
Networking in MirageOS

Fabian Bonk, Paul Emmerich∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: fabian.bonk@tum.de, emmericp@net.in.tum.de

Abstract—MirageOS is a modern library operating system
written in the functional, memory-safe OCaml programming
language. Users of MirageOS write application code in
OCaml and link against various libraries provided by Mi-
rageOS. These include a complete network stack (Ethernet,
IP, TCP, UDP, TLS) written in pure OCaml as well as a
number of backends for receiving and transmitting packets.
We introduce some of MirageOS’ techniques for handling
raw memory. We detail two of the various networking
backends offered by MirageOS as well as a library used for
safe abstraction over raw memory. We additionally suggest
possible performance improvements in MirageOS. Finally
we compare MirageOS with ixy.ml, a small userspace driver
for ixgbe-compatible NICs written entirely in OCaml.

Index Terms—library operating system, unikernel, OCaml,
networking

1. Introduction

MirageOS introduces the concept of unikernels:
Application-specific, standalone, bootable virtual machine
images designed to run on top of a hypervisor (initially
Xen, nowadays also KVM) [1]. The hypervisor provides
hardware abstractions and isolation between unikernels.
Unikernels are configured at compile-time to target a
specific hypervisor and only include code to support their
exact required features. Unlike the typical VM deployment
that runs few services on top of an entire operating system
such as Linux (including Linux’s filesystems, drivers,
network stack, userspace, etc.), a unikernel only includes
the code it requires, e.g. a static webserver includes only a
network stack and its hardcoded webpages. Anything that
isn’t strictly required is not included in the final unikernel,
which leads to typical image sizes of a few MiB.

Figure 1 compares a typical VM deployment and a
unikernel deployment.

MirageOS provides these libraries for many backends
including a standard UNIX backend that runs the uniker-
nel as a normal process, a Xen backend, and a KVM
backend (via Solo5). These backends all provide specific
implementations for MirageOS’ interfaces, including Mi-
rageOS’ Mirage_net.S network interface. In the follow-
ing we analyse the KVM and Xen implementations of the
Mirage_net.S interface.

MirageOS is written in OCaml1, a multi-paradigm pro-
gramming language that supports functional, imperative
and object-oriented programming styles. OCaml features

1. https://ocaml.org/

Figure 1: Typical VM deployment (left) vs. Unikernel
deployment (right) [1]

module Main
(N : Mirage_net_lwt.S)
(C : Mirage_clock_lwt.PCLOCK) = struct
let start n c =
N.listen n (fun _ ->

let now, _ = C.now_d_ps c in
Logs.info
(fun f ->

f "got a packet at %d s!" now);
Lwt.return_unit)

end
Figure 2: Example unikernel

memory safety, static type checking with type inference,
garbage collection, and an optimizing native code com-
piler with support for multiple architectures. Real World
OCaml [2] provides a good introduction to OCaml.

MirageOS users write their applications as OCaml
functors. A functor is an OCaml module that is param-
eterized over other OCaml modules. In MirageOS’ case
the parameters are modules that implement functionality
that is commonly provided by operating systems (network
stack, file sytems, clocks, etc.).

Figure 2 shows a unikernel that simply prints a log
message whenever it receives a packet. It is parameterized
over a network interface (N) and a POSIX clock (C). At
compile-time specific implementations for these modules
must be chosen. The available choices depend on the
runtime environment, i.e. which hypervisor or host OS
will be used.

Section 2 introduces MirageOS’ memory handling
libraries. Section 3 explains MirageOS’ network interface
abstractions as well as two specific implementations of

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

47 doi: 10.2313/NET-2019-06-1_10

MirageOS network interfaces. Section 4 suggests some
candidate performance improvements for MirageOS’ net-
work interface implementations. Finally section 5 com-
pares MirageOS’ network interface with ixy.ml, a network
driver written in OCaml.

2. MirageOS Memory Handling

MirageOS needs to communicate with hypervisors
using shared memory. Since OCaml natively only has
limited support for accessing raw memory, MirageOS
provides two libraries to handle page-aligned allocation
and access in a safe way.

2.1. io-page

MirageOS provides io-page [4], a library for allocating
page-aligned memory. io-page supports both UNIX and
Xen backends (as well as Windows, though MirageOS
itself doesn’t support Windows). On Xen it uses Mini-OS’
[5] _xmalloc() memory allocator. Mini-OS is a small
kernel developed by the Xen project. MirageOS uses parts
of it for CPU initialization, console output and mem-
ory allocation.2 On other platforms (besides Windows)
posix_memalign() is used for allocation.

2.2. cstruct

MirageOS uses a small wrapper library around C-like
structures called cstruct [3] to facilitate safe and easy
access to raw memory blocks. This library is split into
the core cstruct library that manages the raw memory as
well as a preprocessor called ppx_cstruct and the UNIX-
specific library cstruct-unix.

