
Caching with Relation

Mohamad Nour Moazzen, Stefan Liebald ∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: mohamadnour.moazzen@tum.de, liebald@net.in.tum.de

Abstract—
The increase in network traffic across the Internet in

recent days impose many challenges to web servers and
Internet service providers regarding access latency and net-
work bandwidth consumption. Web caching is one of the
optimization methods used to face these challenges. The
most important part of a web caching system is the cache
replacement algorithm which decides which web objects
should be evicted from the cache in order to make space
for new ones when the cache is full. Traditional algorithms
consider metrics such as recency and frequency to make the
replacement decisions. In this paper we explore a type of
algorithms which considers the semantics of the web objects
to make the replacement decisions. We differentiate two
categories of this type of algorithms according to how they
interpret the contents of the web objects: subject-based and
link-based. We present some algorithms of both categories
and explain how they work.

Index Terms—WWW, Web caching, Cache replacement al-
gorithms, Semantic distance

1. Introduction

The Internet is a valuable source of information and it
is used by an increasing number of people for education,
entertainment, business and almost every aspect of modern
life. This led to an increase of network traffic across the
Internet, which in turn causes increasing access latency. To
face these challenges, several optimization methods have
been developed [1]. Web caching is one of these methods.
It aims to improve the performance of web servers and
decrease access latency.

We can differentiate three types of Web caching
depending on the place where the web cache is em-
ployed: Client-side caching, Server-side caching and
Proxy caching. In this paper we focus on proxy caching.

The basic idea of web caching is to store copies of
web objects (web pages, photos, videos, etc.) which are
requested by users in intermediate web caches, so future
requests for these web objects will be served by these web
caches instead of the original servers. This decreases the
number of requests to the original servers and reduces the
amount of transmitted data over the network in addition
to decrease access latency because these web caches are
closer to the users.

Web caching system works as follows:
• When user requests an object from a web server,

the system first checks if this object is already
cached.

• If there is a copy of this object in the cache it will
be send directly to the user.

• If the object is not cached then it will be requested
from the original web server and forwarded to the
user, then this object is stored in the cache.

Because web caches have limited size, we cannot store
every web object for indefinite time. When the cache is
full, and new objects need to be stored in it, the system
has to remove one or more cached objects in order to
make space for the new objects. The decision of what
objects to be removed from the cache is taken by the
cache replacement algorithm.

Cache replacement algorithms are very crucial for
the performance of the web caching system because if
the algorithm removes objects which maybe requested
again in the near future, this degrades the performance
of the system as these objects have to be requested again
from the original server. There are several types of cache
replacement algorithms, each one of them depends on one
or several metrics to decide which object(s) to evict from
the cache.

In this paper we explore a type which depends mainly
on the semantics of the contents of the web objects to
make the replacement decisions. Algorithms of this type
measure the relationship between the cached objects and
the new incoming objects which need to be stored in cache
in terms of a semantic distance calculated based on the
subject of the contents or the links between objects. The
objects which are the furthest from the new objects in
terms of the semantic distance , i. e., the objects which
are the least related to the new objects, are marked for
eviction.

The rest of this paper is structured as follows. Section
2 includes a background about cache replacement algo-
rithms. Section 3 introduces semantic cache replacement
algorithms and describes several algorithms from this
type. In section 4 we conclude the paper.

2. Background

Many cache replacement Algorithms have been pro-
posed in literature.

We can differentiate between them according to the
metric they use to make the replacement decisions.

Two of the most important metrics are [2]:

• Recency: time of last request for an object.
• Frequency: number of requests for an object.

Podlipnig and Böszörmenyi in [2] proposed a classi-
fication for the cache replacement Algorithms as follows:

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

63 doi: 10.2313/NET-2019-06-1_13



• Recency-based Algorithms: depend on the recency
metric to make the replacement decisions. The
most well-known algorithm from this category is
LRU (Least Recently used), which evicts the least
recently accessed objects from the cache.

