
Open vSwitch Configuration for Separation of KVM/libvirt VMs

Jonas Andre, Johannes Naab∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: andre@in.tum.de, naab@net.in.tum.de

Abstract—Virtual machines are very useful tools to provide
configured computers for a lecture. These machines are
usually connected via a layer two network to the Internet.
As the virtual machines cannot be trusted because they
can send arbitrary frames, the network and other virtual
machines need to be protected of network attacks. This
paper presents a solution and implementation to improve
the security of libvirt virtual machines connected via an
Open vSwitch. The outcome is an Open Flow implementation
which prevents virtual machines from attacks like spoofing,
Denial of Service, and Man in the Middle attacks.

Index Terms—Open vSwitch, libvirt, Open Flow, virtual
machine security, layer 2 attacks

1. Introduction

Lectures like Grundlagen Rechnernetze und Verteilte
Systeme and Advanced Computer Networks at TUM pro-
vide virtual machines (VMs) to their students. On those
machines they perform practical experiments. Using VMs
is comfortable as it provides each student the same con-
figuration where the experiments work out of the box.
For the experiments, the machines need to be connected
to the Internet. This is done via a single layer two network
connecting all VMs with their gateway. As all machines
are within a single layer two network, there are attacks
which could not only harm the VM of a student, but all
VMs within the network.
This work deals with security problems of multiple VMs
within one layer two network. The paper specializes on
VMs virtualized by the Linux KVM module, configured
by using the libvirt API, where the network is managed
via the Open vSwitch module.
As discovered in previously running environments with
900 VMs, the CPU workload should be addressed. ARP
requests need to be processed at all machines parallel.
With this number of VMs and a high number of ARP
requests, the CPU load of the host grew significantly. A
solution to prevent ARP broadcasting is also presented.
The paper is structured as follows. In Section 2, popular
(layer two) attacks which are relevant for the used scenario
are considered. Requirements to prohibit those attacks are
determined. Afterwards, the section describes the CPU
workload problem related to the network. In Section 3, the
current implementation is described and evaluated. The
new implementation for the libvirt/KVM scenario with
Open vSwitch is described in Section 4. The conlusion
in Section 5 evaluates the implemented rules and shows
investigations for future work.

2. Security Issues in Layer 2 Networks

In this section, relevant security issues within layer
two networks are explained. A short description of pos-
sible attacks is given. It also shows the theoretical possi-
bilities to prevent those attacks. Authenticity is not given
for sender and receiver addresses within layer 2 network
frames. Consequently, there are several spoofing attacks
on which a VM can send with fake IP and MAC addresses.

MAC Spoofing. If a VM wants to hide what packets it is
sending, it can use MAC spoofing. In this attack the sender
machine does not send an Ethernet frame with the source
MAC of its own interface. Instead, a fake MAC address
or the address of another machine within the network is
used. With this it is not possible anymore to track the
sender of the frame. To be able to determine the true
sender of a frame we must ensure that the VMs can only
send frames with their own (predefined) MAC address. To
prevent MAC Spoofing the following requirement needs
to be fulfilled.

Req.1 VMs can only send Ethernet frames from their
configured MAC address

IP Spoofing. Another spoofing attack is IP/IPv6 spoofing.
Here, the attacker uses a fake IP address to hide its identity
to hosts outside of this layer two network. The problem
is that attacks on hosts outside of the layer two network
identify the attacker by its IP address. This address can be
tracked back to the IP network of the VMs. If the address
was spoofed, it is not possible to find the attacker within
the network. This should be possible, as the responsible
VM for such an attack needs to be found. To achieve this
two requirements need to be met:

Req.2 VMs can only send IPv4 frames from their
configured IPv4 address

Req.3 VMs can only send IPv6 messages from their
configured IPv6 addresses

ARP Spoofing. A well known attack which may result
in a DoS or a MitM is the so called ARP spoofing [1].
ARP is designed to find the MAC address of a machine
within a layer two network by its IPv4 address [2]. On an
ARP request resolving a specific IP address the machine
with the configured IP address should answer with a reply
containing the MAC address of its interface on which the
IP address is configured. However, any machine could
answer on an ARP request. If a machine answers to an
ARP request which is not meant for it, future IP packets
will be routed to the spoofing machine instead to its