2.2.1. cstruct. The main cstruct library defines an OCaml
type Cstruct.t (referred to as cstruct from now on) that
stores a reference to an OCaml Bigarray (which in turn
references a raw memory region) as well as the array’s
length and an optional offset into the array.

The library includes functions for reading from and
writing to these arrays in both little and big endian modes.
Additionally cstructs can be converted to various other
OCaml types such as string, bytes and S-expressions.
Reads and writes are bounds-checked at runtime to ensure
safety.

2.2.2. ppx_cstruct. ppx_cstruct is an OCaml ppx pre-
processor that automatically generates accessor functions
from C-like struct definitions (akin to LuaJIT’s ffi.cdef).

Programmers simply declare the fields and types of
struct and ppx_cstruct generates a number of functions
for reading and writing each field as well as functions
to hexdump an instance of the struct. Figures 3 and 4
show a UDP header definition and the values generated
by ppx_cstruct respectively.

Additionally C-like enums can also be declared.

2. https://mirage.io/blog/introducing-xen-minios-arm

[%%cstruct
type udp_header = {
sport : uint16;
dport : uint16;
length : uint16;
checksum : uint16

} [@@big_endian]
]

Figure 3: cstruct UDP header declaration

val sizeof_udp_header : int
val get_udp_header_sport :
Cstruct.t -> int

val set_udp_header_sport :
Cstruct.t -> int -> unit

val get_udp_header_dport :
Cstruct.t -> int

val set_udp_header_dport :
Cstruct.t -> int -> unit

val get_udp_header_length :
Cstruct.t -> int

val set_udp_header_length :
Cstruct.t -> int -> unit

val get_udp_header_checksum :
Cstruct.t -> int

val set_udp_header_checksum :
Cstruct.t -> int -> unit

val hexdump_udp_header_to_buffer :
Buffer.t -> Cstruct.t -> unit

val hexdump_udp_header :
Cstruct.t -> unit

Figure 4: Values generated by ppx_cstruct from decla-
ration in Figure 3

2.2.3. unix-cstruct. unix-cstruct wraps the mmap(2) sys-
tem call and creates a cstruct by memory-mapping a file
descriptor. The file descriptor is not mapped as shared
(MAP_SHARED) but as private (MAP_PRIVATE), therefore
writes to the cstruct are not reflected in the underlying
file.

3. MirageOS Network Interfaces

The Mirage_net [6] module defines the module sig-
nature (interface) MirageOS programs use to send and re-
ceive packets. At compile-time a specific implementation
that fulfills this signature must be chosen and linked into
the unikernel.

While Mirage_net.S is an abstraction over net-
work devices it itself leaves some implementation de-
tails abstract. All MirageOS backends actually implement
Mirage_net_lwt.S which uses the Lwt library [7] for
concurrency.

There are a number of different backends that imple-
ment this signature:

• mirage-net-unix [8]
• mirage-net-xen [9]
• mirage-net-macosx [10]
• mirage-net-flow [11]
• mirage-net-fd [12]
• mirage-net-solo5 [13]

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

48 doi: 10.2313/NET-2019-06-1_10

Sections 3.2 and 3.3 detail the hypervisor backends
mirage-net-xen and mirage-net-solo5 respectively.

MirageOS’ network stack (layer 2 and up) simply
calls into the network backend to communicate; the same
network stack can be run on any backend.

3.1. Mirage_net.S

A MirageOS network interface must support these
core functions:

• write transmits a single packet
• writev transmits a list of buffers concatenated into

a single packet; this is generally implemented by
concatenating the buffers into a freshly allocated,
larger buffer and then transmitting this buffer

• listen calls a specified handler function for every
received packet

The underlying implementation of the module signa-
ture may specify the type of packet buffers, asynchronous
I/O operations, device state, MAC addresses and alloca-
tion operations for new buffers.

In the case of Mirage_net_lwt.S packet buffers are
cstructs, I/O operations are Lwt promises and allocation
is done using MirageOS’ io-page library (see Section 2).

The Mirage_net.S signature also requires a number
of other functions such as disconnecting from a network
interface (interestingly connecting to an interface is not
required), retrieving the interface’s MAC address as well
as reading the interface’s receive and transmit statistics
(bytes/packets sent/received).

3.2. Xen

The Xen implementation of the Mirage_net_lwt.S
signature is written entirely in OCaml. It communicates
with Xen via the netfront/netback protocol3.

mirage-net-xen’s listen loop sleeps until an event is
fired on the event channel associated with the specified
network interface. Once an event is fired a new cstruct
is allocated for each received packet and the packet frag-
ments delivered by Xen are assembled into the cstruct.
MirageOS’ handler function is called for every packet.