• Frequency-based Algorithms: depend on the fre-
quency metric to make the replacement decisions.
The most well-known algorithm from this category
is LFU (Least Frequently used), which evicts the
least frequently accessed objects form the cache.

• Recency/Frequency-based Algorithms: depend on
both recency and frequency metrics to make the re-
placement decisions. SLRU (Segmented LRU) [3]
is an example of algorithms from this category.

• Function-based Algorithms: use a function to cal-
culate the value of an object then use this value
as a metric to make the replacement decisions.
GD(Greedy Dual)-Size [4] is an example of al-
gorithms from this category.

• Randomized Algorithms: these algorithms ran-
domly make the replacement decisions. HAR-
MONIC [5] is an example of algorithms from this
category.

The most important metrics to take into account when
evaluating or comparing the performance of cache replace-
ment Algorithms are hit rate and byte hit rate.

• Hit rate: "measures the percentage of requests that
are served from the cache (i. e., requests for pages
that are cached)" [6].

• Byte hit rate: "measures the amount of data (in
bytes) served from the cache as a percentage of
the total amount of bytes requested" [6].

The algorithms which we have mentioned in this
Section depend on the metadata of the cached objects to
decide which ones to evict from the cache (time of last
access, frequency of access, etc.).

In the next section we explore a different type of
cache replacement algorithms which take into account the
contents of the objects [7] when making the replacement
decisions.

3. Semantics based cache replacement algo-
rithms

Semantics based cache replacement algorithms depend
mainly on semantics of the contents of the cached web
objects in order to decide which ones to evict from the
cache [8]. They measure the relationship between the
cached objects and the new incoming objects which need
to be stored in cache (or the most recently accessed cached
objects).

When the replacement process is triggered, the algo-
rithm evicts the objects in cache which are less related to
the new incoming objects regarding the semantics of their
contents. This type of algorithms relies on the intuition
that the cached objects which are less related to the new
objects regarding the semantics of their contents are less
likely to be requested in the near future, therefore they
can be evicted from the cache.

If the algorithm cannot decide what objects to evict be-
cause all of them are closely related to the new incoming

objects, then these algorithms make use of other metrics
such as recency, frequency, etc., to make the replacement
decision. We can differentiate two categories of this type
of algorithms according to how they interpret the contents
of the web objects:

• Algorithms which calculate the semantics for the
objects based on the subject of their contents
(LSR [7], LSR/H [8]).

• Algorithms which calculate the semantics for the
objects based on the links which are contained in
these objects (SACS) [6].

In the following we describe several semantics-based
algorithms.

3.1. LSR

Alcides [7] proposed an algorithm called LSR (Least
Semantically Related). This algorithm relies on the as-
sumption that every user is inclined, for a period of time,
to request objects whose contents belong to a specific
subject, i. e., semantically related objects. Also, it assumes
that during a period of time all the objects which are
requested from a cache belong to the same subject, that
is, "LSR supports single thread of interest" [8].

It depends on a metric called semantic distance to
make the replacement decisions. In order to calculate the
semantic distance, the algorithm associates semantics to
each object according to its contents.

When the replacement process is triggered, the al-
gorithm calculates the semantic distance between each
cached object and the new object(s) which need(s) to be
stored in the cache. The cached objects which are less
related to the new objects, i. e., the objects which have the
highest semantic distance to the new objects, are marked
for eviction.

According to [7], one way to associate semantics to
each object is through a taxonomy, objects are organized
into a tree of subjects. It starts from the root and branches
out into nodes where each node represents a subject,
the nodes may branch out into children nodes which
represents more specific subjects, objects are distributed
on the nodes according to the subject of their contents.

Using this taxonomy, we can get the semantics of
any object in the form of a sequence of tree nodes from
root to the specific subject which match the subject of its
contents. Then the algorithm can calculate the semantic
distance between any two objects by measuring the short-
est path between the corresponding subject nodes.

It is hard to implement such taxonomy for the whole
Internet, but there are several efforts toward this like
DMOZ Open Directory Project [9] and by Schmidt et al.
in [10] which proposed creating web servers which can
be queried using the URL of an object to respond by its
semantics.

