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ABSTRACT
Most of our network software implementations depend on
the Transmission Control Protocol (TCP). Thus, the perfor-
mance and reliability of these solutions depend on a reliable
protocol. A fast connection requires a timely acknowledge-
ment of a received data packet. We want to measure this
timespan, between the sending of the packet by the source
and the arrival of the acknowledge by the destination. This
timespan is called round trip time (RTT). Therefore, we
present a solution to observe this timespan by employing
FlowScope to measure the round trip time with the help of
a suited extension module. Furthermore, we evaluate with
this proof-of-concept whether FlowScope [4] is a appropri-
ate tool for this purpose and it can collect suitable data for
further network focused research.
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1. INTRODUCTION
The Transmission Control Protocol (TCP) is used to trans-
fer data over networks which could be deficient and as a
consequence lose data packets. TCP [12] ensures a success-
ful transmission by awaiting the confirmation before sending
the next packet. TCP is the most used network transmission
protocol, accounting for around 90 percent of the internet
traffic [5,8].Thus, weaknesses of the transport route will af-
fect a majority of internet users. One of this weaknesses
could be a link between the source and destination with a
raised latency which leads to increased response times of
the connection or in extreme cases, i.e. in case of a failure to
timeouts of the session due to packet loss. To monitor the
time between sending a data packet and the acknowledge-
ment of the same in (near) real time, we present a solution
based on FlowScope [4], extended by a module created for
this purpose.

We structure the paper as follows: First, we introduce rele-
vant terms and definitions in Section 2. Second, we discuss
related work in Section 3. After that, we show the imple-
mentation in Sections 2 and 4. Then, we look at the results
of the implementation in Section 5 and look at another way
to mitigate the shortcomings found during the evaluation in
Section 6. Furthermore, we propose possible improvements
to the solution in Section 7. Before concluding the paper
in Section 9, we encourage our readers to reproduce our re-
search on different input data in Section 8.

2. TECHNICAL BACKGROUND
In this section we give an overview over employed tools,
define commonly used terms and describe the investigated
protocol.

2.1 Network Flow
A network flow is defined by its unique five-tuple. This
tuple is formed by the source ip address and port, destination
ip address and port, and by the used protocol (in our case
TCP):

flow tuple = (srcIP, srcport, dstIP, dstport, protocol)

2.2 Round Trip Time
This term defines the timespan between the point when the
sender transmitted his packet and when it receives the ac-
knowledgement that the packet has been received. This
timespan is called round trip time (RTT). The authors of [7]
discuss the different causes for the delay. The delay might
be caused due to the transport medium (i.e., based on the
physical properties of light or electrons), network (caused by
queuing and congestion) or processing delay, etc.

Formally, we define it as the difference between the point
in time where the packet with sequence number x arrives
and the point in time when the packet arrives which ac-
knowledges packet x (refer to Section 2.3 and to [12] for an
explanation)

tseq = time stamp of packet with sequence number x
tack = time stamp of packet

with acknowledge number x + 1

RTT = tseq − tack

2.3 Protocol Background
TCP is embedded into the protocol stack at Layer 4 of the
OSI Model on host computers [12]. It assumes to be able
to get data-segments from the layer below and to forward
received data to the layer above. It is packet oriented and
sends and receives the packets from the surrounding layers.
TCP is a versatile protocol and has a number of optional
header extensions. The protocol is defined in RFC 793 [12].
However, as we only want to analyse the round trip time we
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Figure 1: The TCP Three-Way Handshake [12] with
Round Trip Time

focus on parts of the protocol that are important for this
analysis.

