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Abstract—Internet services increase rapidly and much data
is sent back and forth inside it. The most widely used
network infrastructure is the HTTPS stack which has several
disadvantages. To reduce handshake latency in network
traffic, Google’s researchers built a new multi-layer transfer
protocol called Quick UDP Internet Connections (QUIC). It
is implemented and tested on Google’s servers and clients
and proves its suitability in everyday Internet traffic. QUIC’s
new paradigm integrates the security and transport layer
of the widely used HTTPS stack into one and violates the
OSI model. QUIC takes advantages of existing protocols and
integrates them in a new transport protocol providing less
latency, more data flow on wire, and better deployability.
QUIC removes head-of-line blocking and provides a plug-
gable Congestion Control interface.

This paper indicates the disadvantages of the traditional
HTTPS stack and presents the main features of the QUIC
protocol which is currently standardized by the Internet
Engineering Task Force (IETF).

Index Terms—networks, multi-layer transport protocol,
latency reduction

1. Introduction

The Internet is used every day by many readers of this
paper. Internet giants like Amazon, Google, and Facebook
provide many applications and (web) services which let
the amount of data grow significantly. This data has to
be exchanged fast, reliably, and securely. Transferring
this data is possible through the existing infrastructure.
The most widely used one is the HTTPS stack. HTTP is
transported over TCP and is secured through TLS. This
network paradigm is approved and will be used for many
years to come. However, the speed to built up a connection
between client and server and to deliver data between
them can be improved. Quick UDP Internet Connections
(QUIC) may be a solution and a good replacement of
the traditional Internet stack. The new paradigm of QUIC
combines the transport layer and the security layer into
one and provides improved features than TCP/TLS. QUIC
is developed by Google. The researchers implemented the
protocol and tested it on production mode on their servers
such as YouTube and other Google web services, and
client applications such as Chrome/Chromium. To be able
to communicate over QUIC, both server and client have
to provide a QUIC implementation. Thus, QUIC requires
client support on application level like in the browser.
QUIC aroused the interest of the Internet Engineering

Task Force (IETF) and is on standardization progress. The
IETF is an Internet committee which deals with Internet
technologies and publishes Internet standards. Currently,
QUIC is being standardized, and it remains to be seen,
how it will influence the Internet traffic afterwards.

The rest of this paper is structured as follows: Sec-
tion 2 presents background information about the estab-
lished TCP/TLS stack needed for the problem analysis.
Section 3 explicitly investigates some QUIC features like
stream-multiplexing, security, loss recovery, congestion
control, flow control, QUIC’s handshake, its data format,
and the Multipath extension. They each rely on current
IETF standardization work, and are compared to the tra-
ditional TCP/TLS stack. In Section 4, related work about
comparable protocols like SPDY or SCTP, and other work
of IETF is discussed. Section 5 concludes this paper.

2. Background

The Transmission Control Protocol (TCP) is the stan-
dard transport protocol that most applications are based
on. Data transport over TCP is reliable and packets are
organized in an ordered way. Further, lost data is identified
and delivered again. Other TCP features are congestion
control and flow control which are necessary to not over-
load the receiver or the network. All of these concepts
are relevant and necessary in the transport layer so that
application level protocols like HTTP do not have to care
about and it is ensured that application level data are not
missing on endpoints. In the traditional web stack, TCP is
used as the underlying protocol to transport HTTP data.
To refer to the OSI model, transferring HTTP over TCP
is additionally protected by TLS. TLS is a security setup
which is on top of TCP (compare Figure 1). Although
it is the widely used transport protocol to transmit data
reliably, TCP has several disadvantages.
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Figure 1: Traditional network stack and QUIC
in comparison, adapted from [1]
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It is more difficult to have a faster development cycle
and publish new releases of kernel based implementations
like TCP. This protocol is implemented as part of the
kernel in an operating system, i.e. network connections
based on TCP run in kernel mode. Devices often have
to be upgraded on both client and server side. Bringing
changes to TCP and thus to the kernel would in turn cause
changes to the operating system. Moreover, TCP has some
inconveniences like the head-of-line-blocking delay and
the handshake delay. To transfer data, at least one round
trip is needed to set up the TCP connection. Furthermore,
the security layer with TLS adds two further round trip de-
lays on top TCP connections (compare Figure 1). Even if
the handshake delay seems to be solved with TLS 1.3 and
TCP Fast Open, the data transfer can still be optimized.