Figure 1 shows an example of a tree of subjects, it is
a real-world example represents a partial view of a taxon-
omy defined by the DMOZ Open Directory Project [8].
Using this figure, we can get the semantics of the object
which is titled "Foundations of the Internet Protocol" in
the following form: Top.Computers.Internet.Protocols.IP.
So, for example if this object is the new object which

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

64 doi: 10.2313/NET-2019-06-1_13



Figure 1: Partial hierarchy of subjects defined by the
DMOZ Open Directory [8].

Figure 2: A history of 10 subject accesses [8].

needs to be stored in the cache, the algorithm starts evict-
ing objects which corresponds to subject nodes which are
the furthest from IP node like Art, Business, Algorithms,
etc.

3.2. LSR/H

Calsavara and Schuck [8] proposed an algorithm called
LSR/H (Least Semantically Related + History of subject
accesses) This algorithm is a developed version of LSR. It
adds the dependency on a metric called history of subject
accesses to make the replacement decision. It supports
"multiple threads of interest" [8], i. e., there can be, for a
period of time, multiple subjects of interest for the users.
These subjects are called "hot subjects" [8]. A subject is
included in the hot subjects when, for a period of time,
there is a substantial number of accesses to objects whose
contents are related to that subject [8].

To keep track of the hot subjects, the algorithm records
the history of subject accesses. Whenever an object is
accessed, it adds a weight to its corresponding subject.
Recency plays a role in the weighting process, recent
accesses weight more than old accesses [8]. The cached
objects whose contents are less related to the hot subjects
are marked for eviction, i. e., objects whose contents are
related to subjects of less weight.

LSR/H, like LSR, depends on "tree of subjects" tax-
onomy to map semantics to objects. As we described

Figure 3: Hierarchy of subjects of Figure 1 with
weights [8].

earlier, each request or access to an object adds a weight
to its corresponding subject. In this taxonomy, when the
algorithm adds a weight to a subject node, it should also
add this weight to the parent nodes of this subject node
recursively until reaching the root.

To clarify this, we take the tree of subjects in Figure 1
as an example. We assume that the record of history of
subject accesses is of length 10, i. e., the algorithm is
configured to record the subjects of the last 10 accesses.
Also, we assume that when the replacement process is
triggered the history of subject accesses is as shown in
Figure 2.

The weight values are distributed according to the
recency of access, i. e., 10 corresponds to the most recently
accessed subject and 1 corresponds to the least recently
accessed subject [8]. Using these values, the algorithm
calculates the weights of the subjects.

For example: according to Figure 2, the weight of
Software node is 9, the algorithm adds 9 to the node
Software and also adds 9 to its parent node Computers.
Figure 3 shows the tree of subjects after calculating the
weights. We can see from Figure 3 that the hot subjects are
mainly Computers, Business and Games. The algorithm
starts evicting objects whose contents are related to the
subjects of Art, Health and World, then Business and
Games and so on.

3.3. SACS

André et al. [6] proposed an algorithm called SACS
(Semantic Aware Caching System). This algorithm relies
on the assumption that the cached objects which can be
reached by links from a recently accessed object will most
likely be requested in the near future, so, they should
not be evicted from the cache. It depends on 3 metrics:
recency, frequency and semantic distance to make the
replacement decisions. The semantic distance between two
objects is calculated by measuring the minimum number
of links which is needed to be followed to reach one from
the other [6]. SACS differentiates between two types of
links when calculating the semantic distance:

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

65 doi: 10.2313/NET-2019-06-1_13



Figure 4: Example of a web site with distance assigned
based on link information [6].

• Explicit link: the link that should be clicked by
the user to get the referenced object. A link of
this type is assigned a distance of 1 [6].

• Implicit link: the referenced object by this link
is loaded automatically. A link of this type is
assigned a distance of 0 [6].

