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Abstract—Biscuit is a High Level Language (HLL) kernel
written in Go as a research project to evaluate the impact
HLLs have on the performance of operating systems. Go was
chosen as it allows easy asm calls, offers good concurrency
and can be statically analyzed and compiles to machine code.
While Biscuit as a whole has been thoroughly analyzed, this
is not true for its components. In this paper we present
Biscuit’s ixgbe network driver and its implementation. The
driver is separated into three main parts: initialization
and packet reception and transmission. Afterwards it is
compared with ixy.go, an ixgbe user space network driver
for Linux systems. Go systems are notably slower (around
15%) then the same systems written in C but offer increased
security as memory related bugs cannot occur.

Index Terms—Biscuit, Go, Networking, NIC, Driver

1. Introduction

Today the internet is arguably one of the most im-
portant aspects of IT. The ISO/OSI model is well known
and describes the process of sending information from
one participant to another on a high and abstract level.
Network Interface Controller (NICs) are pieces of hard-
ware that implement the necessary functionality to send
and receive data using physical and link layer standards
and thus provide the base of the ISO/OSI model. NICs
are accessed using drivers that allow communication be-
tween the physical card and the software running on the
computer and therefore are an integral part of Operating
System (OS) kernels. These kernels are almost exclusively
written in C (or the C family) and assembler, be it a Linux
kernel or a Windows NT kernel and thus the drivers are as
well. However in recent years there has been an effort to
write OS kernels in different languages. Biscuit [1] is such
a kernel and is written in the Go programming language
and assembler. In this paper we will take a look at its
implementation of the ixgbe network driver for the Intel
82599 10GbE controller.

Section 2 gives an overview of network drivers in
general, more specifically of those written in Go, and the
resulting differences. In Section 3 the driver implemented
in the Biscuit kernel will be presented. Next we will
compare the driver with a user space network driver for
the same device family written in Go, ixy.go, in Section 4
and finally, close this paper by pointing out advantages
and disadvantages of these drivers in section 5.

2. Network Drivers (in Go)

Drivers are pieces of software that allow communica-
tion between a hardware device and the rest of the system.
The driver abstracts from the actual hardware access and
instead exposes interfaces that are better to handle from
an outside programmer’s perspective. The datasheet for
the Intel 82599 family is freely available online and
describes the NIC in its full extent [2].

In case of drivers for network cards there are multiple
things that have to be managed:

• Transmit queues (TX) and receive queues (RX) are
used by the NIC to receive and send packets. They
are organized as ring buffers.

• DMA (Direct Memory Access) memory for the pack-
ets which the NIC and the driver can access.

• DMA memory for the packet descriptors. They hold
information about the corresponding packet buffers
and the packets contained in them and control the
behavior of the packet buffers. They are organized
as ring buffers.

• Access to the PCI device file in order to control the
NIC and enable DMA memory.

• Access to the pagemap (interface for the page tables)
as NICs work with physical addresses. It has to be
ensured that the mapping stays consistent.

These are general problems for network drivers, indepen-
dently of whether they are written for the user or kernel
space. Specific problems are discussed in Section 4.

Using Go to write network drivers is similar to writing
a network driver in C, as the language has intentionally
been designed with this similarity in mind. Apart from
obvious changes to the syntax it has to be noted that Go
does not support many of the tools that are standard in
systems programming, specifically in driver programming.
These include the volatile operator as reads and writes to
registers have to be processed immediately and cannot
be cached. Another important aspect of Go is that while
it does support pointers, due to its runtime and type
safety feature, it does not support pointer arithmetic. In
C one usually operates on the allocated DMA memory
via pointers. In Go this is only possible via the use of the
unsafe package that offers unsafe or arbitrary pointers,
which circumvent the runtime as well as many safety
measures. Thus care is required in order to break as few
assumptions of the runtime as possible when using this
approach.
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3. Architecture

In the following we will take a look at the ar-
chitecture of biscuit’s network driver. We start with a
high level description and then go on to further elab-
orate the details and components. All function names,
line numbers, and other code references refer to the file
/biscuit/src/ixgbe/ixgbe.go of commit 2a2dbe1 of
the biscuit github page 1.