To reduce handshake latency, there is a new approach.
QUIC runs – in contrast to TCP – in user space, and
uses the User Datagram Protocol (UDP) as the underlying
transport protocol. UDP is a widely used and lightweight
transport protocol. Thus, it is suitable to be used as
transport layer protocol to transmit data from host to host.
The advantage of UDP is that it can traverse middleboxes
like firewalls. Many firewalls, especially in big companies,
block unknown protocols. Thus, unfamiliar packets could
be dropped by middleboxes. QUIC encrypts and authen-
ticates its packets and makes it possible to be transported
by UDP. There is a higher probability to get UDP packets
through the Internet. However, because of the required,
but missing TCP features in UDP, QUIC has to implement
everything that makes the protocol safe, secure, fast, and
reliable by its own: QUIC has to implement congestion
control and flow control. It has to define its handshake,
and, concerning security reasons, it also should decide for
an algorithm about encryption and authentication. These
features are implemented by QUIC on the application
layer. Additionally, a reason why TCP is not used, is its
slow development cycle. This makes it easier to decide
for the data transport protocol UDP. Thus, it is more
comfortable to bring new releases and adapt features
of QUIC without concerning the long term development
cycle of the kernel based TCP.

TCP’s handshake is the well known Three-Way-
Handshake (RFC 793). It takes one round trip until data
can be sent. If the current overall used TLS version,
TLS 1.2 is used on top of TCP for encryption and au-
thentication, two more round trip delays come additionally
according to RFC 5246. This would sum up to three
round trips until payload can be sent. For the QUIC
standardization, the new version 1.3 of TLS will be used.
Because QUIC puts encryption and transport together into
the same layer in user space, it is possible to overlay the
key exchanges of encryption and transport, and have a 0-
RTT handshake to same servers. TLS 1.3 is already an
IETF standard described in RFC 8446. However, hitherto
this protocol is barely implemented, however, it will be the
standard security protocol from the near future on. Ubuntu
announced in its new interim release 18.10 the updated
OpenSSL package which is equipped with TLS 1.3. Some
applications use TLS 1.3 as default on the new OS version.
According to [2], in the next Ubuntu release, TLS 1.3 will
be used by more applications.

Users could firstly use QUIC through Google appli-
cations like the Chrome browser, the open source version

Chromium, and the YouTube application on Android [1].
Gradually, there are more and more both client and server
side supports. The Opera browser also supports QUIC
if the corresponding QUIC flag is enabled. Except that
YouTube and all other web based Google services have
server side QUIC support, there are other implementations
in Go and C/C++ [3], [4] which are partly used in the
Caddy web server, and the LiteSpeed web server respec-
tively. An implementation in Rust is also available [5].
Like every other network protocol, QUIC has to be im-
plemented on both server and client to interact with each
other. Other browsers and (web) servers could begin to
support QUIC after the standardization is finished by the
IETF. Since Google controls both client and server side of
applications, it can implement and deploy such protocols
and test it on their servers and world wide used client
applications. Google’s leading position in the network
technology supports them to develop such protocols.

If the QUIC flag is enabled in Chrome and a client
does a request via TCP and TLS, the QUIC server ad-
vertises with a QUIC flag in his HTTP answer. The next
client side request, if the client wishes, will be a race
between TCP/TLS and QUIC [1]. The faster reply will be
the protocol stack which will be used for that request.
QUIC will only be chosen if in the whole path from
client to server QUIC is enabled and supported. Chrome
and Chromium users can currently set the corresponding
QUIC flag in their browsers to activate QUIC. Servers and
companies with production based services may disable
UDP inputs by their firewalls due to UDP spoofing attacks.
In those intranets, QUIC can currently not be used.