Figure 4 shows an example of how SACS assigns the
distance between pages of a website. SACS continuously
keep track of a set of objects called pivot, they are the
most recently accessed cached objects [6]. When the
replacement process is triggered, the algorithm calculates
the semantic distance between each cached object and the
nearest member of pivot. The objects which are the most
distant from pivot are marked for eviction. In case multiple
objects are in the same distance from pivot, the algorithm
orders them according to their frequency information (the
objects which are less frequently requested are more likely
to be evicted).

4. Conclusion

Web caching is one of the optimization methods used
by the web servers to improve their performance and
decrease access latency.

Cache replacement algorithm decides the web objects
that should be evicted from the cache in order to make
space for new ones when the cache is full.

Traditional algorithms consider metrics such as re-
cency and frequency to make the replacement decisions.

In this paper we explored a type of cache replacement
algorithms which considers the semantics of the contents
of the web objects to make the replacement decisions.
We divided it into two categories according to how they
interpret the contents of the web objects: subject-based
and link-based. Then we described several algorithms of
this type.

According to [6], [7], [8] these algorithms perform
better than the other well-known replacement algorithms
such as LRU and LFU.

LSR/H builds upon LSR by adding additional metrics
to improve performance.

LSR and LSR/H are hard to be implemented on the
Internet scale because they need a global representation

of the semantics of web objects (based on the subjects of
their contents) which enables them to associate semantics
to objects. This is not available for the all the objects on
the Internet, though there are some efforts toward that like
DMOZ open directory project [9] and by Schmidt et al.
in [10] which proposed creating web servers which can
be queried using the URL of an object to respond by its
semantics.

SACS algorithm on the other hand does not require
such condition to be implemented.

Also, LSR and LSR/H consider that each web object
can be associated with only one specific subject, therefore,
these algorithms are not applicable in cases where we have
for example a web page or an article which discusses
several subjects.

References

[1] Y. Zhang, N. Ansari, M. Wu, H. Yu, On wide area network
optimization, Commun Surv Tutor IEEE 14(4):1090-1113, (2012).

[2] S. Podlipnig, L. Böszörmenyi, A survey of Web cache replacement
strategies, ACM Comput. Surv. 35, 4, 374-398, (2003).

[3] R. Karedla et al, Caching Strategies to Improve Disk System
Performance, Computer, vol. 27, no. 3, pp. 38-46, (1994).

[4] P. Cao, S. Irani, Cost Aware WWW Proxy Caching Algorithms,
Proceedings of USENIX Symposium on Internet Technologies and
Systems (USITS), Monterey, CA, pp. 193-206, (1997).

[5] S. Hosseini-Khayat, Investigation of generalized caching, Ph.D.
dissertation, Washington University, St. Louis, MO, (1997).

[6] N. P. André, R. Carlos, F. Paulo, V. Luis, An adaptive semantics-
aware replacement algorithm for web caching. Journal of Internet
Services and Applications, 6. 10. 1186/s13174-015-0018-4, (2015).

[7] C. Alcides, The least semantically related cache replacement al-
gorithm, In Proceedings of the 2003 IFIP/ACM Latin America
conference on Towards a Latin American agenda for network
research (LANC ’03), ACM, New York, NY, USA, 21-34, (2003).

[8] A. Calsavara, M. R. Schuck, Internet object caching based on
semantics and access history, Programa de Pos-Graduacao em
Informatica Aplicada Pontificia Universidade Catolica do Parana
Rua Imaculada Conceicao, 1155, Prado Velho 80215-901 Curitiba,
PR.

[9] AOL Inc. "Archive of dmoz.org provided by Internet Marketing
Ninjas", Last visited 2019-02-06, http://dmoz-odp.org/

[10] A. Calsavara, G. Schmidt, Semantic search engines, In F. Ramos, F.
Unger and V. Larios, editors, Advanced Distributed Systems: Third
International School and Symposium, ISSADS 2004, Guadalajar
a, Mexico, January 24-30, 2004, Revised Selected Papers, volume
3061 of Lecture Notes in Computer Science, pp 145-157. (2004).

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

66 doi: 10.2313/NET-2019-06-1_13


