Measuring TCP Performance Metrics with Bro

Leonhard Stemplinger, Simon Bauer*
*Chair of Network Architectures and Services, Department of Informatics
Technical University of Munich, Germany
Email: leonhard.stemplinger @tum.de, bauersi @net.in.tum.de

Abstract—The Transmission Control Protocol (TCP) is one
of the most widely used networking protocols. The ability to
accurately measure the performance of a TCP connection is
important for identifying network problems. In this paper,
we present an implementation of three TCP performance
metrics: the inter-arrival time of acknowledgements, the
time-series of retransmissions and the retransmission score.
We compute these metrics using the Bro network analysis
framework.

Index Terms—tcp, bro, retransmissions, network monitoring

1. Introduction

TCP is the most common transport layer protocol,
with over 90% of internet traffic transmitted over TCP
[14]. This makes analysing TCP connections important
for network operators, as performance problems could
impact the majority of users. One indicator of possible
network problems is a high rate of retransmissions, as this
indicates a high rate of packet loss. We present Bro scripts
to measure several TCP performance metrics for both live
connections and trace files. These metrics are the inter-
arrival times of acknowlegments, a time-series of retrans-
missions, and the retransmission rate. They were defined
by Siekinnen et al. [2] as part of a root cause analysis
framework. We extend their work by describing a possible
implementation in detail. Additionaly, our implemetation
is able to analyse live traffic, while [2] is limited to trace
files.

In this paper, we will first summarize important as-
pects of the TCP protocol and the Bro network monitor
in Section 2. We continue by defining the TCP perfomance
metrics implemented for this work in Section 3 and listing
other works dealing with related topics in Section 4. In
Section 5 we describe an implementation of these metrics
in Bro scripts and present the results computed by the
scripts in a test in Section 6. We show possibilities for
further work in Section 7 and provide access to the Bro
scripts and conclude the paper with Section 8.

2. Technical Background

2.1. TCP Protocol

TCP is a transport layer protocol. It relies on the
underlying Internet Protocol to transfer packets to their
destination. TCP aims to provide a reliable connection

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

39

0 1516 31

Source Port Destination Port

Sequence Number

Acknowlegment Number

Data
Offset

P(R[S|F
S|Y|I
T|N

Reserved ‘Window

o X!

A
C
K

T 0

Checksum Urgent Pointer

Options (variable)

Figure 1. The TCP header [9]

even over unreliable network infrastructure [9]. To achieve
this, a TCP connection must be established using a three-
way-handshake, and both endpoints must keep status
information over the lifetime of the connection. Addi-
tionally, damaged or lost packets must be detected and
retransmitted.

The most relevant part of TCP for this paper is
the acknowledgement mechanism. TCP packets carry a
sequence number, which is incremented for every byte
sent by an endpoint. The receiver acknowledges correctly
received data by incrementing the responses acknowl-
edgment number. A packet with set ACK flag and an
acknowledgment number n indicates that all data up to
and including sequence number n — 1 has been received
by the connection partner.

Using this mechanism, TCP attempts to detect and
retransmit lost packets. Generally, TCP will assume a
packet was lost if it is not acknowledged within a certain
timespan, or when receiving multiple acknowlegments for
previous packets. Details vary between TCP implementa-
tions [6]. If a TCP endpoint receives non-contiguous data,
meaning data has been lost, but a later packet was received
successfully, the selective acknowledgment (SACK) op-
tion can be used to notify the sender of the received data
and avoid unneccessary retransmissions [10] [12].

2.2. Bro

Bro [8] is a free, open source network monitoring tool.
It was originally published by Paxson in 1999 [1]. Bro can
process both trace files and live traffic.

Bro is divided into two main components. The Event
Engine generates events based on the observed network

doi: 10.2313/NET-2019-06-1 08

activity. The Policy Script Interpreter executes scripts in
response to the generated events. Bro scripts are written
in the Bro scripting language. Each Bro script defines a
number of event handlers that are called whenever the
corresponding event is triggered. While Bro comes with
a large library of scripts for traffic analysis, it can also be
extended with custom scripts.

We mainly chose Bro because the abstraction provided
by the event system made development of our traffic
analysis scripts easier and faster. Bro scripts do not need
to perform low level traffic processing such as separating
TCP and non-TCP traffic, detecting the TCP connection
a packet belongs to or extracting header information from
raw packets, as this is handled by the event engine.
Additionally they work on live traffic as well as trace files
without modifications.

