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Abstract—Caching is an important technique to accelerate
data reads in various hardware and software systems. The
choice of a replacement policy to decide which item to evict
in order to make space for newly requested data is at the
core of every cache design. A vast number of heuristics have
been proposed in the literature. This paper gives an overview
of some of the most popular replacement mechanisms. The
strategies are classified and described. An exhaustive taxon-
omy of traditional strategies is proposed and explained. The
paper also presents the Adaptive Replacement Cache and
a predictive cache replacement strategy that was designed
specifically with multimedia Web traffic characteristics in
mind. Further, techniques that are closely related to the
cache replacement issue, especially in Web caching, are
discussed.

Index Terms—cache replacement strategies, network
caching, adaptive replacement cache, predictive cache
replacement, multimedia content delivery

1. Introduction

Caches are employed to localize traffic by temporarily
storing data close to the consumer and, today, they are
ubiquitous in multiple areas of computing. Hardware-
managed caches are used by the CPU and the GPU, for
example. Software caching is found in database systems
and on the Web. Generally, cached information can be
retrieved significantly faster than if the origin storage
would have to be consulted. However, cache capacity
is typically limited and only a fraction of the existing
resources can be stored at any point in time.

When data is requested, the cache client, such as a
Web browser or a CPU, checks its closest cache first. If
the information is available in the cache, we refer to this as
a cache hit. If not, a cache miss occurs and data has to be
read from lower-level memory. This lower-level memory
can either be the original location of the resource, like a
Web server, or, in case of a hierarchy of caches, a different,
lower-tier cache.

When missing information needs to be brought into the
cache and the cache is already full, old objects must be re-
moved. The “victim” can be drawn randomly or chosen in
a deterministic process. The respective heuristic is called
the cache replacement strategy (also cache replacement
policy, eviction policy or removal policy [6]) and is a
central component of every caching scheme.

This paper provides an overview of extensively re-
searched cache replacement strategies and further de-

scribes limitations and challenges of caching large ob-
jects, like multimedia content. The focus is hereby drawn
towards Web caching.

The next section describes how cache replacement
strategies can be evaluated and compared. Subsequently,
some simple cache replacement approaches that partly
originated from traditional disciplines of computing are
discussed. Section 4 then presents the Adaptive Replace-
ment Cache, a more recent proposal to cope with dynamic
access patterns. Finally, Section 5 addresses the challenges
of caching multimedia content on the Web and outlines
how prediction-based replacement can be particularly ef-
fective to tackle these challenges.

2. Evaluation of Cache Replacement Policies

Mathematical models exist to evaluate the perfor-
mance of cache replacement algorithms [1], [11]. Compet-
itive Analysis compares the performance of an algorithm
with the best possible performance [24]. The resulting
competitive ratio corresponds to “the maximum ratio of
the algorithms cost to the optimal offline algorithm’s
cost over all possible request sequences” [1]. An offline
algorithm knows the entire request stream from the very
start and can always make the best possible decision. It,
therefore, only serves as a theoretical upper bound on the
achievable performance by any online policy. Competitive
Analysis merely studies worst-case scenarios and is dif-
ficult, especially when documents can be of variable size
[8].

It is more common to conduct experimental studies to
compare different replacement strategies. An established
method is to run a trace-driven simulation. Performance
is hereby studied on realistic cache traces, which often
gives more practical insights than theoretical upper and
lower bounds [8]. The following metrics are amongst the
most commonly reported measures:

• Hit Ratio (HR): The fraction of all client-
requested objects that could be served from cache,
e.g. a hit rate of 10% means that one out of every
ten requests resulted in a cache hit.

• Byte Hit Ratio (BHR): The fraction of all client-
requested bytes that could be served from cache.
Sometimes this value is also referred to as a
“weighted” hit ratio [6]. Because it takes object
size into account, BHR indicates bandwidth sav-
ings better than HR.

• Delay Savings Ratio (DSR): DSR reports the re-
duction of client-perceived latency. Its calculation
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is subject to external factors, like network con-
gestion and server stability. Precise measurement
of download delays is difficult and results often
fluctuate [7].

The performance of policies in trace-driven simula-
tions is sensitive to the character of the employed trace.
Wong [11] notes that inconsistent, and even contradictory
results have been reported in the literature.

