
Overview of TCP Congestion Control Algorithms

Moritz Geist, Benedikt Jaeger∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: moritz.geist@tum.de, jaeger@net.in.tum.de

Abstract—The current set of congestion control algorithms
is split into three primary groups regarding their function
and can easily be categorized and therefore characterized.
This paper compares these different classes in compliance
with their respective advantages and disadvantages. Each
algorithm on its own is well researched, however, it is difficult
to predict how they perform when used together in the
Internet due to the unpredictable behaviour of it.

Index Terms—tcp, congestion control algorithm, measure-
ment, high-speed networks

1. Introduction

With the world being more and more connected
through the Internet, the underlying network has to work
increasingly efficient to achieve a high-performing and
stable connection all the time. That is a very difficult goal
to achieve without the help of the transmitting computers.
If every computer connected to the Internet would just
send packets as fast as possible, the slowest links or most
utilized networks would get overloaded to the point of
routers dropping packets instead of passing them on to
the next node. This leads to a severe performance hit
for Internet applications due to the whole stream having
to wait for the packet to be retransmitted. To avoid this
and keep a high throughput, while not losing packets,
computer scientists have come up with several congestion
avoidance algorithms. These algorithms work by control-
ling the size of the congestion window. The congestion
window limits the number of packets that can be inflight,
meaning waiting for acknowledgement, at any time and is
created for every TCP connection. As long as there are less
packets inflight than the size of the congestion window,
new packets will be sent out and transmitted. The packets
get removed from the congestion window as soon as they
are acknowledged, which allows for the next packet to be
sent. By this definition, the optimal congestion window
size is equal to the Bandwith Delay Product (BDP). The
BDP is calculated using BDP = bandwith · RTT . The
bandwith to be used is the total usable bandwith of the
slowest link on the path, and RTT is the total round trip
time of the stream. This is due to the nature of routers be-
tween the sender and the receiver: Internally, they operate
a packet queue that incoming packets will be appended
on. The packet at the head of the queue will be processed
and transmitted to the next node. If it happens that more
packets come in than the number of packets that get sent
out, the packet queue will grow until a certain limit. If
the limit is reached, packets will be dropped until there

is new space in the queue. If the sender just continues
to send out packets as fast as possible, all packets would
get dropped on that link. Instead, the congestion control
algorithm reduces the congestion windows size until no
more packets are lost on their way. The result of a higher
congestion window than BDP is therefore a queue filling
up at the slowest link, while a smaller congestion window
decreases the size of the queue gradually.
The primary difference in congestion avoidance algo-
rithms is how they detect an overloaded link in between
them and how they increase and decrease the congestion
window. This paper will compare different methods of
detecting and handling the size based on some existing
algorithms.
This paper will first explain the different techniques on
how a congestion control algorithm can operate in Sec-
tion 2, followed by examples that highlight each of the
different approaches in Section 3. In Section 4, the algo-
rithms will be discussed in how they perform compared to
each other and especially while active as parallel streams
in a network.

2. Background

In this section, we compare how different congestion
avoidance algorithms detect an overloaded link on their
path. While it is most common to utilize only one of
these three strategies, some algorithms use combinations
of them. As Lefteris Mamatas et al. specify in [1], the
algorithms can be classified into three distinct groups:
black box algorithms that do not rely on any state informa-
tion about the network and only rely on binary feedback;
gray box algorithms that do active measurements to "esti-
mate available bandwidth, level of contention or even the
temporary characteristics of congestion" [1]. Third, green
box algorithms do have exact knowledge about the state
of every (or most) part of the network, either by being
implemented in every part of it or every link reporting its
status to the sender.

2.1. Loss-based Algorithms

One of the most common ways of detecting an over-
loaded link is by reacting to packet loss. This is considered
a black box method, as it only relies on the binary input
of a packet being lost or not. In case a packet is not
acknowledged after a certain time, called the retransmis-
sion timeout, or after receiving three duplicate ACKs [2],
it is considered missing and will be retransmitted. This
also indicates to the congestion avoidance algorithm to

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

11 doi: 10.2313/NET-2019-06-1_03

0 2 4 6 8 10 12 14 16 18 20

50

100

150

200

100

Time [s]