When transmitting, packet data is copied into a shared
memory page and a reference to the page is stored in the
transmit ring.

Both receiving and transmitting packets requires a full
copy of the packet data from/to a shared page.

3.3. KVM

MirageOS’ KVM implementation is provided by
Solo5. Solo5 is an execution environment for unikernels. It
can be used to run MirageOS unikernels on Linux’s KVM
hypervisor. On Linux it can interface with both virtio and
TAP network interfaces, though virtio support is no longer
maintained.

3. https://xenbits.xen.org/gitweb/?p=xen.git;a=blob;f=xen/include/
public/io/netif.h

3.3.1. hvt. Solo5 provides a small hypervisor manager
called hvt (hardware virtualized tender). hvt sets up a
KVM virtual machine and runs a unikernel inside this
machine. hvt connects to a TAP interface on the host
operating system and forwards packets between unikernel
and host.

3.3.2. mirage-solo5 and mirage-net-solo5. A unikernel
interfaces with hvt via mirage-net-solo5, a small OCaml
wrapper around mirage-solo5 which in turn wraps hvt’s
hypercalls (hypervisor equivalent of a system call) and
makes them callable from OCaml. OCaml cannot directly
call C functions due to differing value representations.
mirage-solo5 converts OCaml values to their C represen-
tation and vice versa.

mirage-net-solo5 implements MirageOS’
Mirage_net_lwt.S signature.

The listen function repeatedly calls
solo5_net_read function. If a packet has been
received, it is written into a freshly allocated cstruct
before MirageOS’ handler function is applied to the
buffer. If nothing has been received, the thread blocks
until an I/O event is signaled by hvt. Note that the I/O
event need not be a received packet; Solo5 currently
offers no mechanism for waiting for specific I/O events.

mirage-net-solo5’s write function calls
solo5_net_write.

Both solo5_net_read and solo5_net_write simply
call hvt’s hypercall_netread and hypercall_netwrite
which read from/write to hvt’s TAP device.

4. Possible performance improvements

We identified some possible peroformance improve-
ments for MirageOS’ network interfaces.

4.1. Avoiding memory copies

MirageOS’ Xen networking backend copies every sin-
gle received and sent packet buffer to and from cstructs.
Solo5 requires full copies to and from the host’s ker-
nelspace when sending and receiving packets respectively.
Copying every packet’s payload incurs performance penal-
ties proportional to each packet’s size, though it allows
users to transmit any cstruct and keep any received cstruct
forever. Additionally cstructs can be collected by OCaml’s
garbage collector; there is never any need for manual
memory management.

Implementing "zero-copy" packet buffers will likely
require modifications to MirageOS’ APIs and its network
stack.

4.2. Batching

MirageOS handles packets individually. Handling
batches of packets could reduce per-packet overhead.
Batching is a common pattern in high-performance net-
working toolkits such as the DPDK [14], Snabb [15] or
ixy and its derivatives [16] (see Section 5). Implementing
packet batching requires a modifications to MirageOS’
Mirage_net.S signature and all of MirageOS’ networking
backends.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

49 doi: 10.2313/NET-2019-06-1_10

4.3. Parallelism

MirageOS unikernels can only be run on a single
CPU core at once. This limitation is imposed by OCaml’s
runtime. Once the ocaml-multicore [17] project reaches
maturity, it may be possible for the Lwt library to upgrade
its scheduler. Once Lwt supports parallelism it should
require little effort to run MirageOS unikernels on mul-
tiple CPU cores, given that MirageOS’ interfaces already
support concurrency.

5. Comparison with ixy.ml

ixy.ml [18] is a userspace driver for ixgbe-compatible
NICs (Intel 82599) written entirely in OCaml and target-
ing Linux machines. ixy.ml also makes use of cstruct.

5.1. Memory

ixy.ml does not use OCaml lists but rather stores
all data elements in arrays. Arrays in OCaml are fast to
traverse, and are mutable (i.e. can be modified in-place).
Mutable state requires careful programming to prevent
race conditions. Functional programming languages gen-
erally favor immutable data structures.

5.2. Packet buffers

ixy.ml uses Linux’s hugetlbfs for memory allocation.
It provides the Ixy.Memory module that allows users to
create fixed size memory pools from which packet buffers
can be allocated. These packet buffers contain cstructs that
wrap part of a huge page (2 MiB page). A user accesses
packet data directly in the hugepage through the cstruct
library. This memory is ready for DMA (Direct Memory
Access) and can immediately be read and written by the
NIC.

ixy.ml requires explicit allocation and deallocation of
packet buffers by the user due to the fact that packet data
must be written to DMA memory. Packet data is never
copied between buffers. Use-after-free cannot be detected,
though should be avoided.

mirage-net-xen requires copying of packet data for
both receive and transmit; users never directly write to
the buffer read by Xen’s backend driver and vice versa.
mirage-net-solo5 triggers a copy of packet data between
userspace and kernelspace when calling read/write on
the TAP device’s file descriptor.