A TCP packet includes the SYN-bit that is set (= 1) when
the caller wants to initiate a new connection, the ACK-
bit is set if the sender acknowledges a packet. TCP uses
a procedure called “Forward Acknowledge”, this means the
acknowledge number is advanced by one compared to the
acknowledged sequence: When a packet with acknowledge
number x is received, then the packet with sequence number
x − 1 is acknowledged. Furthermore, a TCP connection is
initiated with the Three-Way Handshake depicted in Fig-
ure 1 and ended by the two parties sending a packet with
the FIN-bit set and both acknowledging it.
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Figure 2: TCP header [12,15]

2.4 Employed Software
During the development and test of the FlowScope module
we used MoonGen [3] to replay a stored packet trace con-
taining a SSL-scan and FlowScope [4] to capture and analyse
the replayed traffic. Both tools are based on the libmoon [2]
framework which encapsulates the Data Plane Development
Kit (DPDK) [17]. The libmoon library extends the luajit [11]
just-in-time compiler with interfaces to DPDK and a multi-
threaded runtime model.

2.4.1 MoonGen
MoonGen is a customizable high-speed packet-generator [3].
It was used to generate test traffic that includes real TCP
session interactions (including sequence numbers with the
appropriate acknowledge numbers). This was accomplished
by utilizing the included script to replay a captured pcap
(refer to Section 8 for more information).

2.4.2 FlowScope
To capture and analyse the traffic generated by MoonGen,
FlowScope was employed. It is designed for networks with a
link rate exceeding 10 Gbit/s and according to the authors
has been successfully tested with rates above 100 Gbit/s [4].
Most of the high-level functionality is written in lua. Flow-
Scope is multi-threaded and due to the limitation of the
luajit [11] each thread runs a separate instance of the luajit
environment. With the means provided by libmoon it is pos-
sible to communicate over thread-boundaries. Each thread
of FlowScope has a defined purpose [4, 14]:

Inserter This thread reads the packets from the NIC and
stores it in a ring buffer.

Analyzer This thread runs the user module on a packet
and stores the packet in a hash map according to the
result of the user module. The required functions are
shown in Section 4.1.

Checker The checker runs in configurable intervals and
checks which flows are outdated and therefore can be
removed or need to be preserved.

Dumper The dumper thread writes the captured packets
to a pcap-file. The content of this file is determined by
a filter expression written in the packet-filter language
(similar to expressions used by tcpdump) and will be
compiled to a lua function with pflua [20].

3. RELATED WORK
Observing the round trip time of TCP flows has been the
topic of many research reports [5, 7, 16] and product of tool
development [9, 21]. Two of these software pieces analyse
the round trip time as an input value for further analysis
of tcp flows. However, in this paper we focus on round trip
time calculation. In [21] Zhang et al. present T-RAT, a tool
to analyse the TCP flow rates. T-RAT takes traces of TCP
connections and tries to infer the limiting factor on the flow
rate. Integral to this analysis is the calculation of the round
trip time (RTT): The RTT is calculated based on groups
of packets forming a flight (as illustrated in [16]) based on
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the inter-arrival times. It then classifies the flight into one
of the TCP phases (e.g., slow start, congestion avoidance,
etc.). Shakkottai et al. report though, that this approach is
controversial and not well defined [16]. Following the analy-
sis of the TCP flow rates, Mellia et al. present in [9] another
software to analyse and create different types of statistics
on the IP and TCP level. The tool needs captured network
traces (i.e., it only works offline) and will then extract the
attributes and features of the flows needed for the statistic
(on commodity hardware and retroactively). One of these
attributes is the round trip time, where the authors gather
the minimum, maximum and average RTT with respect to
lost and retransmitted packets, also called the “Karn’s algo-
rithm”[6]. For the computation of the round trip time multi-
ple models exist: Some only take the RTT during the Three-
Way Handshake (illustrated in Figure 1) into account [5],
while others evaluate if the RTTs are different during the
phases of a flow [7]. Additionally, Fraleigh et al. point out
in [5], that at the start of this century, it might have been
more difficult to acquire a suitable dataset as it is now, due
to limitations on storage space and available transmission
capacities. More information about FlowScope can be found
in [4], about MoonGen in [3].

4. IMPLEMENTATION
In this section we describe the requirements that FlowScope
imposes on a user module, discuss the algorithm and envi-
ronment we used to test our solution.