W
in
d
ow

S
iz
e Congestion Window

Lost packets

Figure 1. Congestion window resize after a lost packet in TCP Reno

shrink the congestion window, so less packets are sent
out. In the most simple algorithm, called TCP Reno (seen
in Figure 1), the congestion control begins with a phase
called "slow-start" up to t = 1s [3]. In that, it the window
size is increased by one for each acknowledged packet
resulting in an exponential growth, until the first lost
packet is registered. After that, the congestion window
is halved on loss, and will be increased steadily, but
in a linear way. This results in a sawtooth-like graph
for the congestion window size like in Figure 1. Loss-
based congestion avoidance algorithms only need to be
implemented by the sender, making them exceptionally
easy to deploy. The receiver, who also is a sender by at
least sending out acknowledgements, can use a totally dif-
ferent congestion avoidance algorithm. The problem with
these algorithms is that packets can get lost for reasons
other than an overloaded link, for example, if an actually
broken, or a less reliable link is used on the way. This
results not only in a bad performance due to retransmits,
also the congestion window is decreased without any need
making it smaller than the BDP and therefore decrease
effective throughput. Even if packets are only lost due to
overloaded links, these algorithms can never be perfect:
The window size is increased as long as there is no packet
loss, which in turn means that there always will be at least
one lost packet every so often, as seen in Figure 1. This
can lead to problems with applications that require near-
real-time communications, like Voice-Over-Ip or online
games. Algorithms based on packet loss are therefore the
easiest to implement, while also theoretically most limited
considering accurate functionality.

2.2. Delay-based Algorithms

Another way of detecting an overloaded link is by
measuring the delay in which acknowledgements arrive,
also known as the round trip time (RTT). By the crite-
rion listed in Section 2, these algorithms are grey box
algorithms, as they use more advanced measurements to
examine and monitor the status of the network. Especially
by monitoring changes in RTT, these algorithms can react
to a congestion earlier than purely loss-based algorithms,
as most of the time the RTT increases gradually before a
packet is actually lost. The queue fills up like explained in
Section 1 when the congestion window is bigger than the
BDP. A nonempty queue means that packets have to wait
in line to be sent on, leading to a higher RTT. Only when
the queue size reaches he maximum buffer size, packets
are dropped instead of being queued. This has the follow-
ing advantages: Delay-based algorithms can react sooner
to congestion, maybe even before the first packet is lost at

all, which can have a positive impact on the performance
of some applications. Also, instead of having to cut down
the congestion window in half, it can gradually shrink the
congestion window relative to measured increase in RTT.
This can lead to an improvement in throughput compared
to other black box algorithms in isolated environments.
A very basic implementation of a delay-based algorithm
is TCP Vegas [4]. An example of this behaviour can be
seen in Figure 2. As soon as the network gets congested
at t=10, the buffer of the overloaded link starts to fill
up, resulting in the average RTT increasing. The sender
reduces the congestion window to prevent any packet
losses.

4 6 8 10 12 14 16 18
0

50

100

150

200

100

Time [s]

Avg RTT in ms
Congestion Window

Figure 2. Decrease of Congestion Window Size

While a delay-based algorithm is alone in a network,
it is able to adjust its congestion window to a perfect
size: Maximum throughput combined with no packet loss
and minimum RTT. It gets difficult as soon as another
connection uses the same link that is more aggressive,
like a loss-based algorithm mentioned in Section 2.1. As
these will enforce one or more lost packets from time to
time, this affects the delay-based stream as well because
of the increased queueing delay, leading to it reducing
the congestion window to an absolute minimum. Also,
delay-based algorithms can react to loss similar to loss-
based algorithms as well, as seen in Section 3.2. How the
detection technologies work together will be described in
Section 4.

2.3. Signal-based algorithms

As the definition in [1] states, with green boxes "the
network communicates its state to the transport layer".
This is achieved through signal bits, with which an over-
loaded link notifies the sender of its state. The actual
implementation of this can vary. The TCP protocol header
contains six unused bits that are reserved for future use as
well as an option field that can carry more complex infor-
mation [5].The advantage of this algorithms is obvious:
With complete knowledge of the status of the network,
it becomes a matter of algorithmic design of how the
sender should adjust its congestion windows size. It is
even possible to prioritize different streams of data without
exceeding the load on a link, making sure it does never
get actually overloaded and incur high delays or drop
packets. A shortcoming of this method is illustrated in
Figure 3. The link between the router and the receiver is
slower than the link between the sender and the router,
which means it will be overloaded at some point. The
router detects this as soon as the internal buffer starts

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

12 doi: 10.2313/NET-2019-06-1_03

to fill up, and will set signal-bits or options in the next
packet it forwards to the receiver accordingly. The receiver
will then acknowledge the packet and adopt the extra
information in the corresponding acknowledge-packet.

