Client Monitoring with HTTPS

Felix Hartmond, Simon Bauer*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: felix.hartmond@tum.de, bauersi@net.in.tum.de

Abstract—With the increasing number of users and devices
on the internet, it is more and more important for an
administrator to know who and what is using his networks
and services. Therefore it is necessary to find out information
about the clients. This process is called fingerprinting. With
the ongoing deployment of HTTPS information from the
application layer can no longer be read directly. In this paper,
we will look at the different layers of the HTTPS protocol
stack and examine which fingerprinting approaches are still
possible, or even only possible, with the added encryption.

Index Terms—https, client fingerprinting

1. Introduction

1.1. Motivation

With the growing number of users and devices on the
internet is it more and more interesting who and what is
producing traffic. Information about the users and devices
is helpful for a lot of things. For example, it can be used
to optimize services and networks. It can also be used
to improve the security of a system as it can help to
identify potential malicious actors. Such actors can also
be tracked with such information which allows finding out
more about them.

Getting information from network traffic is getting
harder with the extended use of the encrypted version of
the HTTP protocol: HTTPS. But there are far more ways
to find out information about a client than just reading
plain HTTP requests. And, even if encryption makes the
analysis harder, it does not make it impossible. In this
paper, we look at the different layers of the network
stack and examine different ways to analyze a client with
information provided by the different layers.

1.2. Outline

In Section 2, we will give a rough overview of dif-
ferent kinds of fingerprinting. After this, we will look
at the involved protocols in an HTTPS communication
and analyze which kinds of fingerprinting are possible on
the different layers. We will go down the network stack
from top to bottom and look at each layer. For each layer,
we will analyze which methods were developed to gather
information about the client from the information provided
by this layer.

We will start at the very top and look at the Hyper Text
Transfer Protocol (HTTP) in Section 3. Then, we look

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

59

at the Transport Layer Security protocol (TLS), which is
the new layer in HTTPS, compared to HTTP, in Section
4. After this, we examine in Section 5 the Transmission
Control Protocol (TCP), which is usually used by HTTP
connections as transport protocol [7] together with the
Internet Protocol (IP). We look at these two layers at once
as many approaches use information from both protocols.
Finally, we will take a brief look at transport layer pro-
tocols. As these protocols are not used end to end they
have some limitations we will also look at.

In the end, in Section 7, we will recap which infor-
mation can be gathered overall.

2. Fingerprinting

Fingerprinting can be split into two categories: device
fingerprinting and user fingerprinting. The methods used
for fingerprinting can also be categorized into active meth-
ods and passive methods.

Device fingerprinting is about gathering information
about the device which is communicating. These things
include the operating system, drivers, protocol implemen-
tations or browsers. These can be very interesting to
understand which device types are active in the network
and which software in which versions they use. This
information can be relevant to be able to optimize services
and network infrastructure for the way how they are used.
User fingerprinting is about getting information about the
user who is actively using the applications. This can be
interesting for tracking a user across different devices or
services to be able to optimize, for example, the presented
content for this user.

Fingerprinting methods can be split up into two cat-
egories: Active and passive methods. Active methods ac-
tively send probes to a device and analyze the responses.
These methods require the ability to send probes to a
device but are very mighty if there is no firewall in
front of the device. They are mighty because due to the
active participation of the observer it is possible to send
specifically crafted packets to the client. On the other side,
passive methods do not send out any new traffic, they just
analyze traffic which is passing. Such methods completely
rely on the traffic which is already there. But they has
the huge advantage that they do not have to happen real
time. It is possible to just capture and store traffic and
do the complete analysis afterwards or even running an
analysis on a traffic capture which was not stored with
fingerprinting in mind.

doi: 10.2313/NET-2019-06-1 12

3. HTTP

If we would not use HTTPS, the information from
the application layer would tell us a lot about the client
and its action. There would be a lot of HTTP headers
sent with every request, for example, the User Agent,
which explicitly tells which system is used by the client.
Additionally, we would be able to see all the requests
including all parameters which gives us very detailed
information about user and his actions. But, HTTPS hides
all this application data through the addition of encryption.
For the encryption an TLS layer is added between the
TCP layer and the HTTP layer. This layer acts as an
container for the HTTP layer and encrypts all data from
it. So, theoretically, all data from the HTTP layer should
not provide any information to an observer. But a lot
of research was done to find out if it is possible to
gain information about a client despite the presence of
encryption.