3. Traditional Cache Replacement

This section describes some conventional approaches
to cache replacement. First, we name factors that may
influence the replacement decision. Then we present some
example strategies. For the purpose of this paper, tradi-
tional strategies are divided into the following groups:

• Key-Based Strategies sort objects upon a primary
key. Ties are broken using secondary, tertiary or
even more keys.

• Function-Based Strategies incorporate multiple
weighted factors, in no sequential order but con-
currently in a specific function that calculates the
value of every object. The weighting parameters
may be fixed or dynamically adapting to the prop-
erties of the access stream [8].

• Randomized Strategies use nondeterministic al-
gorithms to remove entries. Randomized policies
typically perform worst in most scenarios [11] but
also require the least resources. They are therefore
primarily used in systems with severely limited
processing power. Since randomized policies do
not keep meaningful state information, we con-
sider this brief introduction to be sufficient and
will not discuss them any further.

Among the key-based policies, we further distinguish
strategies according to which keys they actually consider.
This taxonomy roughly follows and combines the pro-
posals made by Wang in [2], Podlipnig and Boszormenyi
in [7], and Balamash and Krunz in [8]. Various other
classifications have been used in related work, for example
in [9], [38], [54].

3.1. Influencing Factors

The following keys are universally used in cache
replacement to characterize cached items and determine
their utility [7]:

• Arrival: When was an object admitted to the
cache? Typically, new items are favored to stay
in the cache.

• Recency: When was the last request for an object?
Recently accessed items are favored.

• Frequency: How often has an object been re-
quested? Frequently accessed items are favored.

Network traffic has certain characteristics that suggest
incorporating additional keys for replacement decisions
in Web caching. CPU and disk caches are typically con-
cerned with the management of uniformly sized blocks
known as pages. In contrast, resources from the Web are
stored as whole Web documents and can vary greatly in

size [1], [35]. Certain items may, therefore, take up a
disproportional percentage of the cache’s total capacity,
which should be considered by the replacement mech-
anism. Further, the effort of obtaining information over
a network is not only correlated to the data volume, but
other dependencies, such as bandwidth and distance, make
the calculation of a cost factor more complex. Finally,
cached information can also become outdated. Especially
HTML resources of popular websites are updated rela-
tively frequently [8]. The following additional keys can
help Web cache replacement algorithms make more in-
formed decisions:

• Size: How much space does an object occupy?
Small files are favored.

• Cost: How expensive would it be to re-fetch an
object? Possible metrics include hop count and
bandwidth along the delivery path, expected la-
tency, and monetary cost. Expensive items are
favored.

• Expiration: When is an object presumably going
to become stale? Items with a long validity are
favored.

3.2. Key-based Policies

Key-based policies sort their candidates upon a pri-
mary key. If the primary key does not guarantee to deter-
mine a single clear winner, i.e., multiple objects can have
identical values, a secondary key is necessary to break
ties. If objects could tie on the second factor as well, a
tertiary key is consulted, and so on.

First In, First Out (FIFO) is the simplest arrival-based
strategy. Objects leave a queue in the order in which they
arrive. Hence, this basic approach always evicts the oldest
object from the cache. FIFO can easily be implemented
with constant computational and optimal space overhead,
and is, therefore, suitable for systems with strictly limited
computational power or storage capacity. FIFO completely
ignores both recency and frequency of access when mak-
ing decisions. Generally, in practical applications, FIFO
is significantly outperformed by policies that take these
factors into account [17], [18].

The SIZE [6] strategy evicts the largest objects first
with the intent to make space for multiple smaller files.
Favoring small files results in a higher number of total
files cached and, thus, a good file hit ratio but decreased
byte hit ratio [11], [35], [53]. As mentioned earlier, BHR
is closely related to bandwidth savings, so if the cache’s
goal is to minimize download volume from the Internet,
for example, this behavior is undesirable. With a priority
queue based on object size, eviction can be performed in
logarithmic time.

Because the subsequent discussion of ARC in Section
4 builds on a thorough understanding of recency- and
frequency-based policies, we discuss these concepts in the
following dedicated subsections.

3.2.1. Recency-based Policies. Recency-based policies
sort objects according to how recently they were re-
quested. The underlying rationale is that recently accessed
information is more likely to be demanded again in the
near future and should, therefore, be retained in the cache.
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Information that has not been useful for the longest time
is accordingly regarded as least valuable and should be
evicted first.