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

43 doi: 10.2313/NET-2019-06-1_09

correct destination. The following requirement protects the
network from APR spoofing:

Req.4 VMs can only answer with ARP requests con-
taining their configured IP address

IPv6 Router Spoofing. A Router Solicitation is a message
that is sent from a host to find routers within its layer
two network [3]. Listening routers answer with router
advertisements which include information about the net-
work configuration. VMs can manipulate the interface
configuration of other VMs. This is possible by sending
Router Advertisements by themselves. As this can lead
to DoS and MitM attacks [4], the messages must be
forbidden.

Req.5 VMs are not allowed to send Router Adver-
tisements

Neighbor Discovery Spoofing. In IPv6 NDP also takes
the place of ARP in IPv4. Spoofing is here possible in the
same way as it is described before. To prevent spoofing,
the machines are only allowed to answer to Neighbor So-
licitations meant for them. This also addresses a problem
with Stateless Address Auto Configuration (SLAAC) [5].
With SLAAC IPv6 interfaces generate their own IP ad-
dress. In our setup SLAAC is used to configure link local
IP addresses. One step is to check whether the IP address
generated is already used. For this, a Duplicate Address
Detection (DAD) message is sent. This is a Neighbor
Solicitation message for the generated address. If no one
answers to this message, the address can be assigned to the
interface. A typical attack in DAD is a machine answering
to these DAD messages although it is not configured
with this address. This leads to a DoS as the VM cannot
generate an IPv6 address.

Req.6 VMs can only send Neighbor Advertisements
containing one of their configured IPv6 address

ICMP Redirect. Another possible attack is the abuse of
the Redirect message [4]. This message is usually used
to inform clients that a router which received the packet
knows a better route to the destination IP. By sending such
messages, the VMs can be manipulated to send packets
to other VMs instead of the gateway.

Req.7 VMs are not allowed to send the Redirect
messages

Broadcast Flooding. As ARP requests are broadcasted
in Ethernet networks [2], every VM gets all ARP re-
quest. Every machine needs to process the request to
decide whether it needs to response to the request or not.
Hundreds of VMs processing ARP requests at the same
time leads to high CPU consumption. The reason for the
high CPU consumption lies in the Spectre and Meltdown
security fixes. As the VMs have to be loaded and unloaded
every time to prevent reading uncleaned memory of the
other machines. This needs to be done for every incoming
ARP request. The workload for loading and unloading the
machines is high. There should be a solution such that the
ARP requests do not need to be sent to all machines. This
is possible because all IP addresses of the virtual machines
are known in advance.

Req.8 Prevent ARP broadcasting by sending ARP
requests directly to the correct machine

DHCP. The IP addresses of the VMs are known in ad-
vance. Nevertheless, a DHCP server is useful to assign IP
addresses to the machines. An attacker can fake a DHCP
server on a virtual machine by answering packets destined
for the original DHCP server or sending DHCP offers to
other clients [6]. This should be denied as this may lead to
DoS or MitM for other VMs. DHCP server messages can
be dropped by filtering on the DHCP server UDP source
port.

Req.9 VMs are not allowed to send DHCP server
messages

3. Current State

In this section, the setup of the network connecting
the VMs is described. It also shows how the machines
are created and configured as this is the basis on which
the countermeasures against network attacks can be pig-
gybacked. At the end of this section the defenses installed
currently are evaluated.
There is one Open vSwitch which connects all VMs with
the gateway to the Internet. The Open vSwitch with name
vm-switch is shown in Figure 1. Traffic from and to the