Stober et. al. [19] took a look at mobile applications
and tried to find out which application observed traffic
belongs to. They were able to identify the application with
a success probability of 90% despite not seeing the content
of the traffic. For they approach they utilized that a lot
of application traffic is not directly triggered by a user
action. Instead, most traffic is done by the application
is the background on a reglar basic. They analyed the
patterns of this background traffic and were able to deduce
the running application from the traffic patterns.

Zion et. al. [13] tried to find out the client’s operat-
ing system, the used browser and the application from
encrypted traffic. They used supervised machine learning
to assign labels of the form (OS, Browser, Application)
to the packets. They were able to successfully classify
packets with their approach. This shows that is is possible
to get basic information about a user by only looking at
the encrypted traffic.

Panchekno et. al. [14] analyzed if it is possible to find
out which website was accessed if the traffic is protected
and anonymized by anonymization networks like TOR.
For their approach, they used a support vector machine
(another machine learning technique) and were able to
archive a true positive rate of 73% for a false positive
rate of 0.05%.

Also, Cai et. al. [2] looked at encrypted traffic in the
context of defenses like Tor. They used a simple model of
network behavior to find out which homepage is accessed
by a user and were able to identify the requested page
with a good success rate.

Overall research has shown that encryption can not
completely hide information from the communication. A
very impressive example of getting information out of
encrypted packets was presented by Wright et. all. They
took a look at Voice over IP communication and were
able to reconstruct spoken text from encrypted traffic.
This was possible as the audio was encoded with a codec
with variable frame rate which caused network packets
of variable length. These varying packet lengths were
sufficient to reconstruct spoken phrases. [22]

Dyer et. al. [4] took a conceptional look into the prob-
lem of hiding information completely through encryption
or obfuscation. They came to the conclusion that it will
always be possible to extract some kind of information

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

60

from encrypted traffic as long as bandwidth optimizations
are done, what every protocol does.

4. TLS

The Transport Layer Security Protocol takes care of
encrypting all data above the TLS layer. To be able to
do encryption the protocol has first to do a handshake
between client and server. As there are no shared secrets
between client and server initially, the first messages of
the handshake are unencrypted. In the beginning, the
client sends a so called "hello message" in which it tells
the server about its version, cipher suites, compression
methods and extension they support. The only other un-
encrypted message from the server contains the servers
public key. After this, no more messages from the client
are unencrypted. [3]

As often multiple homepages are hosted on a single
server and these homepages use different certificates, TLS
needs to know the requested homepage already during the
handshake to provide the correct certificate. As ordinarily
the domain is presented first after the finished handshake
TLS has an extension called Server Name Indication
(SNI). This extension presents the requested domain in
the client hello message of the TLS handshake to make it
possible for the server to present the correct certificate for
the requested domain afterward. But the information from
this is very limited as only the domain can be retrieved
but neither any further information about the request nor
details about the requesting client. [6]

To get more information about the client from the
client hello message, Martin Husdk et. al. went through the
different values included in the client hello message and
analyzed them towards the differences in the values for
different client types. They found out that the most values
are quite similar for different client types, but they found
one very interesting value: the list of supported cipher
suites. This list of support cipher suites differs enough
between different clients to make it possible to distinguish
them. [10]

