
Performance of Secure Multiparty Computation

Ludwig Dickmanns, Marcel von Maltitz∗
∗Chair of Network Architectures and Services, Department of Informatics

Technical University of Munich, Germany
Email: ludwig.dickmanns@outlook.de, vonmaltitz@net.in.tum.de

Abstract—With the recent advancements in modern com-
puter technology secure multiparty computation (SMC)
evolved from a mere theoretical approach to a number of
actively developed software projects. A major advantage of
SMC is that it allows a set of parties to jointly calculate a
function without any party revealing it’s input.
In our study we evaluated the influence of network param-
eters on the performance of a SMC framework, in order to
derive an outlook for the feasibility of SMC applications in
the future. For the evaluation the following parameters and
the corresponding measurements were chosen: The impact
of increasing the number of peers on execution time and
protocol invocations and the effect of added network latency
and decreased bandwidth on the execution time.
Our results indicate that SMC is a feasible option, especially
in setups with a high bandwidth, low network latency and
a limited number of peers. Linear increase in peers led to
a linear increase in execution time and protocol invocations.
The execution time increased drastically for a transmission
rate of 10 MBit/s or lower. However, added network latency
had the most significant negative impact.

Index Terms—secure multiparty computation, performance,
measurement

1. Introduction

The main goal of Secure Multiparty Computation is
to allow several parties calculating a joint function. The
corresponding inputs of each party are kept private and no
Trusted Third Party should be required for the calculation.

The most prevalent example for SMC is Yao’s
Millionaires’ Problem: Two millionaires wish to
determine whom of both is wealthier – without either one
of them revealing their credit balance. As mentioned in the
beginning, no Trusted Third Party should be required. In
his paper "Protocols for Secure Computation" from 1982,
aforementioned A. C. Yao proposes a solution to this
problem, which satisfies the above mentioned criteria.
Furthermore, the researcher describes a generalized
approach for similar problems with more than two parties
calculating a collective function without revealing their
inputs, e.g. "Mental Poker" [1]. However, at this point
in time a practical implementation was not feasible
due to lack in computational power. Fortunately – with
the advancement of technology over the recent years –
computers are now capable of performing such tasks in an
appropriate amount of time and thus SMC-Frameworks

are emerging [2] [3].

Besides computational power there is another impor-
tant point to consider when answering the feasibility ques-
tion: Network performance. The purpose of this paper is to
investigate in and help answering the following question:
How do network parameters influence the performance of
SMC? Hence, measurements were carried out examining
the influence of the following parameter:

• Number of peers
• Network latency
• Transmission rate

Only for the first one, number of peers, we identified the
impact on the amount of evaluated protocols, because the
other two parameters are not influencing it. For all three of
them execution time measurements were carried out. This
is the most important factor in the context of usability
because the application should be able to operate in an
user-acceptable amount of time.

The remainder of this paper is structured as follows:
After identifying related work in Section 2, there will be
information about our testing setup in Section 3 divided
in two parts: Testbed (3.1) and the SMC framework of
choice and our adjustments to it (3.2). Then, the results
of the measurements are shown in Section 4 and in Sec-
tion 5 those results and the corresponding consequences
are discussed. In the last Section (6) we draw a conclusion
regarding our results and provide an outlook for future
research.

2. Related Work

Firstly – as discussed in the introduction – the
theoretical foundation for SMC was layed out in 1982
by A. C. Yao [1]. Secondly several SMC frameworks
were implemented. Hence, the third step is to evaluate
the performance of such applications in order to discuss
whether the technology is applicable.

One publication investigating on this topic is "A per-
formance and resource consumption assessment of secure
multiparty computation" by Marcel von Maltitz and Georg
Carle [4]. Here, the researchers analyzed the following
parameters:

• Number of peers
• Network latency
• Transmission rate
• Packet loss

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

5 doi: 10.2313/NET-2019-06-1_02



• Input data parallelization
With the purpose of examining data about their impact on
the following performance indicators:

• Execution time
• CPU cycles
• Heap memory consumption
• Transmitted bytes
Their research work resulted in a promising outlook

for SMC in the future. Intranet applications can already
be considered feasible, however for Internet and mobile
Internet applications the main bottleneck is network
latency. A difference to this paper is the SMC protocol
(BGW) used by the software under test. BGW will not
be explained in this paper, however, in Section 3.2.1
there is a short introduction to SPDZ, which is the SMC
protocol used by the software we tested.

In this paper there will be an analysis of three of
the above five parameters. We used the same network
setup in order to either validate the thesis by delivering
a similar outcome or providing room for discussion by
showing different results. However, we did not analyze
packet loss and input data parallelization as this would
exceed the frame of this study. Furthermore, we did not
investigate CPU cycles, heap memory consumption and
transmitted bytes, for the same reason.