3. Standardization

This Section describes the most essential QUIC fea-
tures such as security, loss detection, congestion control,
flow control, QUIC’s data format, its handshake, and the
Multipath extension. While QUIC was developed as a
monolithic infrastructure by Google [1], the IETF work is
modularizing it into separate parts. Some details such as
the data format will be changed, although the core and the
paradigm of QUIC will be the same as initiated by Google.
Most of the concepts explained in the next Subsections,
are planned to be standalone RFCs [6].

3.1. Stream Multiplexing

To fetch data fast and in parallel, HTTP/1.1 opens
multiple TCP connections (compare Figure 2a). However,
since each single connection has to be handled, this ap-
proach may be inefficient and may cost high CPU rates
on constrained devices. HTTP/2.0 proposed to use a single
TCP connection, but multiple streams. On every stream,
data can be delivered (Figure 2b). The problem of this
approach, due to TCP’s in order delivery, is the head-
of-line-blocking delay. If a packet of one stream is lost,
then all other streams are blocked. The head of the line
is blocking the whole connection. QUIC allows multiple
streams like HTTP/2.0 but does not block all other streams
due to a blocking stream (Figure 2c). Data delivery on
other streams are not postponed because UDP is not bound
on the in-order delivery. According to the latest core
protocol draft, streams are identified by a unique stream
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ID and data delivery ordering is handled with stream
offsets within a stream.

Figure 2: The different HTTP versions and the upcoming
HTTP/3.0 in comparison [7]

3.2. Security

Encrypted packets play a key role in Internet traffic.
Thereby, network attacks like packet sniffing or man-in-
the-middle-attacks can be reduced or even stopped. Only
authorized entities should be able to read specific packets
in their original formats. This means, QUIC as a secure
transport protocol has to provide confidentiality, integrity
and authentication.

The first launch of the QUIC development was around
2012 by Google. The researchers implemented their own
cryptography for QUIC to reach the goal to exchange
payload with zero round trip delay. Since TLS 1.3 is
deployed as standard, the IETF working group decided
for TLS 1.3 as the security layer for QUIC. TLS 1.3
provides a 0-RTT handshake to known servers and thus
fits to QUIC’s target to reduce handshake lateny.

According to the current Chromium testable imple-
mentation, a QUIC server needs to have a valid certifi-
cate, and a private key in correctly supported formats to
run [8]. TLS is integrated into QUIC handshakes. The
current document draft about QUIC-TLS mentions that a
server must have a certificate signed by a valid certificate
authority, and the client must authenticate the identity of
the server during the handshakes. This would mean that
even a test server has to install a certificate to be runnable.
The positive effect would be a tendency to the overall
HTTPS usage and thus, to secure and authenticate web
servers in the Internet.

3.3. Loss Recovery

QUIC packets always have increasing packet numbers
and same packet numbers do not occur in a number space.
This concludes that packets with higher packet numbers
are sent later than packets with lower packet numbers.
This way, there will not be the retransmission ambiguity
problem as in TCP. In TCP, if a packet is sent, and no
ACK is received within a timer, the same packet is sent
again with the same sequence number. If an ACK arrives,

it cannot be determined, which packet is acknowledged,
and the round trip time is not measured reliably. With
monotonically increasing sequence numbers, the RTT can
be determined more accurately and there is no ambiguity
problem. Further, regarding loss recovery, a packet which
is declared lost, will have a new sequence number and is
sent again [9].

