
Investigating TCP SYN Flood Mitigation Techniques in the Wild

Julian Villing
Technical University of Munich, Germany

Email: julian.villing@tum.de

Abstract—TCP SYN flood Denial-of-Service (DoS) attacks
exploit a weakness in the TCP specification. By initiating
many incomplete connections, the servers’ backlog is filled
with the states of the half-open ones. Once there is no more
space in the backlog, the server is unable to handle legitimate
requests and the attack has been successful. It is important
to prevent this problem as the targeted machine cannot offer
its services anymore due to being unreachable. This paper
introduces and compares several TCP SYN flood mitigation
techniques as well as discussing challenges of their detection.

Index Terms—tcp syn flood, syn cookies, syn authentication,
syn flood mitigation

1. Introduction

When establishing a new TCP connection, the server
stores the corresponding state in a transmission control
block (TCB) which is needed to establish the connection.
The minimum size for said block is 280 bytes whereas
Linux uses 1300 bytes per block. A new TCB is created
and stored in the backlog for each TCP SYN packet
received. This information persists during the three way
handshake until the connection is either established or a
timeout occures as explained by Eddy in [1].

TCP SYN flood attacks exploit this weakness: they
initiate many half-open connections in a short time but
never complete the handshake. The flood of connections
forces the server to keep many unnecessary TCBs for
those connections in the backlog which is eventually filled.
Upon exhaustion, which is reached with 100 to 1000
connections, no new connections can be established to
handle legitimate requests and the DoS attack has been
successful [1].

Mitigating this problem is important since not being
able to handle such floods can for instance lead to outages.
As an example, starting in October 2012, a large US
bank was a target of such a flood but unable to mitigate
the attacks for more than 5 months. This caused the
bank’s online service to be unusable every now and then
according to [10]. It is desirable that servers under attack
are still capable of delivering their services. Mitigation
techniques are designed for this usecase, aiming to protect
the server from being unreachable.

The rest of the paper is structured as follows in Sec-
tion 2, the TCP three way handshake including its weak-
ness is explained. Different countermeasures with their
advantages and disadvantes are introduced in Section 3.
Section 4 covers why it is difficult to detect which of
those techniques is currently in use. In the conclusion

these techniques get compared in terms of memory and
computing immunity as well as effectivity.

2. TCP Three Way Handshake

Client Server

1. SYN SEQ=x

2. SYN-ACK SEQ=y ACK=x+1

3. ACK SEQ=x+1 ACK=y+1

Figure 1: TCP Handshake

As seen in Figure 1, a TCP handshake consists of
three packets being exchanged between the client and the
server. Those are used to inform both endpoints about each
other’s sequence number and the corresponding acknowl-
edgments.

When the server receives the SYN packet, a TCB
is created and stored in the backlog, primarily to keep
track of the options selected / requested in the header. It
contains, among others, the source / destination addresses
and ports as well as the sequence numbers received from
and sent to the client [1].

Once the handshake is completed, the TCB is removed
from the backlog and does not put stress on the bottle-
neck anymore. Therefore the limited resource is consumed
starting with the reception of the first packet until the third
packet is received or a timeout occured [1].

In case of a SYN flood, the second packet is ignored
by the attacker and therefore the third packet will never
be sent. As a result the TCBs use up memory until the
timeouts occur [1].

3. Mitigation Techniques

This section describes and compares the advantages
and disadvantages of different approaches used to decrease
the vulnerability by the SYN flooding attack.

3.1. Filtering

When a router receives a packet, it verifies that the
source address specified in the received packet is actually

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

67 doi: 10.2313/NET-2019-06-1_14



reachable. A reasonable check to use is strict reverse path
forwarding. This method only forwards packets “if the
packet is received on the [network] interface which would
be used to forward [...] traffic to [the packets’ source
address]” as explained by Baker and Savola in [9]. The
dropped packet must have a spoofed source IP and did not
come from a legitimate host in the network [1] as shown
by Salunkhe et al. in [3].

Advantages: Sending spoofed packets is much more
difficult and no changes to TCP are necessary [1].

Disadvantages: Filtering only works for spoofed IP
addresses which are not reachable and is therefore inef-
fective against an attacker which controls multiple hosts.
Global deployment of filters is also neither guaranteed nor
likely [1].

3.2. Increased Backlog

This technique solves the problem that the backlog is
filled too quickly by simplyincreasing its size. The obvious
result is that more connections can be stored [1] [3].

Advantages: More connections can be stored, there-
fore filling the backlog takes a bit longer.