Since packet data is always copied in MirageOS, the
user may hold on to previously sent or received buffers.
Therefore MirageOS provides more memory-safety guar-
antees than ixy.ml.

5.3. Receive/Transmit

All Mirage_net.S implementations only transmit and
receive packets one at a time. ixy.ml implements batching;
multiple packets are sent/received at once.

5.4. API

MirageOS generally implements I/O asynchronously.
Most function calls that may block can be run in the
background.

ixy.ml’s receive and transmit functions do block
though they never wait (unless explicitly told to and the
NIC cannot keep up with the user program’s transmit
speed). Given that the NIC operates asynchronously there
is never any need to wait. If there is not enough room in
ixy.ml’s transmit queue(s), any unsent packets are simply
returned to the user program.

MirageOS’ network functions don’t require any man-
ual memory management by the user. Any cstruct can be
sent as a packet (assuming its size is within the MTU).

Figure 5 shows an implementation of a bidirectional
layer 2 forwarder using ixy.ml’s API. Initialization code
has been omitted. See app/fwd.ml4 in ixy.ml’s repository
for a full implementation.

Figure 6 shows an implementation of a bidirectional
layer 2 forwarder using MirageOS’ API. Initialization
code has been omitted and errors will be ignored.

let forward rx_dev tx_dev =
(⁎ receive a batch of packets ⁎)
let rx = Ixy.rx_batch rx_dev 0 in
(⁎ transmit all packets ⁎)
Ixy.tx_batch_busy_wait tx_dev 0 rx

let () =
let a, b = init_devs () in
while true do
forward a b;
forward b a

done
Figure 5: ixy.ml layer 2 forwarder

open Lwt.Infix

module Main
(N_a : Mirage_net_lwt.S)
(N_b : Mirage_net_lwt.S) = struct
let start net_a net_b =
Lwt.join
[N_a.listen

net_a
(fun frame ->
N_b.write net_b frame >|= ignore)

>|= ignore;
N_b.listen
net_b
(fun frame ->
N_a.write net_a frame >|= ignore)

>|= ignore;
]

end
Figure 6: MirageOS layer 2 forwarder

4. https://github.com/ixy-languages/ixy.ml/blob/master/app/fwd.ml

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

50 doi: 10.2313/NET-2019-06-1_10

References

[1] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T.
Gazagnaire, S. Smith, S. Hand, J. Crowcroft, “Unikernels: Library
Operating Systems for the Cloud,” SIGPLAN Notices, vol. 48, pp.
461-472, March 2013

[2] Y. Minsky, A. Madhavapeddy, J. Hickey, “Real World OCaml,”,
https://v1.realworldocaml.org/, 2013

[3] MirageOS project, “ocaml-cstruct,” https://github.com/mirage/
ocaml-cstruct, 2019

[4] MirageOS project, “io-page,” https://github.com/mirage/io-page,
2019

[5] Xen Project, “Mini-OS,” https://wiki.xen.org/wiki/Mini-OS, 2019

[6] MirageOS project, “mirage-net,”, https://github.com/mirage/
mirage-net, 2019

[7] Ocsigen Project, “Lwt,” https://ocsigen.org/lwt/4.1.0/manual/
manual, 2019

[8] MirageOS project, “mirage-net-unix,”, https://github.com/mirage/
mirage-net-unix, 2019

[9] MirageOS project, “mirage-net-xen,”, https://github.com/mirage/
mirage-net-xen, 2019

[10] MirageOS project, “mirage-net-macosx,”, https://github.com/
mirage/mirage-net-macosx, 2019

[11] MirageOS project, “mirage-net-flow,”, https://github.com/mirage/
mirage-net-flow, 2019

[12] MirageOS project, “mirage-net-fd,”, https://github.com/mirage/
mirage-net-fd, 2019

[13] MirageOS project, “mirage-net-solo5,”, https://github.com/mirage/
mirage-net-solo5, 2019

[14] Linux Foundation, “Data Plane Development Kit,” https://dpdk.
org/, 2013

[15] Luke Gorrie et al., “Snabb: Simple and fast packet networking,”
https://github.com/snabbco/snabb, 2012

[16] Paul Emmerich et al., “ixy-languages”, https://github.com/
ixy-languages/ixy-languages, 2018

[17] OCaml Labs, “Multicore OCaml,” http://ocamllabs.io/doc/
multicore.html, 2017

[18] Fabian Bonk, “ixy.ml,” https://github.com/ixy-languages/ixy.ml,
2018

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

51 doi: 10.2313/NET-2019-06-1_10