3.4. Congestion Control

To reduce and avoid high network load when too many
packets are sent by many endpoints in short times and
packets cannot pass on, there is the need of congestion
control algorithms to control the network rate and reduce
the network load. The Google implementation of QUIC
is adjustable so that any congestion control algorithm can
be experimented and may work. During the development
and testing cycle, Cubic was used as congestion controller
by the Google developers [1]. Cubic is also the standard
congestion controller of the Linux TCP [10]. The first
IETF draft concerning congestion control in QUIC also
mentions that Cubic was the default congestion controller.
At that time, Reno was another option to use, since it
is fully implemented [9]. In the latest draft of the IETF
working group about congestion control, NewReno is
announced on what QUIC bases on. However, it is also
emphasized that every host and every implementation may
use a different congestion controller, since QUIC supports
a pluggable congestion control interface.

3.5. Flow Control

Flow control is a data transport feature not to overload
the receiver. If an endpoint cannot receive data as fast
as the sender sends, the receiver is overstrained, cannot
handle all incoming packets and drops packets. Flow con-
trol mechanism handles the data flow between the sender
and receiver so that the receiver does not get more data
than its buffer can store. QUIC has, similiar to HTTP/2,
two levels of flow control: stream-level flow control and
connection-level flow control. Stream flow control limits
the data flow for every single stream so that a specific
stream will not be able to claim the entire receive buffer
for itself and to preclude other streams which send data on
other streams. Connection flow control means, the sender
does not exceed the receiver’s buffer on a connection for
all streams. However, it works the same way as stream
flow control, for the entire connection.

3.6. Handshake

QUIC distinguishes between the 1-RTT and the 0-
RTT handshake. The cryptographic handshake minimizes
handshake latency by using known server credentials on
repeat connections. A client stores information about the
server and can use the 0-RTT handshake on subsequent
connections to the same origin. The 1-RTT handshake is
possible because the transport and cryptographic keys are
overlapped into the same layer. The 0-RTT handshake is
possible, since TLS 1.3 provides a 0-RTT and TLS 1.3
will be used as security layer in QUIC. Since many
of the network connections are to same servers which
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were contacted before, the 0-RTT makes it possible for
a client to send payload without repeating cryptographic
or transport key exchange.

3.7. Data Format

The data format and the naming conventions of QUIC
packets and its fields are repeatedly in change during the
standardization. The current draft distinguishes between a
long header packet and a short header packet. The long
header packet has different types: Initial, Retry, Hand-
shake, and 0-RTT Protected. Thus, the initial connection
between two communication partners is established using
the long header. After connection establishment, the short
header is used. All types of packets ensure confidentiality
and integrity [11].

Furthermore, according to the latest draft, there is the
Version Negotiation Packet which seems to be a long
header packet when received by clients; but as the Version
Field is 0, that packet is recognized as a Version Nego-
tiation Packet. This packet is only sent by servers and
is an indication of the server to a client which versions
are supported by that QUIC server. All supported QUIC
versions on the server are listed in that packet. It will
be sent after the server received a packet with a version
proposal that it does not support. If the client side chosen
version is not supported by the server, the server has
to send a Version Negotiation Packet which results in
one additional round trip delay before the connection is
established [11].

3.8. Multipath Extension

A further feature of the QUIC protocol is Multipath. A
QUIC flow is, in contrast to a TCP connection, not bound
to the 5-tuple consisting of source IP/Port, destination
IP/Port, and the transport protocol itself. Instead, the pro-
tocol specifies a Connection ID each one for the server and
the client which is placed in every QUIC packet header.
Users can switch from one to another network seamlessly
and still communicate with the same server. Using multi-
ple paths over the Internet, with changed values in the 4-
tuple, is specified through the QUIC Migration feature. A
QUIC implementation including the Multipath extension
in Go can be found in [3].