Martin Husédk et. al. used two methods to build a
codebook which maps cipher suite lists to user agents.
For the first one, a server based one, they logged the
cipher suite lists as well as the user agent of incoming
https connections on a web server. This method produces
very accurate results but the clients have to visit a spe-
cific server to be included in the codebook. Because of
this, they combined the fist with a second method which
analyzed network traffic which includes HTTP as well as
HTTPS connections from the same clients. By matching
the connections from the same client together they were
able to extend the codebook with clients which did not
connect to their servers. In their tests, the top 10 cipher
suite lists covered 68.5% of the network traffic and the
top 31 cipher suite lists covered 90% of the traffic. Over
their measurements, they discovered 1598 different cipher
suite lists. [10]

Despite a very good variance in the cipher suite list
there were still multiple user agents which correspond to a
single cipher suite list. So they used a tool which extracts
information about a system from a user agent like browser
name, operating system or vendor. With this, they were

doi: 10.2313/NET-2019-06-1 12

able to classify the traffic into several categories for de-
vices (desktop, mobile, unknown) as well as applications
(browser, command line, application, update, unknown).
[10]

5. TCP/IP

The Transport Control Protocol (TCP) takes care of the
reliability network connection. It takes care of retransmis-
sion of lost packets, flow control, congestion control and
multiplexing of connections between two hosts. [17]. The
Internet Protocol (IP) provides addressing between the
hosts which communicate with each other. Also, packet
routing is done by this network layer. [16]. As many
fingerprinting approaches use information from these two
layers together, we will look at these two layers together.

The TCP specification, as well as the IP specification,
does only describe the scenarios of regular operation. They
do not specify corner cases like how an implementation
should behave in the case of packets which should never
occur, like strange combinations of flags or if TCP seg-
ments or IP fragments overlap. As these scenarios are not
specified, different implementations have different behav-
ior when processing such packets. This can be used for
active fingerprinting. By sending such impossible packets
the used implementation of the communicating host can
be examined. For example, the tool NMAP implements
a test where a packet with a FIN flag is sent without
establishing a connection beforehand. Even if this packet
should be just discarded, some implementations send an
answer to it. [18]

In addition to implementation differences caused by
edge cases and implementation bugs, TCP implementa-
tions also have slight differences in their behavior con-
cerning retransmissions and congestion control. Differ-
ent implementations have slightly different retransmission
timeouts. By sending a TCP SYN packet, and measuring
the time between the SYN-ACK packet and his retrans-
missions it is also possible to detect the used implemen-
tation as Veysset et. al. showed. [21]

Many more people have done research on active
TCP/IP fingerprinting and developed tools which can
execute the proposed measurements and classifications.
Grek Taleck took a very detailed look at the different
aspects of a TCP/IP implementations and developed a
tool called SYNSCAN which’s "objective is to fingerprint
every aspect of a TCP/IP implementation". [20] Ofir Arkin
and Fyodor Yarochkin developed Xprobe2 which uses an
approach based on confidences to find a result, instead of
relying on an exact match with a known fingerprint. [1]

All methods mentioned for TCP/IP so far were active
methods. But an active method needs either an accessible
device or a connection from this device to a controlled
server which then can send probes as replies. Having an
accessible device is rather easy for servers but in gen-
eral, clients are hidden behind a firewall which makes it
impossible to send probes to them. Passive fingerprinting
methods allow fingerprinting just by analyzing the traffic
from a client at any point on the path between client and
Server.

Different researchers created tools which analyze ini-
tial values of different fields from the TCP and the IP
header. The siphone tool was a proof-of-concept tool

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

61

which only analyzed the TCP window size, the IP Time
to Live and the IP Don’t Fragment bit from packets of
a TCP connection. The pOf tool and the ettercap tool
look especially at the SYN packet of the TCP connection.
Ettercap additionally analyzes the SYN-ACK packet. In
addition to the features of siphone, they also analyze
different options and flags from the TCP header. [12] [23]

Vern Paxson took a different approach and developed
a passive fingerprinting tool called tcpanaly. This tool
analyzes a complete flow and looks at the congestion
control behavior of the implementation as different im-
plementations differ in their rounding of TCP’s sstresh. It
also takes a look at response delays for the creation of
acknowledgments and watches for occurrences of a bug
caused by uninitialized variables. [15]