3. Metrics

This paper describes a solution to measure three of
the metrics defined in [2] using Bro scripts. This section
describes the selected metrics. All metrics are measured
separately for each direction of a TCP connection.

3.1. Inter-Arrival Times of Acknowledgements

Each endpoint of a TCP connection acknowleges cor-
rectly received packets. For every acknowlegement, we
record its’ arrival time, the number of acknowledged bytes
and the interval since the last observed acknowledgment.
Packets that do not advance the acknowledgement number
are not recorded. The inter-arrival times can be used to
estimate the capacity of the connections’ network path

(2].
3.2. Retransmission Metrics

TCP detects lost packets by monitoring acknowledg-
ments and retransmits those packets. For this paper, re-
transmitted packets are defined as packets with a sequence
number lower than or equal to the highest previous se-
quence number. The definition in [2] additionally demands
an IPID higher than all previous packets to eliminate
false positives caused by out of order packets. However
the IPv4 specification has since been updated to allow
arbitrary ID values for non-fragmented packets [3]. Fur-
thermore, non-fragmented IPv6 packets do not carry any
ID value [16]. Packets without a payload (i.e. pure ACKs)
are not included in the analysis, as they do not advance
the sequence number.

We measure two metrics to analyse retransmissions.
The timestamp and payload size of each retransmitted
packet are recorded to create a time-series of retransmis-
sions. Additionaly, we keep track of the amount of data
retransmitted, and the total amount of data transmitted.
The ratio of retransmitted data to total data is the re-
transmission score. A high retransmission score generally
correlates to a high rate of packet loss. If this occurs
frequently, it can indicate a network problem.

4. Related work

The TCP performance metrics implemented for this
paper are a subset of those described by Siekinnen et

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

40

al. [2]. They define several other metrics, as well as a
procedure to determine limiting factors for a connections’
throughput based on these metrics. However, they do not
provide implementation details.

There have been many other works studying TCP
retransmissions. Examples include Pentikousis et als. [5]
analysis of aggregate retransmission rates among a large
number of connections. Rewaskar et al. [6] and Jaiswal
et al. [7] present methodologies to classify out-of-order
packets into retransmissions and reordered packets.

The TCPRS Bro plugin by Swaro [13] extends Bro
with additional events for reordered and retransmitted
packets. While the implementation for this paper is written
entirely as Bro scripts, TCPRS adds a new analyzer to the
Bro event engine.

Most publications related to Bro deal with network
security topics, such as intrusion detection, and not net-
work performance. One exception is Sargent and Allmans
analysis [15] of the limiting factors for very high bandwith
(1 Gb/s) residential fiber connections. They report that
current TCP implementations do not use such a connection
efficiently, as receiver window sizes limit data transmis-
sion to a far lower rate.

5. Implementation

This section describes the Bro scripts that implement
the metrics described above.

5.1. Common components

This section describes some patterns that occur in both
scripts.

5.1.1. State Information. Both scripts need to keep infor-
mation about previous packets observed in each direction
of each connection. For this purpose, both scripts include
two tables to store this information, one for each direction
of a connection. A Bro script table is a key-value store.
In this case, the keys are the unique IDs (uids) generated
by bro for each connection, and the values are records, a
data type similar to C structs, that hold information about
the connection.

Records are added when observing a packet that does
not belong to a previous connection. They are deleted
when Bro deletes the connection by handling the con-
nection_state_remove event.

5.1.2. Analyzing new TCP packets. To monitor TCP
connections, both scripts register a handler for the
tcp_packet event, which is triggered for every TCP packet
. The handler receives a connection record, a flag indicat-
ing by which endpoint the packet was sent and the values
of various TCP header fields. The connection record has
a large number of fields which hold information about
aspects of the connection. For our scripts, only the con-
nection uid is needed.

5.1.3. Logging. Both scripts record their results in Bro
log files (acks.log, retransmission_series.log and retrans-
mission_scores.log). While the result format is different,
the first three items of each entry are the same in all logs:

doi: 10.2313/NET-2019-06-1 08

o Connection UID: For cross-referencing with other
Bro logs

o Timestamp

o from_orig: A boolean flag that indicates which
direction of the connection the entry concerns.