3.1. Overview

On a high level the driver manages the NIC and
its state, transmit and receive queues, handles incoming
packets and hands them over to applications on top of the
driver, and offers an interface which can be used to send
packets.

The driver can be loaded by calling its Ixgbe_init()
function, which registers the PCI device and its initial-
ization function attach_ixgbe() (lines 1272ff.). This
function executes the setup procedure: configure flow
control, offloading, RX and TX queues and interrupts.
After the initialization, received packets will automati-
cally be handed over to the network stack and an in-
terface Tx_[raw|ipv4|tcp|tcp_tso]() (lines 911ff.) is
provided for sending packets of different types.

3.2. Details

After this high level view of the driver’s architecture
we present a more detailed description of its components.
It is recommended to have the implementation and the
datasheet at hand. References to sections in the datasheet
will be noted as DS X where X is the section number.

3.2.1. Receive and Transmit Descriptors. The code it-
self starts with the definition of all relevant constants and
corresponding helper functions (lines 1 to 309, DS 8.2 and
8.3). Afterwards the TX and RX descriptors and functions
on them are defined. Note that the advanced descriptors
are used. Refer to DS 7.1.6 for the Advanced Receive
Descriptors and DS 7.2.3.2 for the Advanced Transmit
Descriptors. These registers are represented as two 64-
bit unsigned integers each, thus reading and writing is
done by setting the corresponding bits to 0 or 1. The NIC
supports various offloading features such as computing
and verifying checksums. The function ipsumok() (line
356) operates on the write-back format and checks, in
case a non layer two packet was received, whether the
bits 6 and 31 of the descriptor’s second line are set as
this indicates a bad IP checksum.

3.2.2. Device Properties. Next, starting from line 615,
the status of the device is described and functions are
defined that handle and mutate its state. A device has the
following properties:

• Pci address (tag):
The pci address the device is located at. Most impor-
tantly the Base Address Registers (BARs) addresses
are exposed via pci.

1. https://github.com/mit-pdos/biscuit/tree/
2a2dbe1228881c94764f1cdf6134dca27defab12

• BAR0 address (bar0):
The BARs expose configuration and control regis-
ters to the drivers. While the NIC’s address space
is mapped into multiple memory regions, only the
BAR0 is necessary as described in DS 8.1. This
address space is mapped in init() (line 650ff.) and
accessible via the bar0 slice.
The functions rs() and rl() (lines 681ff. and 688ff.)
write to and read from the registers as an offset of
bar0.

• Transmit queues (txs):
Queues that are used for packet transmissions. Con-
tains TX descriptors and their current number. The
queue tail as well as some additional parameters are
cached to reduce expensive register reads.
Packets can be enqueued for transmission with the
Tx_[raw|ipv4|tcp|tcp_tso]() (lines 911ff.) func-
tions. Note that sending is asynchronous: an en-
queued packet does not have to be sent out imme-
diately but the NIC will set the DD flag of the TX
descriptor once it has been sent out.

• Receive queue (rx):
Queue that are used for packet receptions. Contains
RX descriptors, their current number, a slice refer-
encing the packets and the queue tail is cached.

• Number of allocated pages (pgs):
Incremented by one whenever a page is added (see
pg_new(), line 89ff.).

• Link status (linkup):
Whether the NIC is operational.

This is not the full list but includes most that are relevant
for a general understanding. Refer to the implementation
for the full list.

3.2.3. Sending. Next we will take a more detailed look at
sending. The Tx_[raw|ipv4|tcp|tcp_tso]() functions
(note that these are the exported functions as they start
with a capital letter) all call _tx_nowait() (lines 927ff.)
with the corresponding arguments. This function locks a
TX queue and calls _tx_enqueue() (lines 963ff.) which
handles the actual sending. It takes information about the
packet to send and tries to enqueue the packet in the
transmission queue. The function returns true on success.