TCP has a timestamp option which is intended for
round trip time measurements. Kohno et. al. showed that it
is possible to use the values from this timestamp option to
detect clock skews which can be used to uniquely identify
a user. Even if these variations are very small, they found
out that it is possible to use that technique even if the
observer is quite far away from the client. [11]

6. Link Layer Protocols

When looking at network layers below the IP layer,
fingerprinting on these layers has a different initial situ-
ation - it is link dependent as first the IP Protocol takes
care of the end-to-end addressing of a packet. So, when
looking below the IP Layer we no longer look at packets,
instead look at frames which only exist for one hop in the
connection. This means, to be able to monitor a client we
have to be very close, especially on the same link as the
client. So fingerprinting on these layers is not possible for
server administrators who want to know something about
the clients sending requests. But for administrators who
want to learn about the clients in their local network, these
methods are useful.

Fingerprinting on the Link Layer is of course highly
dependent on the used Link Layer protocol. When looking
at an Ethernet frame the header only contains the source
and destination MAC addresses, a type id of the content
of the next higher layer and an optional VLAN tag. One
of the few things which can be derived from these header
fields is the vendor of the sender’s network card as the
MAC address contains an "Organization Unique Identi-
fier" (OUI). [5] But the network card vendor does not give
any reliable information about the software running on the
client. Despite that, MAC addresses can be modified by
a user or in case of virtual machines are not bound to
physical hardware at all.

But, this situation is different for 801.11 networks.
802.11 is far more complicated than ethernet as it has
connection establishment and authorization mechanisms,
so it has far more potential to reveal information about
the client.

Franklin et. al. used the active scanning for driver fin-
gerprinting. Every 802.11 client periodically sends probe
requests to discover access points in range. The time
intervals between the probes can be used to identify the
used driver. A huge advantage of this approach is that no
specialized equipment is required for the measurements as

doi: 10.2313/NET-2019-06-1 12

the probes can be received any ordinary 802.11 hardware.
[8]

It’s even possible to get a step further and look at
the analog signal created by an 802.11 interface. Gerdes
et. al. took this approach and found out that a device
can be identified and tracked by small differences caused
by hardware and manufacturing inconsistencies. With this
approach, it is not possible to identify the used driver or
operating system, but it allows to identify a user on the
link layer even if he changed his MAC address to another
value or moves to another network. [9]

7. Conclusion

We have seen that even if the presence of encryption
makes the analysis of the application layer harder it does
not block fingerprinting. Despite the encryption, it is still
possible to find out a lot about the actions of the user on
the application layer. Especially with the current develop-
ment in machine learning approaches, it is very hard to
hide information from the application layer completely.
The added TLS layer provides encryption but offers with
the supported cipher suite list a way itself to fingerprint
the device.

On the IP and TCP layers, there is also fingerprint-
ing possible due to implementation differences. As these
layers are below the TLS layer, they are completely un-
touched by the added encryption. Even lower on the link
layer, there are also ways to do fingerprinting but these
are dependent on the used link layer technology on this
link. Additionally, the observer has to be on the same link
as the client to do observations on the link layer.

Overall the Protocol stack of HTTPS has a lot of
possibilities which can be taken into account when specific
information about the clients should be examined. As fin-
gerprinting methods are possible at very different aspects
of a connection a specific attacker model is needed to say
if a setup is sufficiently protected against fingerprinting.

References

[1] O. Arkin and F. Yarochkin. Xprobe v2.0 - a "fuzzy" approach to

remote active operating system fingerprinting. 08 2002.

X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a
distance: Website fingerprinting attacks and defenses. In Proceed-
ings of the 2012 ACM Conference on Computer and Communi-
cations Security, CCS ’12, pages 605-616, New York, NY, USA,
2012. ACM.