5.2. Inter-arrival times of Acknowledgements

The acknowledgment script stores two numbers for
each direction of a connection: The highest ack number
of the observed packets, and the timestamp of that packet.
For each new packet, the script first checks wether the
packet is relevant for the time-series. Packets without a
set ACK flag, as well as packages whose acknowledgment
number is lower than or equal to the highest number
recorded for the same direction are filtered out. If the
packet passes this filter, the stored information about the
corresponding connection is updated, and a log entry is
created. In addition to the fields listed in section 5.1.3, it
contains the packets’ acknowledgment number, the num-
ber of bytes acknowledged (i.e. the difference between the
new ack number and the previous one), and the interval
since the last acknowldegment.

5.3. Retransmission Metrics

For each direction of a connection the retransmission
metrics script stores the maximum sequence number, the
number of bytes previously retransmitted and the total
number of bytes transmitted, including retransmissions. It
also stores wether these values have changed since the last
time the retransmission score was computed. Whenever a
new packet with a payload is received, the script updates
the amount of transmitted data. It also determines wether
the packet is a retransmission by comparing its’ sequence
number to that stored for the connection. If it is not a
retransmission, the new maximum sequence number is
saved. If it is, the number of retransmitted bytes is up-
dated, and an entry is added to retransmission_series.log.

The information gathered this way is used to calculate
the retransmission score. The script defines a new event
score_log_trigger and schedules it to trigger every 0.1
seconds. In a handler for this event, the script updates
retransmission_score.log. For each direction of each con-
nection, a new log entry is created, if there was a packet
observed in this direction since the last log entry.

6. Evaluation

The scripts were tested on a packet capture of the
download of part of the Bro documentation. Both Figure
2 and Figure 3 show results for the same connection.

Figure 2 shows that over this connection, data was sent
almost exclusively from the responder to the originator.
The only packets acknowledged by the responder are those
necessary for the TCP and TLS handshakes and for the
TCP teardown. After the data transfer, there was a period
of inactivity for about two seconds before the connection
closed. As seen in Figure 3, the connection experienced a
spike in retransmissions after approximately two seconds
without retransmissions. Afterwards, the retransmission
score decreased again as more data was transmitted.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

41

type ack_time: record{
ack: count;
timestamp: time;

}i

global last_orig_acks: table[string] of

< ack_time;
global last_resp_acks: table[string] of
< ack_time;

event tcp_packet(c: connection, is_orig:bool,
flags: string, seq: count, ack: count,
len: count, payload: string){
if ("A" !in flags){
return;

—

—

}

local timestamp=network_time();

local first_ack: bool;

local last_acks=last_resp_acks;

if (is_orig){
last_acks=last_orig_acks;

}

first_ack=(c$uid !in last_acks);

if (first_ack){

last_acks[cSuid]=ack_time(Sack=ack,

$timestamp=timestamp);

—

}
if (ack <= last_acks[cS$Suid]Sack &&
'first_ack){

return;

—

}

handle_ack(last_acks[c$uid], ack,
timestamp, is_orig, c, first_ack);
last_acks[c$uid]=ack_time(Sack=ack,
Stimestamp=timestamp);

—

—

}

Script 1: The acknowledgement scripts’ tcp_packet han-
dler

event score_log_trigger(){
local ts=network_time();
log_scores(orig_info, T, ts);
log_scores(resp_info, F, ts);
schedule 0.lsec {score_log_trigger()};

Script 2: Retransmission score logging

7. Future Work

Currently, our script uses a very simple retransmission
detection mechanism. The precision of of the retransmis-
sion metrics could be improved by a more sophisticated
mechanism that is able to separate true retransmissions
and reordered packages, removing false positives.

As mentioned in section 4, not all of the metrics
described in [2] were implemented for this work. The
remaining metrics could be implemented in similar Bro
scripts. This would enable the use of the root cause
analysis procedure described in [2].

However, Bro scripts might not be the best tool for
calculating these metrics, in particular for higher band-
width connections. The Bro documentation [4] warns of

doi: 10.2313/NET-2019-06-1 08

s originator
6.64 .+ responder

6.4

2.4

Interval

2.2 A

2.0/
0.4 A

0.2

.
. . .
T 2 abde T T T

0 1 2 3 4 5 6 7

0.0 t —

Time (Seconds)

Figure 2. A plot of the intervals between acknowledgments over the
duration of a connection.