4. Related Work

HTTP/1.0 was standardized by the IETF in 1996 in
RFC 1945. Three years later, the IETF introduced the
second version HTTP/1.1 which is described in a stricter
way with clearer rules in RFC 2616. Companies like
Google and Microsoft always want the Internet to be
faster. Google initiated the SPDY project [12] and on the
basis of SPDY, the new version of HTTP was standardized
by IETF: HTTP/2.0 was announced in 2015 (RFC 7540).
It uses the multiplexing technology which transfers more
data. On the incoming side, data is demultiplexed again.
Among other reasons, and because of that, HTTP/2.0 is
faster than HTTP/1.1. QUIC is the continuous develop-
ment of Google’s research to reduce latency in the web
and transmit data faster. It is the successor of SPDY and
the standardized HTTP/2.0 protocol.

The IETF currently has a working group for the
transport protocol QUIC. Beside the core overview, each
essential feature of QUIC is described into separate drafts
which are planned to be standalone RFCs. There is also a
working group responsible for “HTTP over QUIC” which
describes the transport of HTTP over QUIC as transport
layer. The researchers recently discussed about naming
conventions and decided to rename “HTTP over QUIC”
to “HTTP/3” [13]. HTTP version 3 would mean that
the HTTP protocol would run on the base of the QUIC
Transport Protocol. This would be another milestone for
the future of the Internet.

To reduce handshake latency in TCP, there were some
improvements. TCP Fast Open (TFO) allows to send data
in the TCP SYN field to same servers. Thus, after con-
nection establishment, there is a 0-RTT to send payload.
But data can only be sent as much as the TCP SYN
segment offers. QUIC does not have this limitation. Only
the congestion controller or the flow controller can limit
the data which can be sent in 0-RTT handshakes [1].

Another affiliated aspect in relation to QUIC is the
Stream Control Transmission Protocol (SCTP) defined
in RFC 4960. SCTP has many similarities and parallels
to TCP. It is a connection oriented transport protocol
which also uses sequence numbers and acknowledgments
to provide reliable data delivery. Like TCP, SCTP uses
a window mechanism to signal how much data can be
delivered on receive buffers. Even if the terminology of
SCTP is quite different, they both share common features.
However, SCTP was built to introduce some advantages
over TCP. It is not bound to a single IP address, not
even on the IP versions. Moreover, both hosts of a SCTP
connection can have multiple IP addresses to communicate
with each other. SCTP transmits on multiple streams and
is not bound on delivering data in order [14]. There is
no head-of-line-blocking. The main problem of SCTP
is that is not widely deployed. While the Linux kernel
implemented SCTP, MacOS and Windows do not support
SCTP officially, but only through extensions. Thus, SCTP
is not spread widely. QUIC takes the main idea of SCTP
and introduces stream-multiplexing without head-of-line-
blocking. It provides Multihoming through the Multipath
extension. However, through the aggregation of the trans-
port and security protocols and the usage of UDP, hand-
shake latency is reduced by QUIC.

5. Conclusion and Future Work

Latency Reduction was a key note when QUIC was
developed by Google. Simultaneously, other transport fea-
tures within the Internet such as security and reliability
had to remain unchanged. Google reached these goals
by deploying QUIC and tested it in production mode
within Chrome/Chromium on YouTube and other Google
services. The underlying UDP as transport layer is a
new approach to deliver data still reliably. This leads to
implement additionally separate features like congestion
control, flow control, and loss recovery, but on another
level and on top of UDP. That causes QUIC to run in
user space. Indeed, features like latency improvements
and removing head-of-line-blocking make QUIC attractive
and let QUIC be a proposed standard for today’s Internet.
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However, the protocol violates the OSI model. The trans-
port features and the security protocol are mapped into the
same layer in the application level without following the
widely established OSI reference model. Thus, it remains
to be seen which influence on the usage of the traditional
TCP/TLS infrastructure will be. It also remains to be
seen how the standardization process by IETF evolves and
when the standard will be announced. Following the IETF
milestones of the QUIC working group, most of the drafts’
due dates were changed from November 2018 to July 2019
and one to May 2020. The “Core Protocol document” of
QUIC is planned to be finished in July 2019 [6].
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