T. Dierks and E. Rescorla. The transport layer security (tls)
protocol version 1.2. RFC 5246, RFC Editor, August 2008.
http://www.rfc-editor.org/rfc/rfc5246.txt.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-
boo, i still see you: Why efficient traffic analysis countermeasures
fail. In 2012 IEEE Symposium on Security and Privacy, pages
332-346, May 2012.

(2]

(3]

(4]

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

62

(5]

(6]

(71

(8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

(20]

[21]

[22]

(23]

D. Eastlake. Iana considerations and ietf protocol usage for ieee
802 parameters. RFC 5342, RFC Editor, September 2008. http:
/Iwww.rfc-editor.org/rfc/rfc5342.txt.

D. Eastlake. Transport layer security (tls) extensions: Extension
definitions. RFC 6066, RFC Editor, January 2011. http://www.
rfc-editor.org/rfc/rfc6066.txt.

R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter,
P. J. Leach, and T. Berners-Lee. Hypertext transfer protocol —
http/1.1. RFC 2616, RFC Editor, June 1999. http://www.rfc-editor.
org/rfc/rfc2616.txt.

J. Franklin, D. McCoy, P. Tabriz, V. Neagoe, J. Van Randwyk, and
D. Sicker. Passive data link layer 802.11 wireless device driver
fingerprinting. In Proceedings of the 15th Conference on USENIX
Security Symposium - Volume 15, USENIX-SS’06, Berkeley, CA,
USA, 2006. USENIX Association.

R. M. Gerdes, T. E. Daniels, M. Mina, and S. Russell. Device
identification via analog signal fingerprinting: A matched filter
approach. In NDSS, 2006.

M. Husdk, M. Cermdk, T. Jirsik, and P. Celeda. Network-based
https client identification using ssl/tls fingerprinting. In 2015 10th
International Conference on Availability, Reliability and Security,
pages 389-396, Aug 2015.

T. Kohno, A. Broido, and K. C. Claffy. Remote physical device
fingerprinting. IEEE Transactions on Dependable and Secure
Computing, 2(2):93-108, April 2005.

R. Lippmann, D. Fried, K. Piwowarski, and W. W. Streilein.
Passive operating system identification from tcp / ip packet headers
*.2003.

J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin,
A. Dvir, and O. Pele. Analyzing https encrypted traffic to identify
user operating system, browser and application. 03 2016.

A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website
fingerprinting in onion routing based anonymization networks. In
Proceedings of the 10th Annual ACM Workshop on Privacy in the
Electronic Society, WPES 11, pages 103-114, New York, NY,
USA, 2011. ACM.

V. Paxson. Automated packet trace analysis of tcp implementations.
ACM SIGCOMM, 21, 07 2000.

J. Postel. Internet protocol. STD 5, RFC Editor, September 1981.
http://www.rfc-editor.org/rfc/rfc791.txt.

J. Postel. Transmission control protocol. STD 7, RFC Editor,
September 1981. http://www.rfc-editor.org/rfc/rfc793.txt.

Fyodor. Remote os detection via tcp/ip stack fingerprinting. https:
//nmap.org/nmap-fingerprinting-article.txt. Accessed: 2018-11-26.

T. Stober, M. Frank, J. Schmitt, and I. Martinovic. Who do
you sync you are?: Smartphone fingerprinting via application be-
haviour. In Proceedings of the Sixth ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec ’13, pages
7-12, New York, NY, USA, 2013. ACM.

G. Taleck. Synscan :
2004.

Towards complete tcp / ip fingerprinting.

F. Veysset, O. Courtay, and O. Heen. New tool and technique for
remote operating system fingerprinting - full paper -. 2002.

C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Mas-
son. Spot me if you can: Uncovering spoken phrases in encrypted
voip conversations. In 2008 IEEE Symposium on Security and
Privacy (sp 2008), pages 35-49, May 2008.

M. Zalewski. pOf v3: passive fingerprinter. http://lcamtuf.
coredump.cx/pOf3/README, 2012. Accessed: 2018-11-20.

doi: 10.2313/NET-2019-06-1 12