For this rationale to hold, access streams need to
exhibit temporal locality, i.e., the past and the future
must not be independent, but resources become “hot”
(accessed frequently) and cool down again [7], [20]. Jin
and Bestavros find that temporal correlations are present
in Web traffic and exist most dominantly in the short-term
[37], [38]. Recency-based strategies are therefore most
effective in caches of small sizes and high activity [11].

Caches may form a multi-level hierarchy. Rajan and
Ramaswamy describe how temporal locality is inherent
to first-level caches but decreases throughout a storage
hierarchy in [26]. The most recently accessed files are
assumed to be served from the first-level cache anyway
and so, for lower-tier caches further down the delivery
path, e.g. in root-level proxies, locality features are al-
ready “filtered out”. Here, other heuristics can perform
better than recency. Busari and Williamson demonstrate
that size-sensitive policies are more effective in root-level
caches in [53].

The Least Recently Used (LRU) strategy can be seen
as the originator of recency-based replacement. It simply
evicts the object that was not accessed for the longest
time. Assuming requests are processed sequentially, every
request has a unique timestamp. Hence, we do not need
additional tie-breaker keys. LRU can be implemented
with a linked-list data structure supported by a hashing
mechanism for lookup. Its simplicity and constant time
complexity make LRU particularly attractive for hardware
caches.

LRU’s biggest threats are large sequential reads of data
that is only needed once and then never accessed again.
Since LRU only takes recency into account, it degenerates
to FIFO and these “scan” sequences quickly flush out
potentially more valuable items and pollute the cache.

Many variants of LRU have been proposed. One strat-
egy proposed by Pitkow and Recker [25] uses a different
time granularity. The authors observe that client interests
change on a daily basis. As a consequence, they suggest
using the number of full days since the last request as
a primary factor. If there are no objects older than one
day, size serves as a secondary key. The largest files are
replaced first.

LRU-Threshold [27] rejects files larger than a specified
threshold before they can even get into the cache. It could,
therefore, be argued that the primary key is size. When
cached files need to be removed, the victim is determined
according to LRU. Hence, we consider the actual re-
placement process to be recency-based. This classification
agrees with the suggestions made in [11].

Other recency-based strategies include LRU* [28],
LRU-Hot [29], Segmented LRU (SLRU) [30] and HLRU
[32].

3.2.2. Frequency-based Policies. Frequency-based poli-
cies sort objects according to how often they have been
requested in the past. The underlying rationale is that some
data is consistently more popular than other data, i.e.,
exhibits long-term popularity, and information that was
frequently requested in the past will keep being accessed
a lot in the future. Tiebreaker policies are unavoidable be-

cause multiple objects can easily have identical frequency
values.

Among Web documents, popularity distribution fol-
lows Zipf’s law [4], [33]. This means that only a small set
of very popular items accounts for a significant fraction of
the overall traffic. Keeping the “hottest” items in the cache
should be sufficient to satisfy most requests. However,
when the set of popular data changes abruptly, frequency-
based strategies cannot adapt as quickly as recency-based
strategies [11]. Frequency-based heuristics perform best
in environments with static popularity characteristics, i.e.,
popular data stays popular and unpopular data stays un-
popular [7].

Frequency-based strategies are normally implemented
with a priority queue [7] offering logarithmic time com-
plexity per operation.

The Least Frequently Used (LFU) strategy always
evicts the item with the lowest frequency count. Podlipnig
and Boszormenyi distinguish between two forms in [7].

• Perfect LFU keeps track of all requests to objects
ever recorded. This form is of theoretical value,
but unbound space overhead makes its implemen-
tation infeasible.

• In-Cache LFU keeps track of requests to currently
cached objects only. Once an item is removed, the
count is forgotten. This form has imperfect infor-
mation, but the space overhead stays manageable.

Unlike LRU, LFU is scan-resistant. Frequency is of rel-
evance, so sequentially accessed items only replace each
other.

However, especially In-Cache LFU suffers from a dif-
ferent cache pollution problem. Objects that were popular
at one point in the past, and have accumulated high
reference counts, hardly get flushed out, even if they
are currently unpopular. Newer, potentially more useful
(hotter) items have a hard time to stay in the cache because
they start off with the lowest possible score. Again, this
suggests that LFU performs best in systems where the
demand for an object stays at a constant level.

More versatile alternatives avoid the cache pollution
problem by also incorporating recency into the decision-
making process. So-called aging mechanisms effectively
decrease an object’s value when it has not been requested
for a certain amount of time. Recently accessed items are
consequently regarded as more valuable and remain in
the cache. LFU with Dynamic Aging (LFU-DA) [31] is
an example of a hybrid strategy that combines frequency
and recency aspects.