Disadvantages: The backlogs’ implementation is not
designed to scale, e. g. the search algorithm used is not
trimmed for efficiency. It can also be circumvented simply
by increasing the attack rate [1].

3.3. Reduced SYN-RECEIVED Timer

Instead of increasing the backlog, this approach re-
duces the duration for which the connections can occupy
the backlog by reducing the SYN-received timer [1] [3].

Advantages: Incomplete connection attempts get re-
moved earlier from the backlog.

Disadvantages: If the process of establishing a con-
nection takes longer than normal, e. g. due to a slow
network connection, legitimate connections might not get
established [3]. It is equally ineffective for the same
reason: an increased attack rate can easily make up for
the lower timeout [1].

3.4. Recycling the Oldest Half-Open TCB

This technique mitigates the attack by recycling the
oldest half-open connection once the backlog is ex-
hausted [1].

Advantages: It works if the time to fully establish
a connection is lower than the time needed to fill the
backlog [1]. This means that the attack rate must be low
or the backlog must be big enough.

Disadvantages: The approach fails if the backlog
gets filled too quickly [1] since slow connections can be
evicted.

3.5. SYN Cache

Each new connection is stored in a minimized TCB
which in turn is stored in a hashmap with a limited bucket
size. The bucket in which to store the TCB is selected by
hashing the IP adresses, ports and secret bits from the
header which the server chose beforehand and the oldest

entry is dropped if the bucket is full. Generating the hash
from secret bits prevents malicious clients from overflow-
ing a specific bucket and therefore dropping legitimate
connections [1] [3]. It was “the most effective and the
most used” technique back in 2008 according to Oncioiu
and Simion in [8].

Advantages: The secret bits prevent attackers from
overflowing buckets and dropping legitimate connec-
tions [1].

Disadvantages: Because the complete TCB is not
stored, some information is left out and must be retrans-
ferred once the connection gets established [1].

3.6. SYN Cookies

As the value of the initial sequence number (ISN) used
in the handshake can be chosen at random, the server can
give this number a special meaning e. g. by encoding data.

SYN Cookies use this very number to encode the
state which would otherwise be stored as a TCB in the
backlog and therefore prevent the latter from filling up.
The value consists of three parts which get concatenated:
the slowly increasing timestamp the server keeps track
of, the maximum segment size as well as a hash of the
client’s ISN as well as the source / destination address
and port. When the client’s acknowledgement is received,
the server substracts one from the acknowledgement
number and compares it to the encoded state using the
last few timestamps. If the encoded states match, it is a
legitimate client and the TCP handshake is completed
successfully. The use of a timestamp prevents replaying
the packet at a later time. A TCB is created using the
state and directly stored as an established connection,
therefore never allocating resources in the backlog [1]
[3] as presented by Lemon in [5], Ricciulli et al. in [6]
and Liu and Sheng in [7].

Advantages: No memory is consumed to store the
state because it is encoded in the server’s initial sequence
number instead [1].

Disadvantages: The sequence number is smaller
than the TCB, therefore, not the whole state can be
stored and data retransmission may be necessary. The
SYN-ACK cannot be resent because the state is not stored
on the server. This behavior breaks the TCP semantics.
This technique is only effective in a low degree SYN
flood attack as space is traded for processing time [1].

3.7. TCP SYN Authentication

Legitimate clients can be identified if they follow
the TCP specification unlike attackers who just flood the
server with SYN packets.

SYN Authentication uses a special mitigation device
between the client and the server. If a client wants to
establish a connection to the server, it actually does the
TCP handshake with that device. When the intermediate
device receives a SYN packet, it responds with a
SYN+ACK packet containing an invalid acknowledgment
number. The client has to respond with a RST packet
as defined in the TCP specification. If it does, the
client is authenticated beause attackers do not handle

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

68 doi: 10.2313/NET-2019-06-1_14



Packet Counter Action Pass?

SYN None Move to C-1 ×
SYN C-1 Move to C-3 X
SYN C-2 None X
SYN C-3 Add to C-3 ◦
ACK None None ×
ACK C-1 None ×
ACK C-2 None X
ACK C-3 Move to C-2 X

X (pass the packet), × (drop the packet), ◦ (pass is less likely)

TABLE 1: Handling of SYN and ACK packets

invalid packets and may not even receive it, e. g. if
they use spoofed IP addresses. Since the client is
now authenticated, the mitigation device allows direct
communication between the client and the server as
shown by Nagai et al. in [2]. In other flavors the server
may send a reset and also track the hop count.