Sender Router
Receiver10 MB s−1 5 MB s−1

Figure 3. Path of the signal

As visible in Figure 3, the information about the in-
creased load needs to travel at least three hops, depending
on the network layout. It follows the dotted lines back to
the sender. Therefore, the information takes at least half of
one round trip time to reach the sender. The big disadvan-
tage of signal-based algorithms or green box algorithms is
that they need to be deployed on all parts of the network,
including the receiver and every router. This makes it
practically impossible to use them in the open Internet,
so they are only useful in closed networks like offices
or data centers where each of the network components is
controlled by a single instance. Loss-based 2.1 and delay-
based 2.2 algorithms do not require this.

3. Implementation

This section will showcase some more- and less pop-
ular congestion avoidance algorithms and highlight their
benefits and shortcomings. It will cover all of the before
mentioned types of detection from Section 2.

3.1. TCP Cubic

TCP Cubic is the current default congestion avoidance
algorithm in the current Linux kernel, which makes it one
of the most used algorithms. It has been developed by
Sangtae Ha et al. in 2008 and the specification is made
available here [6].
TCP Cubic is completely loss-based and therefore a black
box algorithm. It can be viewed as an improvement over
TCP Reno described in Section 2.1 and Figure 1. After
the same slow-start-phase that is present in TCP Reno it
behaves similarly when receiving a lost packet. The main
and only difference is how it increases the congestion
window. Instead of increasing it with a constant (or at least
linear depending on the current RTT) function it splits
the increase function into two phases that are illustrated
in Figure 4: First, it will increase the congestion window
based on a concave cubic function (right curved) until
it reaches a value called W_max at t = 8. This is the
size the congestion window had when the last congestion
event (packet loss) occurred. After reaching that point
again, the function begins to increase slowly at first, but
with increasing speed later on (convex, left curved). This
method of growth causes the congestion window and
therefore sending rate to stay close to the last known
highest value as long as possible, while still be able to
go beyond that. Consequently, TCP Cubic behaves very
similar to TCP Reno while being able to faster recover
from a loss and slower run into the next one.

6 8 10 12 14 16
80

100

120

140

Time [s]

C
o
n
ge
st
io
n
W

in
d
ow

Congestion Window
Lost packets

Figure 4. TCP Cubic Congestion Window Size

3.2. LEDBAT

Low Extra Delay Background Transport (LEDBAT) is
a delay-based congestion control algorithm that has been
technically documented in 2012 [7]. It can be seen as
a grey box algorithm, as it measures the time a packet
travels from sender to receiver, not just the round trip time.
To do this, a timestamp is appended to every outgoing
packet that the receiver then subtracts from his local time
and responds the one-way delay to the original sender
using the acknowledgement packet. The sending side then
considers the difference in delay over time, so clocks
do not need to be synchronized. LEDBAT purposefully
only uses the one-way delay for its calculations, as it is
designed for primarily one way bulk-transfer applications
like file-sharing and software updates. Its goal is to reduce
the impact on contending other streams while still being as
fast as possible. As seen in [7], LEDBAT is, in general,
less aggressive than TCP Reno or Cubic due to it also
halving the congestion window on loss in addition to
shrinking with increasing delay. The ramp-up function is
never faster than TCP Reno, therefore it will not interfere
too much with other traffic. As a result, LEDBAT is
very useful for data transfers that do not require real-time
information processing but instead just need to get done
in some amount of time. Currently LEDBAT is used by
the BitTorrent system [8] as well as for updates in some
operating systems.