Further measurements were taken in [5] [6].

3. Test Setup

The setup, in which the time measurements were
carried out, consists of two parts. The first of which is
the testbed, i.e. the hardware the test and measurement
software was ran on. The second part is the SMC frame-
work software – namely FRESCO – and our adjustments
to it. Firstly, general information on FRESCO is given.
Then, the tested application is introduced. Afterwards, we
explain how the measurements were taken.

3.1. Testbed

For our tests we used a range of three to 17 physical
peers in order to derive the influence factor of adding
additional peers to the network. The hardware for each
host was equal: A four core Intel Xeon CPU running
at 2.50GHz with 8192KB of cache and 16GB RAM.
All hosts were connected to each other with an 1 GBit
networking interface and the default link latency is around
0.18ms. The network is organized in a star topology: A
central switch in the middle is connected to three other
switches. The ladder are connected to five to six hosts. As
the operating system of choice on each machine Debian
Stretch (9.4) was used with a 4.9 Linux kernel.

3.2. FRESCO

In this subsection we introduce the secure multiparty
computation framework, which we used for our tests.
Then software under test is introduced. Here, we adjusted
an demo application, which is part of the framework, and
those adjustments are explained. Afterwards, the method-
ology for the measurements is introduced.

3.2.1. General. The FRamework for Efficient Secure
COmputation (FRESCO) is developed by the Alexan-
dra Institute in Denmark. It is licensed under the open
source MIT license. According to their documentation [7],
the framework is already prototypically in usage, e.g. to
evaluate surveys without revealing the answers of the
participants. The code is written in Java, which helps
with platform independence. Summarizing, the main goals
of FRESCO are providing an infrastructure for uncom-
plicated SMC application development, with an easily
adjustable design. Earlier mentioned protocols are defined
in a protocol suite and represent the base functions of
it. Hence, applications are built using protocols. Batches
contain a certain number of protocols, which are eval-
uated in parallel. In addition, the effort for developing
an individual protocol suite is reduced by contributing
a framework of reusable patters. A central feature of
FRESCO is an extra abstraction layer, in order to separate
algorithm/application development from the mathemati-
cal realization of the underlying SMC protocol. Finally,
FRESCO tackles scalability issues by supporting pre-
processing and parallel execution. FRESCO is actively
developed and maintained. The SMC protocol used by
FRESCO is SPDZ, which allows secure arithmetic calcu-
lations for multiple parties via secret sharing [8]. A great
example to explain and illustrate arithmetic operations
with secret sharing is the addition with multiple parties.
In this case, n parties wish to collaboratively calculate the
sum of their inputs, here integer values. Party i contributes
the input xi. Each party splits it’s inputs into n randomly
sized parts (xi

1, ..., x
i
n) – so called shares – in a way that

adding up all of the shares results in the input (xi). E.g.
for the input xi this means

∑
j x

i
j = xi. In the next

step, the shares are exchanged between the parties: Party
j receives share j of each party (x1

j , ..., x
n
j ). Then, Party j

calculates partial sum rj of the received shares. In the last
step all partial results are exchanged allowing each party
to calculate the total sum [9]. The previously cited article
and its follow-ups provide further insights to arithmetic
operations with secret sharing and SPDZ.

3.2.2. Tested Application. For our studies we used ver-
sion 1.1.2 of FRESCO [2], which contains demo appli-
cations. In one of those three parties are collaboratively
calculating the sum of an integer array, which is the input
of party one. Parties two and three initially had no inputs.
In order to make this example more realistic, however,
we adjusted it in order to allow more than three parties,
with each of them contributing their own input array.
Instead of the sum, the application calculates the mean
and the variance of all of the inputs. Previously the input
was hard coded inside the FRESCO code, but in our
example the inputs are now read in from a CSV file. With
those adjustments the example was made more versatile
for testing as this allows to draw a conclusion about the
impact of adding extra peers.

3.2.3. Measurements. As mentioned in the beginning of
this paper, measurements were taken on the evaluated
protocols and the corresponding batches and execution
time. When running the FRESCO application, each peer
produces an individual log file, where data about the
last run are stored. Both evaluated performance indicators

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

6 doi: 10.2313/NET-2019-06-1_02



were extracted from those files and the collected data is
illustrated in the figures of this paper in Section 4. Each
measurement was carried out ten times and the median of
those measurements was used for the illustrations.

4. Results

Separated by the input parameters – namely number
of peers (4.1), network latency (4.2) and transmission rate
(4.3) – this section addresses the results of this study.
Hence, interpreting the impact of the above parameters
on the execution time and the amount of transferred data
is the content of this chapter.

4.1. Number of Peers

For our tests we used a range of three to 17 peers
in order to investigate in the change in execution time
(4.1.1) and protocol invocations (4.1.2) with an increasing
amount of peers.