4.1 Required Attributes by FlowScope
FlowScope has the ability to be extended by a user module.
This module needs to provide a minimum set of functions
and attributes in order to use the flow tracking that Flow-
Scope offers. See the Github repository [18] for the imple-
mentation. The lua module needs to export all attributes
and functions that are listed below, only attributes marked
with optional can be left out. In order to retain a clear
structure, the required attributes and functions are sorted
by the thread they belong to (this information was extracted
from the example modules and by reading the source code
in [14], especially the exampleUserModule.lua [13]). In or-
der to implement a user module that is capable of measuring
the RTT of TCP-flows, we implemented the following func-
tions:

4.1.1 Flow Tracking
The Analyzer thread carries out the tracking of the flows.
After a packet is inserted by an Inserter, the flow key needs
to be extracted in the extractFlowKey function. Next, the
handlePacket function is called with this packet.
C-structure types need to be defined with ffi.cdef function
of the luajit ffi library [10] before they are known to the
library. If a parameter needs to be set to a name of a C-
structure the variable needs to include the whole name, i.e.,
“struct ip”.

mode Either “qq” (to use the Queue of Queues data struc-
ture [4] / the ring buffer) or“direct”(to directly access
the NIC without buffering)

stateType The type of the C-structure used to carry the
state of this flow. Due to the implementation of the
hash map in the background, this structure is limited

to 128 B in size. With a change to the definition of the
hash map in FlowScope this could also be enlarged.

defaultState This is an optional map datatype. The
stateType will be initialized with the values defined
here. Before applying the default values, the memory
space designated for this structure is filled with zeros.
Then, the default values are applied (see the descrip-
tion of ffi.new in [10] for an extensive description).
If this map is undefined or empty, the values are set to
0.

flowKeys A flowKey is a C-Structure that defines how and
on which attribute the packets should be associated. In
case of a IP-flow, the five-tuple outlined in Section 2.1
constitutes a suitable flow key. The flowKeys attribute
expects a map that includes all C-Structure definitions
for possible flows. The size of a flow key is limited to
64 B.

function extractFlowKey(buffer, flowKeyBuffer) The
function is used to extract the features of a flow from
the buffer (which contains the whole packet including
all headers from layer 2 and above) and store it in
the flowKeyBuffer. Therefore the flowKeyBuffer is a
pointer to a memory location that is large enough to
store the largest flow key. The function returns false
if the packet should be ignored and not stored at all or
(true, i) if it should be stored, where i indicates which
flow key was used (based on the flowKeys map).

function handlePacket(flowKey, state, buffer,

isFirstPacket) The handlePacket function extracts
the information from a packet (contained in flowKey

and in the packet itself, in the buffer) and stores it
into the flow state. The state variable is initialized
with the contents of defaultState if isFirstPacket

= true or it contains the state of the flow as it was
changed by the last handlePacket invocation. If the
first packet of the flow is handled, isFirstPacket is
true. The function must return either true if this
flow should be archived after it has expired (see Sec-
tion 4.1.2) or false if this flow should not be archived.

4.1.2 Checker Thread Configuration
The Checker thread observes the Queue of Queues buffer for
expired flows and marks flows that are expired (i.e., flows
that are seen as finished) for the dumper thread (refer to
the next section for a explanation). All of the attributes of
the Checker thread are optional.

checkInterval This attribute defines the interval in which
the Checker thread runs (in seconds). If the variable
checkInterval is not defined, the Checker thread is
disabled and will not run, in this case none of the func-
tions prefixed with “check” are called.

checkState This lua map defines the internal state of this
Checker thread.

checkExpiry(flowKey, state, checkState) This function
checks whether the flow with flowKey and state is
expired. It also has access to the checker ’s state via
the checkState variable. The checkExpiry function
should return false if this flow is still active. If the flow
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is expired, the expiry-timestamp ts is smaller than the
current time, the function should return a tuple with
(true, ts) and is, as a consequence, removed from the
hash table and from the rules of the dumper threads.

checkInitializer(checkState) The checkInitializer

function is called after the state of the checker thread(s)
has been initialized by FlowScope. It can be used to
initialize the state of the Checker thread (checkState)
or to initialize libraries once per thread.

checkFinalizer(checkState, keptFlows, purgedFlows)

checkFinalizer is handled similarly to checkInitial-

izer. However, it is invoked when the Checker thread
is about to be terminated.