3.3. TCP Westwood

TCP Westwood (and TCP Westwood+) is a com-
bination of a loss- and delay-based congestion control
algorithm [9]. They have been developed to improve
efficiency in paths with a large bandwith-delay product
and a potential packet loss such as long wireless links.
In general, it behaves similarly to TCP Reno in that it
features equal slow-start and congestion avoidance phases.
The difference is how it handles congestion events or
packet losses. Instead of halving the congestion window,
Westwood uses an algorithm to estimate the real end-
to-end bandwidth with which it then adaptively sets the
slow-start threshold and congestion window. Due to the
bandwidth esitamtion Westwood works fine in a network
with more streams, unlike TCP Vegas as will be explained
in Section 4. TCP Westwood+ works similar, but employs
a different algorithm to estimate bandwidth, as the original
algorithm was found to be flawed [10] due to compression
of acknowledgement packets.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

13 doi: 10.2313/NET-2019-06-1_03

3.4. TCP MaxNet

TCP MaxNet is a green-box algorithm from 2002 that
features active feedback about the status of the network
to the sender [11], [12], [13]. The routers on the way
each calculate a price using an active queue management
algorithm (AQM). These calculations factor in a demand
function, the next links capacity and utilization. Given
equal demand functions, there is max-min fairness [11].
By scaling this function, it is possible to prioitize a
stream (weighted fairness). The calculated price is then
transported back to the sender along the links using the
max() Function 1 with pi being the individual price value
of the router at position i.

price = max
pi

(1)

A detailed definition of the price can be seen in [13]. The
client will then adjust its congestion window according to
the determined price, so the effective sending rate adjusts
to the slowest link in the network. It therefore is easy
to define and predict how the network behaves, as long
as there are no competing streams that do not use TCP
MaxNet.

4. Evaluation

An important consideration when developing a new
congestion control algorithm is how it behaves in real-
world scenarios, where overloaded links are hit with dif-
ferent streams at once, and therefore with several different
rates, and different congestion avoidance mechanisms. For
example, a delay-based stream will reduce its congestion
window way before a competing loss-based stream ob-
serves a lost packet. An example of this is seen in Figure 2,
where the congestion window of a TCP Vegas stream is
visible. TCP Vegas is solely delay-based and shrinks the
congestion window when the RTT increases [14]. The
effect can be seen by also measuring the throughput at
the congested link, which is plotted in Figure 5, showing
the same timeframe as in Figure 2. As soon as the Reno
stream starts at t = 10, it immediately congests the link
in the slow-start phase, to which TCP Vegas reacts with
reducing the congestion window drastically. Reno will
then keep the link congested regularly with a congestion
window similar to Figure 1, leading to TCP Vegas never
increasing its congestion window again.

4 6 8 10 12 14 16 18
0

5

10

Time [s]

T
h
ro
u
gh

p
u
t
[M

b
it

s

]

TCP Vegas
TCP Reno
Fairness

0

0.5

1

F
ai
rn
es
s

Figure 5. Throughput at the congested link

This can be calculated using a fairness measurement,
a value that describes how well the total throughput is
shared among all streams. One way to calculate such a
value is by using an equation developed by Raj Jain [15].

It produces values ranging from 1
n (not fair), where n is

the number of streams, to 1 (fair). For the above example,
the index is of value 1 until t = 10, and then drops to
about 0.5. Therefore, this example showcases a worst-case
scenario in terms of fairness. Other delay-based algorithms
try to improve on that shortcoming, for example, West-
wood and Westwood+ behave better in the same scenario
with fairness values of around 0.8 on average, while still
being outperformed by TCP Reno in terms of effective
throughput. Generally, tt would be best if everyone would
be using the same algorithm, just like a green-box algo-
rithm like MaxNet (see Section 3.4) encourages. These do
then accomplish MaxMin fairness, meaning equal share
for every stream with a fully saturated but not overloaded
link.

5. Related Work

The idea of increasing the overall efficiency of the In-
ternet is quite interesting, therefore a lot of people already
tried their best at developing a new, best congestion con-
trol algorithm to the point that a "Yet Another Highspeed
TCP"-algorithm "YeAH-TCP" [16] exists. Other newly
introduced alforithms include BBR developed by Neal
Cardwell et al. that tries to determine the actual level
of congestion using active probing of the network [17]
and PCC Vivace by Mo Dong et al that utilizes machine
learning to improve network efficiency [18]. There is also
research that compares the performance of algorithms
like L. Grieco does in [19]. The paper The macroscopic
behavior of the TCP congestion avoidance algorithm. [20]
explains how TCP congestions can affect the real Internet.