3.3. Function-based Policies

Function-based removal policies consider multiple at-
tributes at once and not separately. So there are no more
primary and secondary keys but instead a single, usually
nonnegative value H associated with each cached object
i.

One popular member of this category is the
GreedyDual-Size (GD-Size or GDS) algorithm [1]. When
an item enters the cache, its value is initialized as follows.

Hi = costi/sizei
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When the cache has filled up, the item with the lowest
value Hmin = minj∈cacheHj is removed. Subsequently,
the values of all remaining items get reduced by Hmin:

∀i : Hi ← Hi −Hmin

So their scores shrink over time. On a cache hit, the value
of the re-requested item gets reset to its original one.

The cost parameter can be defined in various ways,
depending on the objective of the caching system [8], [34].
For example, setting costi = 1 uniformly for all objects
means an item’s initial H value corresponds to 1/sizei.
Due to this direct inverse correlation of value and size,
the largest files are regarded as least sustainable and get
removed in favor of multiple smaller files. Consequently,
this definition of cost maximizes the total number of files
cached and, therefore, results in the best hit rate [35].

Depending on the environment, other cost definitions
are possible. For network caching, GD-Size might instead
define cost as the number of packets involved in a re-
trieval, the expected latency increase or the number of
hops between the cache and the origin server [10].

The GreedyDual-Size policy is an extension of the
original GreedyDual algorithm introduced by Young [36].
Today, an entire range of algorithms, referred to as the
“GreedyDual-family” [10] exists. Members include GD-
Frequency, GD-Size-Frequency [31], and GD*, an adap-
tive generalization of GD-Size [38].

Some function-based policies allow parameters to
adapt to workload characteristics [7]. This means that
when requests are observed to have high temporal cor-
relations, for example, recency should be weight heavier
than other factors. If the access stream indicates that
popularity levels are rather steady, on the other hand,
the underlying function should put more emphasis on fre-
quency counts. The downside of this adaptive functionality
is increased computational complexity [7], which could
hurt performance overall, especially when adaptiveness is
unnecessary.

4. Adaptive Cache Replacement

This section presents the Adaptive Replacement Cache
(ARC) [12]. ARC neither associates H values with entries
like function-based approaches nor should it be catego-
rized as key-based in the traditional sense as presented
above, since it does not apply a fixed sequence of primary
key, secondary key, etc. Instead, it constantly reacts to
changes in the character of the processed requests to
balance recency and frequency aspects in a self-tuning
manner, i.e., there are no parameters that need to be set
manually.

ARC cleverly combines two LRU-lists of varying size
and a history of recently evicted items to make removal
decisions.

When an item enters the cache, it is placed at the most
recently used (MRU) position of the recency-ordered list
L1. L1 is therefore considered to contain recently required
items. If the item gets requested a second time, while
cached, it is considered to be frequently accessed, and
“promoted” to a second list L2, again, entering at the
MRU position.

Both lists are further split into a “top” and “bottom”
part, that is, L1 consists of two sublists T1 and B1 and
L2 is the union of T2 and B2.

The top sections form the main cache and store full
objects that can be returned as expected.

The bottom sections form the ghost cache and only
store identifiers, i.e., metadata, for the objects that once
were in the main cache, but got flushed out. The ghost
cache merely serves a history function. It cannot provide
the resource data to answer client requests.

Now, the lists T1 containing items that have been
accessed once recently and T2 containing items that were
requested at least twice compete for cache capacity. De-
pending on the workload attributes they grow and shrink
constantly. As the full-fledged balancing process is fairly
complex, we will only explain the basic idea underlying
ARC’s adaptability and refer to [12] for a detailed de-
scription. Intuitively, when a request reaches the cache,
the following events influence ARC’s behavior.

If the requested item is not contained in the main
cache, but a “ghost hit” in B1 occurs, ARC concludes
that recency features are currently important. The request
cannot be satisfied from cache directly because the item
was pushed out of T1 into the ghost section, only retaining
metadata. If T1 was granted more capacity, the request
might have resulted in a “real” cache hit. Therefore, T1

grows and T2 shrinks, i.e., the least recently used item in
L2 will be evicted next.

If the request hits the B2 ghost cache, ARC considers
frequency aspects to currently be neglected. Ghost hits in
B2 therefore let T2 grow at the expense of T1, i.e., the
least recently used item in L1 will be evicted next.