4.1.3 Dumper Thread Configuration
The Dumper thread writes the captured packets based on a
Packet-Filter expression to a pcap-file.

maxDumperRules This variable limits the number of applied
packet-filter rules. If set to 0 FlowScope is not able
to store any dumping rules and thus, no packets are
saved in a pcap file.

buildPacketFilter(flowKey) The buildPacketFilter func-
tion creates a packet filter based on the flowKey. To
pass the filter to FlowScope it is required to return a
string in the packet filter language [19].

4.2 Employed Algorithm
We use a SYN based approach as proposed in [16]. The
authors found that, despite the simplicity of the algorithm,
other tested algorithms might not offer big advantages over
the SYN based approach. Whereas the SYN based ap-
proach is easy to implement and is comparatively less re-
source intensive, which makes it suitable for online RTT
estimation. The larger challenge in this proof of concept
was the integration into FlowScope. As outlined in Sec-
tion 4.1.1, it is not possible to store an unbounded amount
of data per flow in the hashmap managed by FlowScope.
This implies that we are limited to a maximum of 128 B for
the flow state. 34 B are used by counters for the minimum,
average and maximum RTT, together with counters for the
number of packets and the size observed. Our data structure
to store the sequence number and the timestamp is 8 B in
size (Figure 3), so we can store (128 B− 34 B) : 8 B = 11.75
sequence numbers with a timestamp. So we can store eleven
sequence numbers together in a list. Despite the implemen-
tation of the extractFlowKey function, the main point of
the implementation was the creation of the handlePacket

function.

5. EVALUATION OF THE IMPLEMENTA-
TION

Figure 4 shows the average round trip time during different
flows between a pair of IP addresses. These numbers are
gathered based on a replay of a SSL-scan stored in a pcap
file with MoonGen [3]. We observed that all reported round
trip times are 0. We conjecture that a replay of a stored
SSL-scan might not be the most suited material to test the
algorithm. One of the most probable causes for the result
in Figure 4 could be, that most of the ports are closed and

struct timestamped_tuple {

uint32_t sequence_number;

uint32_t timestamp;

};

struct flow_state {

uint32_t byte_counter;

uint32_t packet_counter;

uint64_t last_seen;

double avg_rtt;

uint32_t max_rtt;

uint32_t min_rtt;

uint8_t tracked;

uint8_t rtt_index;

struct timestamped_tuple rtts[11];

};

Figure 3: The Used State C-Structure

did not send a packet or terminated the connection shortly.
Based on Figure 5, we further assume that the maximum of
11 sequence numbers are a too little subset to calculate the
round trip time for this packet sample.
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Figure 4: Round Trip Time per Flow Between Two
Randomly selected IPs

6. VALIDATION
To further validate the aforementioned solution to evaluate
the round trip time with FlowScope. And to confirm our as-
sumptions about the number of sequence numbers we need
to store, we created another approach that uses a dynami-
cally expanding list of sequences.

6.1 Implementation of the New Approach
Therefore, we created another user module that is based on
the previous approach but employs a dynamically expand-
able list to store the round trip times and sequence numbers.
The captured samples of sequence numbers and round trip
times are stored in a doubly linked list. The nodes of the
list are heap-allocated and managed by the user module with
malloc and free. Hence, we are not limited by the space
constraints of the FlowScope hash map. As we are now able
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Figure 5: Packets per Flow Between Two Randomly
selected IPs

to store every amount of sequence number that we capture,
we are able to compute the average RTT after we finished
collecting the sample. This opens the possibility to do fur-
ther analysis on the round trip time. The improved flow
state C-structure is depicted in Figure 6.

6.2 Evaluation of the New Approach
We tested the new approach again with an excerpt of a SSL-
scan as before, albeit an different part of the SSL-scan. To
reproduce this test with different data refer to Section 8. We
found that the new approach yields results that we already
expected from the implementation that used only a limited
number of stored sequences. The data depicted in Figure 7
and Figure 8 was captured with the user module outlined
above and flows with no RTT samples have been filtered
out. We ascertain that the RTT is highly variant over the
number of flows captured in this sample (Figure 7). To ex-
plore the distribution of the round trip times, the ten highest
average round trip time are depicted in Figure 9. These re-
spond initially promptly with an SYN-packet and then need
apparently more time to process the next messages.