First the packet buffer is checked for empty rows
which will be deleted and parameters are checked for
correctness. The hardware controls the head pointer and
the driver the tail pointer of the ring buffer. The next step
is to find out how many buffers are needed and whether
there are enough that are free for use. The DD (descriptor
done) flag of the status register is set when the descriptor
is done, indicating that the packet has been sent out and
the descriptor can be reused. The eop (end of packet)
flag is set if it is the last descriptor of a packet (see DS
7.2.3.2.4 for the flags). If there are not enough descriptors
for the packet buffer, the function returns false, else there
is enough space in the transmit queue and the packet can
be enqueued.

For sending, the packet headers will be handled first
and the rest of the packet afterwards, refer to lines 1046
ff. for the enqueueing. Depending on the type of packet
(ethernet, ipv4, etc.) the approach has to be different to
accommodate to the packet properties. After the header
is done, the payload can be treated independently. The
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only thing left is to update the tail pointer so that the
NIC can now send out the packets in the queue.

3.2.4. Receiving. Now that we have discussed how send-
ing packets works, the next step is receiving packets. This
is implemented in rx_consume() in lines 1086ff. Receiv-
ing works on a RX queue which is organized similar to a
TX queue. A memory area that is handled as a ring buffer
with a head pointer controlled by the hardware and a tail
pointer controlled by the driver. When processing received
packets it first has to be checked for the DD flag, which
indicates a received packet, until the current head is found.
In the case of no newly received packets the function is
done. Note that the tail itself is empty and thus has to be
skipped. For each descriptor DMA memory in the size of
the packet is allocated and the packet is then handed over
to the network stack. Afterwards the descriptors are reset
and the tail pointer update is sent to the NIC.

3.3. Interrupt Handling

When operating a NIC interrupts may be triggered
which need to be handled by the driver. For this driver
interrupt handling is implemented in int_handler() (lines
1151ff.). Interrupts are described in DS 7.3. First the
interrupt handle has to be registered. The code then runs
in a forever loop: wait for an interrupt and handle it.

Four different types of interrupts in the Extended Inter-
rupt Cause Register (EICR, DS 7.3.1.1 for the description
and DS 8.2.3.5.1 for the register) are handled. Note that
the queue interrupts are mapped to bit 0 for all RX queues
and to bit 1 for all TX queues (lines 1406-1409, DS
8.2.3.5.16).

• RX queue interrupt (bit 0):
Is raised on descriptor write back, a full queue or
upon reaching a minimum threshold. Thus as this
indicates newly received packets, they are to be re-
trieved via a call to rx_consume()

• TX queue interrupt (bit 1):
Is raised on descriptor write back. This indicates that
packets have been sent out but as sending is done via
the corresponding functions, nothing has to be done.
It has to be assumed that this is left over from the
programming process.

• Rx Miss (bit 17):
Is raised when packets are dropped due to a full
Rx queue (overrun). Nothing additional that can be
done as rx_consume() would already be running and
packets arrive faster than they are being sent out;
increment statistic.

• Link Status Change (bit 20):
Is raised when the link status changes, e.g. from down
to up or vice versa. The new status is printed, the NIC
is tested and a goroutine is started that periodically
prints the number of received and dropped packets.

3.3.1. Setting Up the NIC. Now that the operations
of the driver on the NIC are defined, the only thing
that is left is the setup of the device. This is done in
the attach_ixgbe() function (lines 1272ff.). DS 4.6.3
describes this procedure. Please refer to the datasheet
for flag and register names and other details which we

cannot cover here. Note that the steps in the driver are
not necessarily is the same order as proposed in the
datasheet as reordering can be more efficient, as long as
it does not influence the result e.g. PHY is reset before
waiting for the DMA initialization as the latter has no
influence on the former.

1) Disable Interrupts and call init() (lines 650ff.) on
a new ixgbe_t struct which from then on represents
the device. After the reset disable interrupts again
(DS 4.6.3.1).