MRULRU LRU

B1 T1 T2 B2

L1 L2

Figure 1. Simplified ARC cache directory visualized in a balanced state.
The inner rectangle represents the actual cache, which is fixed in size but
can freely move across the history sections. Items enter the cache at the
center and get gradually pushed outwards unless they are re-accessed.

ARC is considered scan-resistant since the separation
of items that have been accessed only once (L1) and
items that have been accessed at least twice recently (L2)
protects the latter section of being flooded by single-access
streams.

It was reported to reliably and substantially outper-
form established mechanisms like LRU in trace-driven
simulations [12], [13]. ARC does not require significantly
more space than LRU and has the same, constant time
complexity.

Since 2006, IBM holds a patent for the Adaptive
Replacement Cache [15], which has complicated its de-
ployment for third parties [16].

5. Predictive Cache Replacement for Web-
Based Video Content

The above-described algorithms were mostly designed
as general-purpose policies. LRU and GDS have been
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titled “good enough” or “champion” algorithms [1], [34]
because they perform sufficiently well on the basic per-
formance metrics for caches of various sizes and environ-
ments. Wong states that cache replacement in its general
form is a “solved topic” [11] and further research would
only lead to marginal improvements.

However, more recently, authors have also depicted
that “the network environment is dynamic and uncertain”
[34] and future requirements may very well overwhelm
the identified “good enough” algorithms. Podlipnig and
Boszormenyi say, their sufficiency for managing multi-
media content is “questionable” [7].

This section presents a more specialized caching ap-
proach to cope with the challenges of serving multimedia
data on the World Wide Web. Video streaming is arguably
the most extreme cases. It combines audio and imagery,
requiring storage volumes and retrieval bandwidths mul-
tiple magnitudes greater than ordinary text and small
graphics. The focus of this section is, therefore, on Video-
on-Demand (VoD) services. First, the unique properties
of video data and its consumption are described. The
second subsection then presents a novel cache replacement
proposal by Famaey et al. [51] that predicts the future
popularity of multimedia content.

5.1. Multimedia Caching

From a storage perspective, multimedia files differ
from text-based data most notably in volume. Cached
objects are significantly larger in size, as compared to
when cached information is text-based [11], [39]. Thus,
we expect space for storage and bandwidth for transport to
be the critical factors for multimedia applications. Further,
caching mechanisms need to guarantee continuous deliv-
ery of video without stutters for enjoyable consumption.
Dan and Sitaram conclude that traditional replacement is
insufficient for video caching requirements [39].

On the other hand, multimedia data offers the possibil-
ity of significantly reducing volume “without sacrificing
too much quality” [7]. Text files typically need to be com-
pressed lossless to allow perfect reconstruction. In video
compression, inter-frame techniques eliminate redundancy
without compromising quality [41]. Even noticeable qual-
ity losses may sometimes be acceptable when this results
in a smoother presentation.

Converting files from one representation to another,
e.g. format conversion or compression, is called transcod-
ing [42]. On the Web, transcoding proxy servers [42], [45]
take these options into account. A proxy on the delivery
path somewhere between the client and the origin Web
server temporarily stores requested objects locally and acts
as a cache for future requests. The so-called Soft Caching
[44] approach allows for modification of these resources.
Specifically, it allows the proxy to recode images to lower
resolution versions and discard original files to save space.
Upon a request, the proxy cache might then initially serve
the transcoded object with lower image resolution until the
original version becomes available.

This possibility adds another level of complexity to
the replacement process because a replacement policy
no longer only makes a binary decision on whether to
completely evict an object or not, but now also needs to
evaluate, if storing a copy with reduced quality instead of

the original file is beneficial to the overall user experience
[7], which is refered to as a soft decision [44].

So far, we assumed data to only ever be cached-in
when it is demanded and not already in the cache. Under
this demand fetching model, the replacement policy is
the only algorithm of interest [14]. Studies have reported
that, due to many single-access requests, the cache hit
rate is bound to approximately 50%, even if replacement
decisions would always be made optimally by some hy-
pothetical omniscient policy [2], [27].