4.1.1. Execution Time. The effect of an increasing num-
ber of peers on the execution time is demonstrated in
Figure 1. The x axis shows the number of peers, whereas
on the y axis the execution time can be seen. A higher
amount of peers leads to more input for computation as
well as an increase in communication between the peers.
Both of these factors result in an extended execution time.
In addition, the figure illustrates a linear behavior, which
can be considered positive as e.g. quadratic behavior
would be much worse.

4 6 8 10 12 14 16
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Number of peers

E
xe

cu
tio

n
tim

e
[s

]

Figure 1. The execution time depending on the number of participating
peers.

4.1.2. Protocols and Batches. Besides the execution
time, the amount of protocol invocations and the number
of corresponding batches was measured. As shown in Fig-
ure 2 an increase in peers led to more protocol invocations
in an higher amount of batches. Both measured indicators
seem to follow linear behavior – as the execution time
does – in relation to the number of peers. While the
quantity of batches grows relatively slowly, the number
of protocol invocations increased faster in comparison.
However, as both numbers are increasing linearely, this
example provides an argument in favor of the feasibility

question. For very large applications this still remains a
point to consider, but even here (and from the execution
time standpoint) linear increase is by far more acceptable
in contrast to e.g. quadratic or cubic behavior.

3
pe

er
s

4
pe

er
s

5
pe

er
s

6
pe

er
s

7
pe

er
s

8
pe

er
s

9
pe

er
s

10
pe

er
s

11
pe

er
s

12
pe

er
s

13
pe

er
s

14
pe

er
s

15
pe

er
s

16
pe

er
s

17
pe

er
s

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2
·104

Protocol invocations
Batches

Figure 2. The amount of native protocol invocations and the number of
batches in which they have been executed depending on the number of
participating peers.

4.2. Network Latency

Another parameter evaluated in the study for this paper
is network latency and how it affects the execution time
of the application. In order to add latency tc was used.
Figure 3 illustrates how additional network latency affects
the execution time for the range of three to 17 peers
connected to each other with a bandwidth of 1000 MBit/s.
The increase in execution time in relation to network
latency behaves similar to a root function. However, the
growth in run time increases significantly. As an example,
the execution time without additional latency is approx-
imately under five seconds for the range of three to 17
peers, whereas a delay of 10ms results in an factor five
to 17 growth in execution time for the corresponding
number of peers. After this strong increase the slope
flattens. Increasing added network latency from 10ms to
50ms (factor five) results in an approximately factor two
increase in execution time.
Inferentially, it has to be stated that the network latency
can result in a problem for SMC. Especially for mobile
and Internet use cases this imposes a problem and possible
limitations as in those cases a latency of 10ms is already
quite optimistic. Hence, for such applications, latency can
lead to an significant increase in execution time.

4.3. Transmission Rate

The last parameter we analyzed for this study was the
transmission rate. In order to decrease the bandwidth from
a maximum of 1000 MBit/s to a minimum of 1 MBit/s
the same tool as in Section 4.2 was used (tc). Equal
to the other measurements, the experiments were made
with three to 17 hosts. Execution time was measured in
the aforementioned range for 1 MBit/s, 10 MBit/s, 100
MBit/s and 1000 MBit/s. Figure 4 illustrates that there
is no significant change in execution time between 1000

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

7 doi: 10.2313/NET-2019-06-1_02



0 10 20 30 40 50
0
25
50
75

100
125
150
175
200

Network latency [ms]

E
xe

cu
tio

n
tim

e
[s

]

3 peers 4 peers 5 peers
6 peers 7 peers 8 peers
9 peers 10 peers 11 peers
12 peers 13 peers 14 peers
15 peers 16 peers 17 peers

Figure 3. The execution time of the secure computation depending on
the number of peers and on the network latency of the network. The
latency highly influences computation time irrespective of the available
transmission rate.

MBit/s and 100 MBit/s. However, from 100 MBit/s to 10
MBit/s there is a slight increase in time for execution. In
the last interval, from 10 MBit/s to 1 MBit/s, the increase
in execution time is much steeper, especially when the
lower bandwidth is combined with a large number of
participating peers. This behavior can be interpreted as
follows: With 10 MBit/s and lower the transmission rate
constitutes a bottleneck, but as soon as this threshold is
exceeded there are only slight improvements in execution
time.
Therefore, this may result in problems for large scale
applications with a huge amount of hosts and some peers
having lower bandwidths, e.g. mobile apps and Internet
applications. However, for smaller networks with a high
transmission rate between the peers, for example an in-
tranet setup, the SMC approach remains more feasible.