vm-switch

upstream

vm001 vm002 vm003 vm004 vm005 vm006 vm007 vm008

Figure 1: The switch and its ports

Internet goes through interface upstream. All VMs are
connected via an interface vmXXX where XXX is the number
of the VM.
The VMs are created via the command virt install.
A script called create-student.sh generates one or
multiple VMs for a user. To be able to access the generated
information, name and address(es) of the interface(s) are
encoded within the metadata option of the virt install
command.
The necessary security rules are created via Open Flow. A
script for generating these rules is triggered by a QEMU
hook. QEMU is the machine emulator on which KVM
is based on. On every start of a VM the – within the
virt install defined – metadata is parsed. With this
information the script finds the port identifier of the Open
vSwitch on which the VM is connected to vm-switch.
The MAC and IPv4 address of the interface are also
extracted from the metadata file. With information about
port ID, MAC address, and IPv4 address, Open Flow
rules are installed on the switch. It is intended to create
rules to prevent MAC and ARP spoofing. The following
rules are created with the ovs-ofctl create-flow command
within the QEMU hook. To provide better readability, the
in_port=$port which is part of every rule is omitted.
1 dl_src=$mac priority =40 action=normal
2 dl_src =⁎ priority =39 action=drop
3 arp arp_sha=$mac nw_src=$ip4 priority =40

↪→action=normal
4 arp arp_sha=$mac nw_src =⁎ priority =39 action=

↪→drop

Listing 1: Installed rules

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

44 doi: 10.2313/NET-2019-06-1_09

The rules shown in Listing 1 are written in Open Flow
syntax. They are intended to work the following way:

• Allow frames from the given port where the MAC
address matches the configured MAC address of
the machine

• Drop all frames with another MAC address
• If the packet is an ARP response, allow only

responses of the configured IP and MAC address
• Drop all other ARP responses

During the implementation of security features (explained
in Section 4) within this work, it was detected that these
rules do not work in the intended way. The problem
lies in the first rule. As it has the same priority as rule
number three, it is not deterministic which of those rules
is considered at first [7]. Therefore, if an ARP response
with the configured source MAC address and a spoofed IP
address is sent the action depends on the chosen rule. If the
third rule is used, everything is fine. In case the first rule is
used the switch determines a correct sender MAC address
and performs the action normal. This means the packet is
processed like it is a normal unconfigured switch, i.e., it
is sent to the given destination. With this ARP spoofing is
possible. An attacker using this ARP spoofing attack can
act as a Man in the Middle for packets which are destined
for the spoofed IP address. This is the case as all packets
are first sent to the attacker because the sender expects
the IP address at the attacker.
At the moment the following issues are not considered

• Defenses against attacks based on IPv6
• DHCP attacks
• DoS by spamming broadcasts
• DoS by ARP request which may lead to CPU

overconsumption as all machines have to process
the packets

• Cleanup of old rules when a VM is destroyed

4. Implementation

This section is about how the issues addressed in
Section 2 are implemented. The changes in the script for
creating the students VMs and how the security relevant
rules are installed are pointed out.
The script for creating the VMs was updated to handle
different new functionalities. Configured IPv6 addresses
of the machines are now also written to the metadata
of the machines. This is necessary for the automatic
creation of security rules.
These rules are created via a hook which is triggered by
the QEMU creation of the VMs. It runs during step start
and phase begin. The basic functionality of the script
is to create new security rules for each VM and delete
those rules when the machine is deleted or shut down.
To implement the security rule in the Open vSwitch, the
ovs-ofctl add flows command is used.
When the script is started, the data written to the
metadata file is parsed. As only the information about
the different interfaces MAC, IPv4, and IPv6 global
unique addresses are given, the link local addresses of the
interfaces need to be derived. With the specified interface
name in the metadata of the VM, the Open vSwitch port
ID of the machines gateway interface can be found. This

table0
MAC spoof
ARP

table1
IP spoof
ARP spoof
DHCP spoof

table2
Direct ARP

table3
ICMP spoof

Figure 2: The Open Flow tables of vm-switch

port ID is necessary to generate input-dependent flow
rules on the switch. For convenience and an easy way to
delete the created rules, rules are tagged with an unique
identifier (called cookie) of the machines. This is the
MAC address of the interface connecting the VM to the
switch.
Open vSwitch manages its OpenFlow rules with different
tables. Each table consists of several rules with different
priority. A table needs to have an entry with priority
0. This rule is the default rule (table miss rule). In an
Open vSwitch with default configuration there exists only
one table called table0. This has only the default rule
with action normal which indicates the switch should
handle the frame like a typical switch. Beside normal
there exist more actions like drop (dropping the frame),
goto_table:X, where X is the id of the table in which
the frame should be tested next, and X which sends the
frame to port ID X [7].
The implemented rule set is defined in four tables. An
overview of the structure can be seen in Figure 2. It
shows which table handles the specific requirements.