2) As flow control is disabled, the registers FCTTV,
FCRTL, FCRTH, FCRTV and FCCFG are set to 0x0
(DS 4.6.3.2) and the assumption of disabled flow
control is checked.

3) No snoop is enabled. Processor caches do not have
to be snooped in this case and direct access to the
DRAM is faster.

4) The physical address is reset via MDI command: the
MSCA register (8.2.3.22.11) allows the use of the
MDIO interface (3.7.6) with which physical registers
can be accessed. As clause 45 operations are utilized,
op code 00b has to be sent first and afterwards 11b
for the read (DS 3.7.6.4).

5) Wait for the DMAIDONE flag of the RDRXCTL
register.

6) Load the MAC address from the Receive Address
Registers and cache it.

7) Enable Message Signaled Interrupts (MSI) via PCI
and ensure that legacy interrupts are disabled.
Reset all interrupts (EIAC register), disable au-
tomask (EIAM registers), disable interrupt throttling
(EITR(n)), and map all RX queues to EICR bit 0 and
all TX queues to EICR bit 1 (4.6.6).

8) Disable Receive Side Coalescing (RSC), a technique
that would accumulate TCP/IP packets that belong to
the same flow into large packets [3].

9) Enable and configure receive queues (4.6.7):
a) Disable VLAN features PFVFSPOOF, MPSAR,

PFUTA, PFVLVFB (4.6.10) and VFTA (7.4.4).
b) Enable ethernet boardcast packets for ARP func-

tionality (FCTRL bit 10).
c) Offloading: IP checksum (RXCSUM bit 12,

8.2.3.7.5), strip CRC (RDRXCTL bit 1) and bit
12 of the DCA control register must be set to 0.

d) Setup RX queue:
i) Allocate new page for queue and send ad-

dress and size to NIC.
ii) Calculate number of descriptors and allocate

a new packet buffer for each (2048B buffers,
two per page).

iii) Disable header splitting (SRRCTL bits
25:27), write descriptors to the NIC and
initialize the receive head pointer (RDH).

iv) Enable the queue (RDRXCTL bit 25), set
the receive tail pointer (RDT) and enable
receive (RXCTRL bit 0).

10) Enable and configure transmit queues (4.6.8):
a) Map all TX queue statistics to a single counter.
b) Enable layer two offloading via HLREG0

(7.1.3): CRC offloading (bit 0) and stripping (bit
1), padding (bit 10) and receive length errors (bit
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27).
c) _dbc_init() (actually referring to DCB, Data

Center Bridging, see 4.6.11 for the configuration
and 7.7 for the description) (lines 1779ff.):
• Implements DCB-off, VT-off (4.6.11.3.4) as

neither flow control not virtualization is sup-
ported.

d) Setup multiple TX queues (default four):
i) Number each queue, allocate a new page for

the descriptors and send address and size to
NIC.

ii) Calculate number of descriptors and allocate
a new packet buffer for each (2048B buffers,
two per page) and set the DD and eop flags
so they are ready for use.

iii) Disable head write-back of the queue.
iv) Transmit Control (TXDCTL(queue_id)):

Set thresholds for Pre-Fetch, Host and
Write-Back. These values orient themselves
at the number of descriptors that fin in a
cache line to avoid cache thrashing.

v) Initialize descriptor head and tail.
e) Enable transmission (DMATXCTL bit 0).
f) Enable transmission queues (TXD-

CTL(queue_id) bit 25) and wait for success.
11) Configure and enable interrupts:

a) Set the General Purpose Interrupt Enable regis-
ter (GPIE, 8.2.3.5.18) to 0. This, among others,
configures the use of MSI interrupts and clears
the EICR register on read and disables many
unneeded features.

b) Set the interrupt throttle to a 125µs as lower val-
ues can have significant impact on performance,
especially within TCP bulk transfer.

c) Clear previous interrupts (EICR) and start the
interrupt handler as a goroutine.

d) Enable transmit and receive queue interrupts as
well as link change interrupts while disabling all
other types of interrupts (EIMS).

The rest of the code are testing functions which we will
not discuss in this work.