7. FUTURE WORK
Our original solution did not yield expected results. Conjec-
tured cases for the shortcomings have been the properties of
the SSL-scan or the previous calculation of the round trip
times. However, these shortcomings have been caused by the
limited amount of stored sequence numbers. As we found
by employing a different approach in Section 6. To evolve
this proof-of-concept into a better employable tool, it needs
to be further tested with different packet traces that exhibit
a different traffic pattern than a large amount of short lived
connections or connection resets which might highlight fur-
ther shortcomings of the two approaches.

Furthermore it needs to be evaluated, if FlowScope is the
right tool for this task. Section 4.2 outlines the limits of
FlowScope for the initial approach. The main limitation of
FlowScope was the limited amount of storage available for

struct List_node {

uint32_t sequence_number;

uint32_t timestamp;

struct List_node* next;

struct List_node* prev;

};

struct RTT_List {

uint32_t rtt;

struct RTT_List* next;

struct RTT_List* prev;

};

struct flow_state {

uint32_t byte_counter;

uint32_t packet_counter;

uint64_t last_seen;

uint32_t max_rtt;

uint32_t min_rtt;

uint8_t tracked;

struct List_node* seq_list;

struct List_node* ack_list;

struct RTT_List* rtts;

};

Figure 6: The Improved C-Structure for the Flow
State

each flow. Albeit, this could be mitigated in the second ap-
proach by using a heap allocated doubly-linked list which is
not managed by FlowScope. However, manually allocating
and disposing memory is prone to errors and an automatic
solution to memory management is preferred here.

8. REPRODUCIBLE RESEARCH
We invite our readers to test our software and reproduce
our findings with different input data. For this reason we
provide the FlowScope modules at [18]. To run FlowScope
with the user modules introduced herein, to follow the steps
delineated below:

1. Server A and B need to be directly connected via net-
work cards that are supported by the libmoon frame-
work.

2. Install MoonGen [3] from [1] on server A.

3. Continue with installing FlowScope from [14] on server
B.

4. Now, the repository with the FlowScope user mod-
ule referenced by [18] needs to be cloned alongside the
FlowScope installation.

5. Run ./libmoon/build/libmoon lua/flowscope.lua

../flowscope-tcp-rtt-analysis/src/TCPRTTTime

Analysis_avg_w_seq.lua 0 on server B. This starts
the collection of analysis data. To use the second ap-
proach from Section 6 substitute
TCPRTTTimeAnalysis_avg_w_seq.lua with
TCPRTTTimeAnalysis_w_malloc.lua

6. Now, to replay a captured pcap file, ./build/MoonGen
examples/pcap/replay-pcap.lua -r 1 0 <path-of-pcap>
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Figure 7: Average Round Trip Time Per Flow With
the New Approach
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Figure 8: Packets Per Flow With the New Approach

needs to be run on server B within the MoonGen di-
rectory.

If these instructions deviate from the Readme.md of [18],
please follow the instructions of the Readme.md as these in-
structions will provide up to date instructions.

9. CONCLUSION
With this paper, we contribute to the ongoing evolution of
a toolset to measure and analyse high-bandwidth networks
passively and during operation.

We started with a topic-focused introduction to the TCP
protocol and the round trip time as a metric to measure
the latency of networks. Then we continued to outline the
requirements of FlowScope to a user module and the im-
plementation of a module that collects data to measure the
round trip time. During the implementation, FlowScope
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Figure 9: The Distinct RTT of the Ten Highest Av-
erage RTTs

showed some limitations. Mainly, the inability to store ex-
panding flow status data, in our case, a list whose length
is not known a priori. This is mitigated by the second ap-
proach outlined in Section 6. We further evaluated the pos-
sibilities to improve FlowScope to be suited for this matter
and showed possibilities for further research.
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