Services, October 2019 84 doi: 10.2313/NET-2019-10-1_15

ISBN 978-3-937201-68-9

9 783937 201689

ISBN 978-3-937201-68-9
DOI 10.2313/NET-2019-10-1

ISSN 1868-2642 (electronic)
ISSN 1868-2634 (print)

1

	DDS vs. MQTT vs. VSL for IoT
	Cryptographic Separation of Powers
	Routing in Information Centric Networks
	Surveying the depth of user behavior profiling in mobile networks
	Matrix Cryptography
	How good is QUIC actually?
	Porting ixy.rs to Redox
	Peer-to-Peer Matrix
	OPC UA vs. VSL for IoT
	Quality Enhancement in Written Examinations by Automatic Recognition of Correction Results
	Network Emulation using Linux Network Namespaces
	What is deterministic Network Calculus?
	Linear Optimization for Decision trees of TCP Performance RCA
	virtio-vsock — configuration-agnostic guest/host communication
	Deterministic Networking (DetNet) vs Time Sensitive Networking (TSN)