The following source code shows the installed rules
of the different tables. The cookie is not represented
below for providing better readability. If no in_port is
specified within a rule, it means this rule is only applied
on the incoming port where the VM is connected to. The
entry table table0 prevents MAC spoofing and initiates
the ARP optimization.

1 dl_src=$mac priority =40 action=goto_table :1
2 priority =39 action=drop
3 in_port =⁎ arp priority =1 action=goto_table :2
4 in_port =⁎ priority =0 action=normal

Listing 2: Installed rules in table0

The first rule of Listing 2 defines that frames coming
from the connected machine which are sent with the
correct MAC address are processed further in table1. The
next rule (it has lower priority) drops all packets coming
to the switch which are not sent from the defined MAC
address. It matches against all MAC addresses. However,
the correct address is already tested in the previous rule.
With these two rules, Req. 1 as specified in Section 2
is met. All packets that do not enter the switch from a
virtual machine (interface upstream) are first matched
against the third rule. This rule does not specify an
in_port. It tests if the frame is an ARP packet. Then
it is further processed in the ARP optimization table
(table2). All other packets from upstream match against
the table miss entry which defines to process the frame
with action normal.

1 arp arp_sha=$mac arp_spa=$ip4 priority =40
↪→action=table2

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

45 doi: 10.2313/NET-2019-06-1_09

2 udp udp_src =67 priority =39 action=drop
3 ip nw_src=$ip4 priority =38 action=normal
4 icmp6 ipv6_src=$ip6 priority =37 action=table3
5 icmp6 ipv6_src=$eui64 priority =36 action=

↪→table3
6 icmp6 ipv6_src =:: priority =35 action=table3
7 udp6 udp_src =547 priority =34 action=drop
8 ipv6 ipv6_src=$ip6 priority =33 action=normal
9 ipv6 ipv6_src=$eui64 priority =32 action=

↪→normal
10 in_port =⁎ priority =0 action=drop

Listing 3: Installed rules table1

In the second table, ARP spoofing, DHCP server spoofing,
and IP(v6) spoofing are considered. The rule with highest
priority (in Line 1 of Listing 3) only allows ARP requests
and responses with non-spoofed addresses (Req. 4).
These frames are also (like the ARP rule in table0) sent
to table2 which does ARP optimization. Rules number
two and seven prevent DHCP server messages from VMs
by dropping all packets that are sent from the DHCP
server UDP port [8], [9]. This prevents the machines from
faking a DHCP server (Req. 9). All other IPv4 packets
are allowed by action normal in the next rule if the source
address matches the configured one (Req. 2). The next
three flows handle ICMPv6 spoofing. It is only allowed to
send ICMP messages from one of its own IPv6 addresses
(Req. 6). Additionally, the unspecified address needs to
be allowed to permit Duplicate Address Detection. All
these ICMPv6 messages are sent to table3 to handle
more ICMP security issues. Rules eight and nine allow
all other IPv6 packets that leave the virtual machine
with the correct link local or global IPv6 address (Req. 3).

1 in_port =⁎ arp arp_op =1 arp_tpa=$ip4
↪→priority =40 action=$port

2 in_port =1 arp arp_op =1 priority =2 action=drop
3 in_port =⁎ arp arp_op =1 priority =1 action =1
4 in_port =⁎ priority =0 action=normal

Listing 4: Installed rules table2

Now the rules of the ARP optimization table (table2)
are explained. The first rule within Listing 4 defines
that all ARP requests that are destined for any of the
virtual machines are not broadcasted like ARP is usually
done, but they are only sent directly to the corresponding
machine (here no in_port is considered). Such a rule is
created for every VM because of the VM’s IP address
within it. ARP request which come from the interface
upstream, i.e., the Internet and were not matched against
the first rule are dropped as these are destined to IP
addresses which are not present within this network. All
other ARP requests coming from one of the VMs are
sent to upstream. All other ARP packets are processed
the normal way (by defining the table miss with action
normal). With this table Req. 8 is met.