0.254

s originator .
s responder « "
.
.
0.20 . .
° . .
.
L] -l-..
0.15
£
.
#
0.10
0.05 1 -
0.00] ¢ ¢ o sssssessnsens’
; i ’ T T T T T
0 1 2 3 4 5 : 7

Time (Seconds)

Figure 3. A plot of the retransmission score over the duration of a
connection

the performance impact of handling the tcp_packet event.
While no performance problems were observed in our
tests, these were done with fairly small trace files and re-
sults could change in higher load situations. Additionally,
the tcp_packet event does not expose the size of the TCP
window, which is needed for some metrics. To access this
value, a script needs to use the more general new_packet
event. This could add to to any performance problems, as
new_packet is triggered more frequently than tcp_packet.
One solution to possible performance problems could be
moving packet classification from the tcp_packet handler
to a custom Bro traffic analyzer. As Bros’ traffic analysis
layer is built in C++, it would likely run far faster than
the interpreted scripts.

8. Conclusion

In this paper, we summarized the TCP acknowleg-
ment and loss recovery mechanism and introduced three
performance metrics based on this mechanism: the inter-
arrival times of acknowledgments, the time-series of re-
transmissions and the retransmission score. We described
Bro scripts that compute these metrics for both trace files

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

42

and live traffic and tested them on real-world internet
traffic.

Both of our scripts are available at [11]. For instruc-
tions on how to set up Bro and run custom Bro scripts,
please refer to the Bro documentation [8].

The implemented metrics are of limited use on their
own. However, this work shows the feasibility of using
Bro for TCP performance analysis. Combined with scripts
for other metrics, the Bro scripts shown here could form
part of a more sophisticated measurement toolkit.

References

(1]

Vern Paxson, Bro: A System for Detecting Network Intruders in
Real-Time, Computer Networks, 31(23-24), pp. 2435-2463, 1999

Matti Siekkinnen, Guillaume Urvoy-Keller, Ernst W. Biersack,
Denis Collange, A root cause analysis toolkit for TCP, Computer
Networks, Volume 52, Issue 9, Pages 1846-1858, 2008

J. Touch, Updated Specification of the IPv4 ID Field, RFC 6864,
2013

(2]

(3]

[4] Documentation of the Bro_TCP.events script,

www.bro.org/sphinx/scripts/base/bif/plugins/Bro_TCP.events.bif.bro.html

[5] Kostas Pentikousis, Hussein Badr, Asha Andrade, A Comparative
Study of Aggregate TCP Retransmission Rates, International Jour-

nal of Computers and Applications, 32:4, 435-441, 2010
[6]

Sushant Rewaskar, Jasleen Kaur, F. Donelson Smith, A Passive
State-Machine Approach for Accurate Analysis of TCP Out-of-
Sequence Segments, ACM SIGCOMM Computer Communication

Review, Volume 36 Issue 3, Pages 51-64, 2006
(71

Sharad Jaiswal, Gianluca Iannacone, Cristophe Diot, Jim Kurose,
Don Townsley, Measurement and Classification of Out-of-
Sequence Packets in a Tier-1 IP Backbone, IEEE/ACM Transac-

tions on Networking, Volume 15 Issue 1, Pages 54-66, 2007
The Bro Network Security Monitor, www.bro.org
Transmission Control Protocol, RFC 793, 1981

M. Mathis, J. Mahdavi, S. Floyd, A. Romanov, TCP Selective
Acknowledgement Options, RFC 2018, 1996

(9]
[10]

[11]
[12]

github.com/Istemplinger/bro-tcp, Commit c4b6dc9

E. Blanton, M. Allman, L. Wang, I. Jarvinen, M. Kojo, Y. Nishida,
A Conservative Loss Recovery Algorithm Based on Selective
Acknowledgement (SACK) for TCP, RFC 6675, 2012

[13] James Swaro, TCP Retransmission and State Analyzer plugin for

the Bro-IDS framework, github.com/jswaro/tcprs

[14] Donglin Lee, Brian E. Carpenter, Nevil Brownlee, Media Stream-
ing Observations: Trends in UDP to TCP Ratio, International
Journal on Advances in Systems and Measurements, vol 3 no 3&4,

2010

[15] Matthew Sargent, Mark Allman, Performance within a fiber-to-
the-home network, ACM SIGCOMM Computer Communication

Review, Volume 44, Issue 3, pages 22-30, 2014

S. Deering, R.Hinden, Internet Protocol Version 6 (IPv6) Specifi-
cation, RFC 8200, 2017

[16]

doi: 10.2313/NET-2019-06-1 08