Advantages: The server does not allocate resources
for incomplete connections as the mitigation device
ensures that the connection is legitimate [2].

Disadvantages: The client needs to do the handshake
twice [2]. This slightly increases the connection
establishment time in times where RTTs should be low.

3.8. Three Counters

Attackers flood the server with many SYN packets
without responding which can be distinguished from le-
gitimate requests. Because the latter follow the TCP spec-
ification, they can resend packets which were lost and
correctly reply to the server’s responses.

This technique makes use of three counters, C-1 to
C-3, in which different packets will be stored. The first
counter records initial SYN packets, the second stores
SYN packets of established connections, and the last
records any other SYN packets. These counters are typ-
ically used after a flood has been detected. Their usage
can be seen in Table 1 and is explained in the following
paragraphs [4].

A 4-tuple consisting of the source / destination ad-
dresses and ports is extracted from each received SYN
packet and queried against the three C-s. If it is not found,
the tuple resembles a new connection and is added to C-
1 while the packet is being dropped. If it is in C-1 or
C-2 the packet is passed and the tuple is moved to C-
3 in the first case. Otherwise the packet must be in C-3
and it is forwarded with a propability p, decreasing for an
increasing number of packets received. This is achieved
by adding the tuple to C-3 multiple times and querying
the counter for the total amount [4].

Received ACK packets are handled in a similar
manner using the same 4-tuple. If the packet is in C-2 or
C-3, the packet is passed and moved to C-2 if not done
yet because the connection is now completed. In any
other case, the packet will be dropped because a SYN
packet must be received before an ACK as explained by
Gavaskar et al. in [4].

Advantages: This technique is effective against many

identical packets as they are less likely to be passed the
more often they are received.

Disadvantages: Every SYN packet has to be sent
twice. Duplicating every SYN packet is a problem
because the latter will be forwarded to the server for
sure. Furthermore following the two SYNs with an ACK,
without the need to actually listen for a SYN-ACK
response, renders this countermeasure ineffective while
not affecting other approaches because the sequence
numbers are not tracked. Lastly, flooding the server with
a spoofed SYN packet, essentially preventing that very
packet from being forwarded can cause problems if a
legitimate client attempts to connect using the same SYN
packet.

3.9. Random drop

Similar to technique 3.4, a connection is dropped once
the backlog is full. The difference is that the connection
chosen at random and the client is informed with a TCP
Reset (RST) [6].

Advantages: As most of the entries in the backlog
are from the attacker, this mitigation technique has a high
chance to drop the malicious connections [6].

Disadvantages: There is a small propability that le-
gitimate connection attempts get denied [6].

3.10. SYN Agent

Instead of doing the handshake with the server, the
client does that with the SYN agent instead. After the
handshake is completed, there are two ways to continue
depending on the kind of agent.

The first option is that the agent does the handshake
with the server imitating the client. Once this is completed,
the difference between the agent’s and the server’s se-
quence number has to be remembered. It is applied to each
message the agent receives from either side and modified
before it is forwarded.

The other option is that the agent informs the server
about the successful handshake by sending an ACK
packet to the server with the reserved bit set to one.
This includes the sequence number the agent used while
establishing the initial connection. The advantage of
this method is that the agent just forwards the messages
without touching them. As a result, the agent does not
need to store the difference and the computational effort
is also decreased [7].

Advantages: The server is guaranteed to only get
to know serious connection attempts. The latter option
also reduces the load on the agent [7].

Disadvantages: An extra agent is needed which
has to store information about half-open connections [7].
If the first option is chosen, the agent is also given
additional computational effort.

4. Detection

The detection and identification of the mitigation tech-
niques in use is difficult because they are only active

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

69 doi: 10.2313/NET-2019-06-1_14



while the server is being flooded with excessive SYN
packets. Some countermeasures are hard to identifiy from
the outside even if they are currently active. To make if
even more difficult, not every technique has an unique
measurable outcome.

Sending SYN packets alone does not yield any in-
formation about the protection mechanisms used because
the necessary information is contained within the received
SYN-ACK packet. A SYN-ACK which is not sent yields
additional information as well. For these information to
be collected a legitimate client or tool is required which
actually listens for those responses.

An increased backlog or the reduced timeout are
practically undetectable because they are essentially con-
figuration options which could also just be configured
large or short respectively. Additionally, these measures
simply delay the point of exhaustion by allowing more
half-open connections to be stored at the same time or
removing them earlier.