4. Comparison with ixy.go

Another driver for Intel 82599 10 GbE Controller
written in Go is ixy.go [4]. This is a user space driver
for Linux operating systems. This means that it runs
completely in user space compared to Biscuit’s ixgbe
driver that is part of the kernel. Therefore while the NIC is
still programmed in the same way, the approach differs at
times. We will not consider differences in the functionality
of the drivers as ixy.go is meant to be an educational
driver and thus is intentionally kept simple and without
much of the functionality that a driver for a running kernel
needs. From a high point of view, there is not much
difference to be found: On startup the NIC is initialized by
programming the registers. Afterwards received packets
are handled and packets can be send via an interface.
Table 1 lists high level stats of both systems. However
writing a kernel driver versus writing a user space driver
imposes two mayor differences:

1) A user space driver does not have access to privileged
system functions and must use syscalls instead.

2) While Biscuit’s driver has to provide general purpose
packet processing by itself for the rest of the system,
ixy.go offers an API with explicit memory allocation,
batching and abstraction that is similar to DPDK [5]

Two main challenges arise from the first point. As new
pages cannot simply be allocated from the user space, this
has to be done via Mmap() from the syscall package [6].
This also changes the way memory is administered. The
second challenge is the page virtualization. In Biscuit’s
driver a new physical page is allocated but from the user
space only virtual pages can be allocated. The mapping
virtual to physical addresses for the NIC via the pagemap
is not an issue but the page migration algorithm can
change this mapping at any time. Fortunately, it is not
implemented for huge pages which are thus used to keep
the physical addresses consistent.

The second difference is mainly an architectural one.
Biscuit’s network driver automatically checks for incom-
ing packets upon interrupts and hands them over to the
network stack. ixy.go on the other hand offers the Rx-
Batch() function which checks for received packets and
hands them back in the provided buffer. It is the respon-
sibility of applications built on top of ixy.go to regularly
check for incoming packets instead of the driver. Sending
is more similar with the main difference being batching.
ixy.go has a virtual copy of the packet ring as reading
flags is a rather expensive operation. When sending a
batch of packets, it is first checked whether a batch of
packets has been sent out, reducing the register access
to once per batch and afterwards enqueueing as many
packets as possible. Biscuit’s driver instead checks the
descriptor once per previously sent packet (eop is cached)
until enough space is found but does so for each packet.

5. Conclusion

In this paper we took a look at the network driver
of the biscuit kernel. Biscuit has been developed as a
scientific operating system to test the impact of higher
level languages on operating system kernels. While the
system runs notably slower due to the garbage collection
and runtime, this impact might still be acceptable for
certain use cases. On the other hand Go also brings a
distinct set of advantages such as memory safety. Advan-
tages as well as disadvantages also extend to the network
driver. Here speed is key and Go is slower then C. The
user space driver ixy.go [4] showcases a clear loss in
performance compared to its parent project written in C
(10-20% depending on batch size and CPU speed). Cutler
et al. also found that the kernel as a whole suffered a
performance loss of 15% [1] compared to a C kernel. Still,
speed is not everything, a driver also has to be secure.
Cutler at al. analyzed 65 code execution vulnerabilities in
the Linux kernel, 40 of which would have been prevented
when using Go. In the end the choice of language always
results in a trade-off between speed and security.

Because of these trade-offs we argue that is important
to re-implement existing software in other programing
languages. In this case Go offers security mechanisms
where C programs are vulnerable. Re-implementations
can be evaluated and their advantages and disadvantages
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biscuit ixy.go

lines 1900 (1600 without
register offsets) 1000

unsafe pointer rx & tx descriptor structs register access,
physical address calculation

memory allocation physical pages mmap(2) syscall

application area provide packet receive &
send functionality to kernel

low level API for
fast packet processing

TABLE 1: Comparison of Biscuit’s ixgbe driver and ixy.go

quantified. Similar to the CAP theorem [7] there are
always properties that are more important then others
depending on the system. Thus having the same programs
with different properties lead to generally better systems.
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