To lift this bound, document requests must be antici-
pated and files loaded into the cache before they are even-
tually demanded. We refer to this as anticipatory fetching
or prefetching. The prediction of future requests should
be done accurately and prudently because fetching un-
necessary data that will never be needed can significantly
increase network traffic and thereby introduce delays [45].
Trace-driven simulations have shown that prefetching data
from Web servers into client caches can reduce user-
perceived latency by up to 45%, but also doubles the
total load on the network [46]. Prefetching is not a cache
replacement issue, but the two mechanisms are closely
related and cooperatively manage the cache content. When
streaming video content over the Internet, preloading se-
quences that are about to be shown is essential to prevent
disruptions in playback. The term “buffering” is often
used synonymously to prefetching in the context of VoD
applications [39], [40], [47].

Long videos, e.g. movies, are typically consumed lin-
early from beginning to end, which makes predicting the
next requested frames relatively straightforward. The most
critical data are, therefore, the early frames of videos. The
beginnings of videos are also overall the most popular
parts [48], [51]. Sen et al. [47] propose that proxy caches
should store a prefix of every audio or video stream,
instead of storing the entire object.

Multimedia content popularity is highly dynamic [51],
but researchers have identified access patterns that make
its prediction feasible. VoD customers are more likely
to consume full-length movies in the evening and on
the weekend, for example, creating exploitable patterns
repeating on a daily and weekly basis [51]. Other research
suggests that on video-sharing platforms such as YouTube,
popularity patterns differ among categories. Copyright
protected material, e.g. a music video, gets a significantly
higher percentage of the total views on its first days online,
as compared to uncopyrighted videos, e.g. user-generated
video blogs, that show steadier request rates on average
[49].

5.2. Predictive Least Frequently Used

The traditional LFU policy was presented in Section
3.2.2 and evicts the item that was accessed least of-
ten in the past. This section describes Predictive Least
Frequently Used (P-LFU). P-LFU evicts the item with
the lowest predicted number of requests within a speci-
fiable prediction window. For P-LFU to perform well,
accurate prediction values are vital. Prediction happens
in a separate phase, prior to the actual eviction phase.
Famaey, Iterbeke, Wauters and De Turck propose a generic
popularity prediction algorithm and find that Web objects
can be grouped according to how their popularity evolves
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over time. Only four distributions are needed to cover the
majority of request patterns for these items [51].

• Constant models steady access rates, e.g. for per-
manently unpopular items.

• Power-Law models abrupt steep changes in pop-
ularity often seen in multimedia systems.

• Exponential models slower changes than power-
law and has shown to give the most accurate
predictions out of the four distributions when ap-
plicable [51], [52].

• Gaussian models S-shaped request patterns. Start-
ing off constant, a sudden significant change in
popularity appears and then returns to a constant
access rate.

Finding the best parameters to fit these four models to
the history is a non-linear optimization problem. The
authors use the Levenberg-Marquardt algorithm [50] for
this purpose. Finally, the distribution with the “best fit”,
e.g. the one with the smallest mean squared error (MSE),
is selected and used to make a projection on future request
rates.

Famaey et al. conducted simulations on the request
traces of the “VoD service of a leading European telecom
operator” [51]. 75013 requests were recorded for 4971
different movies. The results indicate that P-LFU can
realistically perform approximately 10% better than tradi-
tional LFU in terms of hit rate. For accurate predictions,
the number of historical data points should not be smaller
than 10, however [51].

Further, the algorithm predicted accesses to unpopular
movies with significantly higher accuracy than requests
for popular items [51].

6. Conclusion and Future Work

There exist plenty of cache replacement proposals
beyond what is covered in this paper. Section 3 looked
at traditional cache replacement approaches and classified
them based on some commonly used factors of cacheable
items, like recency and frequency of access that influence
the removal process. The Adaptive Replacement Cache
(ARC) was presented in Section 4 to demonstrate that
improvement over LRU is possible, even without intro-
ducing unreasonable overhead. Section 5 described how
multimedia Web traffic could pose difficulties for so-
called “good enough” replacement strategies in the future.
Some unique characteristics of multimedia content were
explained and, finally, a prediction-based variant of the
LFU scheme that was designed to cope with the challenges
of multimedia caching was depicted.

Section 5.1 already touched upon the possibility of
prefetching data into the cache before it is actually needed.
Prefetching and similar mechanisms should be studied
further in the context of Web caching to investigate latency
reductions beyond what pure replacement strategies can
achieve. Further, transcoding techniques for data reduction
might render especially helpful for environments where
caches are of smaller size, e.g. mobile systems. How to
optimally handle the trade-off between quality and speed
that transcoding caches have to deal with is another open
issue to be researched.
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