1 icmp_type =134 priority =40 action=drop
2 icmp_type =136 nd_target=$ip6 priority =39

↪→action=normal
3 icmp_type =136 nd_target=$eui64 priority =38

↪→action=normal
4 icmp_type =136 priority =37 action=drop
5 icmp_type =137 priority =36 action=drop
6 in_port =⁎ priority =0 action=normal

Listing 5: Installed rules table3

The fourth table represented in Listing 5 handles spoofing
within ICMPv6. First, all router advertisements (ICMP
type 134) sent from the VMs are dropped (Req. 5). This
prevents the machines from faking to be a router to others
in the network. The next three rules only allow sending
Neighbor Advertisement messages from their own IPv6
addresses. All other Neighbor Advertisements are dropped
(Req. 6). Additionally, all ICMPv6 Redirect messages are
forbidden as this may lead to DoS attacks. With this rule,
Req. 7 is also fulfilled.
In the qemu hooks file, the shutdown of the machines is
also handled. The deletion of the rules is handled during
step stopped and phase end. Here, all rules affecting the
VM are deleted. This is done by matching the cookie of
the flows to the MAC address of the VM.

5. Conclusion and Future Work

With the outcome of this paper, the network connect-
ing the VMs is more secure. The implementation han-
dles MAC, IPv4, IPv6, APR, NDP, and DHCP spoofing.
Furthermore, the optimization of ARP requests aims for
reducing the CPU load of the host system.
As the number of different layer two network attacks
grows and new attacks are created over time, more se-
curity features need to be added in future. Currently, the
problem of tiny IPv6 fragments is not addressed yet [10].
Additionally, the performance of checking the OpenFlow
rules can be evaluated in future. An interesting point is
whether the checks can be more performant if other strate-
gies (blacklisting, whiteliting) are used. As multicasts and
broadcasts can lead to a network overload, a meaningful
prevention of this should be explored. A first idea would
be rate limiting of the VMs when sending to much traffic
into the network. Whether this can be realised is part of
future work.

References

[1] S. Whalen, An Introduction to ARP Spoofing. Chocobospore, 2001.

[2] D. Plummer, “An Ethernet Address Resolution Protocol or Con-
verting Network Protocol Address to 48.bit Ethernet Address for
Transmissing on Ethernet Hardware,” RFC 826, 1982.

[3] T. Narten, “Neighbor Discovery for IP version 6 (IPv6),” RFC
4861, 2007.

[4] A. Pilihanto, A Complete Guide on IPv6 Attack and Defense. SANS
Institute, 2011. Available at https://www.sans.org/reading-room/
whitepapers/detection/complete-guide-ipv6-attack-defense-33904.

[5] S. Thomson, “IPv6 Stateless Address Autoconfiguration,” RFC
4862, 2007.

[6] Y. Bhaiji, Understanding, Preventing, and Defending
Against Layer 2 Attacks. Cisco, 2007. Available at
https://www.cisco.com/c/dam/global/en_ae/assets/exposaudi2009/
assets/docs/layer2-attacks-and-mitigation-t.pdf.

[7] Open Networking Foundation, OpenFlow Switch Specification,
2012. Available at https://www.opennetworking.org/wp-content/
uploads/2013/04/openflow-spec-v1.3.1.pdf.

[8] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131,
1997.

[9] T. Mrugalski, “Dynamic Host Configuration Protocol for IPv6
(DHCPv6),” RFC 8415, 2018.

[10] A. Atlasis, Attacking IPv6 Implementation Using Fragmenta-
tion. Center for Strategic Cyberspace + Security Science,
2012. Available at https://media.blackhat.com/bh-eu-12/Atlasis/
bh-eu-12-Atlasis-Attacking_IPv6-WP.pdf.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

46 doi: 10.2313/NET-2019-06-1_09