100 101 102 103
0

10

20

30

40

50

60

Transmission rate [MBit]

E
xe

cu
tio

n
tim

e
[s

]

3 peers 4 peers 5 peers
6 peers 7 peers 8 peers
9 peers 10 peers 11 peers
12 peers 13 peers 14 peers
15 peers 16 peers 17 peers

Figure 4. The execution time of the secure computation depending on
the transmission rate. The shown case has no additional network latency.

5. Discussion

The purpose of this Section is to put the results from
Section 4 in context and – as mentioned in Section 2
– compare them to the results of "A performance and
resource consumption assessment of secure multiparty
computation" [4].
As discussed in Section 4.1, the execution time increases
linearly with an increasing number of peers in our case.
The previously mentioned study came to the same results,
which strengthens the thesis of having linear behavior.
For protocol invocations no comparable measurements
were taken. In our case, we were able to also identify
linear correlation between number of peers and protocol
invocations.
Transmission rate can be considered a smaller problem.
Both studies came to the result that a relatively low
bandwidth of 1 MBit/s significantly increases the
execution time, but even an increase to 10 MBit/s
reduces time of execution drastically. Further increase in
transmission rate only has a small effect.
In our study network latency constitutes the most
important factor, as it had the largest absolute impact
on the execution time. The related study supplies equal
results, which strengthens this thesis.

Hence, for intranet applications, which are mostly con-
nected with broad and fast connections, secure multiparty
computation can be considered a viable option. Under the
described circumstances, it is possible to keep execution
time acceptably low. However, for applications with a
less powerful network infrastructure, for example mobile
apps, this can result in a high execution time, as the
factors combine, i.e. a low transmission rate (EDGE: 384
KBit/s, 3G: 7.2 MBit/s (HSPA) [10]) and a higher network
latency(EDGE: 200-450ms [11], 3G: 100-350ms [12]).

6. Conclusion

Summarizing, SMC provides a great software solution
when several parties wish to collaboratively calculate a
function, without either of them revealing their input. The
theoretical concept already existed over 35 years ago, but
recent advancements in computer and network technology
allow practical implementations. However, there are still
considerable limitations to secure multiparty computation.
With state-of-the art technology and networks, intranet
applications can already be considered feasible due to a
limited amount of peers, low network latency and a high
transmission rate. In such setups an acceptable execution
time seems realistic. However, in use cases with less
optimal circumstances there is a significant increase in
execution time. While a decrease in transmission rate leads
to an increase of up to approximately factor five, the
influence of the amount of peers was at factor three from
three to 17 participants. The greatest absolute increase in
execution time came from the network latency. Even a
small delay of 50ms increased the time of execution with
up to a factor of over 100. With those limitations real-time
or close to real-time applications are unfeasible at the mo-
ment. However, for use cases with softer time restrictions
or faster infrastructure, secure multiparty computation can
be feasible. With further advances in internet and network

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

8 doi: 10.2313/NET-2019-06-1_02



technology – increasing bandwidth in combination with
lower network latency – SMC can exceed the limitations
of today. Hence, it remains an interesting topic for further
research and investigation.

References

[1] A. C. Yao. Protocols for Secure Computations. Proceedings of
the 23nd Annual Symposium of Foundations of Computer Science,
Washington, DC, USA: IEEE, pp. 1-5, 1982.

[2] A FRamework for Efficient Secure COmputation. https://www.
github.com/aicis/fresco. 2018.

[3] Sharemind MPC. https://sharemind.cyber.ee/sharemind-mpc/.

[4] Marcel von Maltitz and Georg Carle. A performance and resource
consumption assessment of secure multiparty computation. CoRR,
abs/1804.03548, 2018.

[5] M. Burkhart, M. Strasser, D. Many and X. Dimitropoulos. SEPIA:
Privacy-preserving Aggregation of Multi-domain Network Events

and Statistics. Proceedings of the 19th USENIX Conference on
Security, p. 15, 2010.

[6] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework
for fast privacy-preserving computations. IACR Cryptology ePrint
Archive. Springer, 2008, no. October, p 289.

[7] FRESCO Documentation. https://fresco.readthedocs.io. 2018.

[8] I. Damgård, V. Pastro, N. Smart, and S. Zakarias. Multiparty
computation from somewhat homomorphic encryption. Lecture
Notes in Computer Science, vol. 7417, 2012, pp. 643–662.

[9] Bristol Cryptography Blog. https://bristolcrypto.blogspot.com/
2016/10/what-is-spdz-part-1-mpc-circuit.html. 2016.

[10] Mobiles Internet. https://de.wikipedia.org/wiki/Mobiles_Internet.
2018.

[11] Alles zum Thema edge. https://www.onlinekosten.de/
mobiles-internet/edge/.

[12] 3G/4G Ping Times/Latency. https://www.evdoinfo.com/content/
view/4818/64/.

Seminar IITM WS 18/19,
Network Architectures and Services, May 2019

9 doi: 10.2313/NET-2019-06-1_02