Recycling is mostly undetectable as the oldest half-
open connection is resetted. The attack rate must be high
enough for this technique to get noticable by preventing
legitimate connections from being established.

Besides being quite similar, random drop is even
harder to detect because the amount of dropped con-
nections is equal however the legitimate clients have a
decreased chance to be chosen. This technique is therefore
even more difficult to be identified.

Filtering is partly detectable because SYN packets
with spoofed addresses do not get forwarded and because
of that no SYK-ACKs for those can be captured.

Caching is difficult to detect as it can be identified
if information needs to be retransmitted. This technique
should not be identifiable by dropped connections as the
probability of a real one being reset is rather low.

SYN Cookies are not detectable since the initial se-
quence number is a hash value.

SYN Authentication is identifiable by the first SYN-
ACK which is always invalid.

Three counters are detectable as the first SYN will
always be dropped for a new connection. In addition
sending many packets in the name of a valid client might
block it from connecting.

The agent cannot be identified as it duplicates and
imitates the server.

5. Conclusion

In order to prevent exploitation of the weakness in
the TCP specification, many TCP SYN flood mitigation
techniques have been developed. They are summarized in
Table 2.

Some techniques like increasing the backlog or reduc-
ing the timeout focus on delaying the exhaustion of the
backlog while others try to prevent it from getting full, like
SYN agent or SYN cookies. Additionally, recycling and
random drop take no precautions to prevent the backlog
from being filled, instead, they simply drop a connection
from the backlog if it is full based on the respective
heuristic algorithm.

SYN Cookies are the best choice if the migitation
technique must be ready for immediate use because this
method is included in Linux. They can therefore be used

Technique G
ua

ra
nt

ee

M
em

or
y

Im
m

un
ity

C
om

pu
tin

g
Im

m
un

ity

R
ob

us
tn

es
s

G
oo

d
Pe

rf
or

m
an

ce

Filtering ◦ X × X ×
Increased Backlog × × × X ×
Reduced Timeout ◦ × X X X
Recycling ◦ X X X X
SYN Cache X X × X ×
SYN Cookies X X × × X
SYN Authentication X X X X ×
SYN Agent X X X X X
Three Counters ◦ × × X ×
Random Drop × X X X X

X (fulfilled), × (not fulfilled), ◦ (depends on the attack)
This table further extends the one from [6].

TABLE 2: Comparison of Mitigation Techniques

even if no countermeasures have been taken beforehand.
A SYN Agent should be used when the server must be
protected from flooding attacks under all circumstances
however a separate machine with enough memory han-
dling the incoming traffic is needed. SYN Authentication
can be used instead of SYN Cookies if correctly following
the TCP specification is more important than the response
time as the intermediate device can resent the SYN-ACK
packets however the handshake has to be done twice.

References

[1] W. Eddy, “TCP SYN Flooding Attacks and Common Migitations”,
RFC 4987, August 2007

[2] R. Nagai, W. Kurihara, S. Higuchi, T. Hirotsiu, “Design and Im-
plementation of an OpenFlow-based TCP SYN Flood Mitigation”,
6th IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, 2018

[3] H. S. Salunkhe, Prof. S. Jadhav, Prof. V. Bhosale, “Analysis and
Review of TCP SYN Flood Attack on Network with Its Detection
and Performance Metrics”, International Journal of Engineering
Research & Technology, January 2017

[4] S. Gavaskar, R. Surendiran, Dr. E. Ramaraj, “Three Counter De-
fense Mechanism for TCP SYN Flooding Attacks”, International
Journal of Computer Applications, September 2010

[5] J. Lemon, “Resisting SYN flood DoS Attacks with a SYN Cache”,
USENIX Association, February 2002

[6] L. Ricciulli, P. Lincoln, P. Kakkar, “TCP SYN Flooding Defense”

[7] P.-E. Liu, Z.-H. Sheng, “Defending Against TCP SYN Flooding
with a new Kind of SYN-Agent”, Proceeding of the 7th Interna-
tional Conference on Machine Learning and Cybernetings, July
2008

[8] R. Oncioiu, E. Simion, “Approach to Prevent SYN Flood DoS
Attacks in Cloud”

[9] F. Baker, P. Savola, “Ingress Filterin for Multihomed networks”,
RFC 3704, March 2004

[10] radware Inc, “Operation Ababil”, Online, 2013, last visited 2018-
12-06, https://security.radware.com/WorkArea/DownloadAsset.
aspx?id=848

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

70 doi: 10.2313/NET-2019-06-1_14