6. Conclusion and Future Work

While there are many congestion control algorithms
that each have their pros and cons, it is very difficult to
have them existing next to each other, unless it is the
design goal (like with LEDBAT in section 3.2) to have
a lower-priority stream. The existing methods for judging
fairness work well to calculate the fairness afterwards, but
with the chaotic nature of the Internet it is very difficult
to predict the behaviuor of the packets. All the algorithms
more or less expect that every packet travels through the
same links every time, which is not guaranteed in any way.
There are even projects that try to increase throughput and
failure handling by explicitly using different interfaces and
links like MultiPath TCP [21]. In future work, it would
be interesting to look at the performance if algorithms in
changing network environments and how fast they adapt
to big variations in maximum throughput and RTT.

References

[1] L. Mamatas, T. Harks, and V. Tsaoussidis, “Approaches to conges-
tion control in packet networks,” Journal of Internet Engineering,
vol. 1, no. 1, 2007.

[2] W. R. Stevens, “Tcp slow start, congestion avoidance, fast retrans-
mit, and fast recovery algorithms,” 1997.

[3] M. Allman, V. Paxson, and E. Blanton, “Tcp congestion control,”
Tech. Rep., 2009.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, TCP Vegas:
New techniques for congestion detection and avoidance. ACM,
1994, vol. 24, no. 4.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

14 doi: 10.2313/NET-2019-06-1_03

[5] P. SPECIFICATION, “Transmission control protocol,” 1981.

[6] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed
tcp variant,” ACM SIGOPS operating systems review, vol. 42, no. 5,
pp. 64–74, 2008.

[7] M. Kuehlewind, G. Hazel, S. Shalunov, and J. Iyengar, “Low extra
delay background transport (ledbat),” 2012.

[8] D. Rossi, C. Testa, S. Valenti, and L. Muscariello, “Ledbat: the
new bittorrent congestion control protocol,” in Computer Com-
munications and Networks (ICCCN), 2010 Proceedings of 19th
International Conference on. IEEE, 2010, pp. 1–6.

[9] L. Grieco and S. Mascolo, “End-to-end bandwidth estimation
algorithms for westwood tcp congestion control,” in Information
Technology Interfaces, 2003. ITI 2003. Proceedings of the 25th
International Conference on. IEEE, 2003, pp. 563–568.

[10] R. Ferorelli, L. A. Grieco, S. Mascolo, G. Piscitelli, and P. Ca-
marda, “Live internet measurements using westwood+ tcp conges-
tion control,” in GLOBECOM, vol. 2, 2002, pp. 2583–2587.

[11] B. Wydrowski and M. Zukerman, “Maxnet: a congestion control
architecture,” IEEE Communications Letters, vol. 6, no. 11, pp.
512–514, 2002.

[12] B. Wydrowski, L. L. Andrew, and M. Zukerman, “Maxnet: A
congestion control architecture for scalable networks,” IEEE Com-
munications Letters, vol. 7, no. 10, pp. 511–513, 2003.

[13] L. L. Andrew, K. Jacobsson, S. H. Low, M. Suchara, R. Witt, and
B. P. Wydrowski, “Maxnet: Theory and implementation,” WAN-in-
Lab project, pp1-11, 2006.

[14] R. J. La, J. Walrand, and V. Anantharam, Issues in TCP vegas.
Electronics Research Laboratory, College of Engineering, Univer-
sity of California, 1999.

[15] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative mea-
sure of fairness and discrimination,” Eastern Research Laboratory,
Digital Equipment Corporation, Hudson, MA, 1984.

[16] A. Baiocchi, A. P. Castellani, and F. Vacirca, “Yeah-tcp: yet another
highspeed tcp,” in Proc. PFLDnet, vol. 7, 2007, pp. 37–42.

[17] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacob-
son, “Bbr: Congestion-based congestion control,” Queue, vol. 14,
no. 5, p. 50, 2016.

[18] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira,
“Pcc: Re-architecting congestion control for consistent high per-
formance.” in NSDI, vol. 1, no. 2.3, 2015, p. 2.

[19] L. A. Grieco and S. Mascolo, “Performance evaluation and compar-
ison of westwood+, new reno, and vegas tcp congestion control,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 2,
pp. 25–38, 2004.

[20] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behavior of the tcp congestion avoidance algorithm,” ACM SIG-
COMM Computer Communication Review, vol. 27, no. 3, pp. 67–
82, 1997.

[21] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness
with multipath tcp,” in ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4. ACM, 2011, pp. 266–277.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

15 doi: 10.2313/NET-2019-06-1_03

