
Data Management in Distributed Systems

Simon Schäffner
Advisor: Stefan Liebald

Seminar Innovative Internet Technologies and Mobile Communications SS2018
Chair of Network Architectures and Services

Department of Informatics, Technical University of Munich
Email: simon.schaeffner@tum.de

ABSTRACT
Distributed Systems allow a number of nodes to collaborate
on a problem. They can be of help when a single server can
no longer fulfill the requirements or when a larger number of
low performance nodes would like to cooperate. This paper
gives a broad overview over different strategies for data man-
agement in different kinds of distributed systems. It focuses
on the issues of scalability, performance, consistency, redun-
dancy, overhead and attack resistance. Five systems from
three categories are reviewed: peer-to-peer file sharing (Bit-
Torrent and Kademlia), content delivery networks (Akamai)
and distributed databases (Zatara and CouchDB).

Keywords
Distributed Systems, Data Management, Peer-To-Peer, Con-
tent Delivery Network, Scalability, Performance, Consistency,
Redundancy, Overhead

1. INTRODUCTION
Since the beginning of computing, there have been two im-
portant developments: the advancement from single-core
to multi-core processing and the establishment of local and
global high-speed networks. This allows for a variety of dif-
ferent kinds of computers, ranging from small credit-card
sized computers or even smartphones to supercomputers, to
connect together and form a distributed system [19]. This
system can be characterized as ”a collection of autonomous
computing elements that appears to its users as a single co-
herent system” [19]. ”autonomous” refers to the ”computing
elements”, called nodes, all being independent of each other
and not being controlled by a central instance. ”appear[ing]
as a single coherent system” means that the system has a
larger goal and therefor nodes have to collaborate to achieve
the goal. In addition to these two characteristics, it allows
for the nodes of a distributed system to be geographically
dispersed.

Most tasks either require some data input, an ability to out-
put/save data or even both. This is also the case in dis-
tributed systems, but data management is usually a lot more
complex than just reading and/or writing data to a single
disk.

This paper aims to compare data management strategies in
different distributed systems of different categories. Mostly,
popular systems with interesting and/or unique features were
chosen. The goal is not to give an in-depth review of the
strategies, but rather to give a broad overview over strate-

gies that are actively used at the time of writing.

In the following, first, different attributes of data manage-
ment systems are defined, and then the systems are com-
pared based on these metrics. In section 2 we define differ-
ent attributes that data management in distributed systems
can have. In section 3 we take a look at 5 concrete dis-
tributed systems and compare their data management by
the attributes defined in section 2. In the summary we com-
pare all the systems and give an overview of them in table
1.

2. ATTRIBUTES
We now describe the six attributes the distributed systems
are then compared by. The attributes were chosen as they
are relevant for most systems building on top of them.

2.1 Scalability
Because of the openness of the internet, a service provider
never knows when a spike in the popularity of their service
might happen. Therefor they would like to be able to scale
their applications indefinitely, as long as it makes sense eco-
nomically. With the whole system, the data management
system has to be able to scale as well.

2.2 Performance
Performance in this context describes how fast a requested
datum can be accessed. This includes both the initial delay
to find where the datum is stored and how fast it can then
be transferred to the requesting node.

2.3 Consistency
For redundancy a datum may be stored on more than one
node. This implies a challenge whenever a datum is changed
as the change has to be distributed through the system.
Consistency describes how well this is handled and if there
is the chance of receiving stale data.

2.4 Redundancy
As described above, a system can store data in more than
one place to ensure its availability or to increase perfor-
mance. Higher redundancy is better.

2.5 Overhead
Because of the nature of distributed systems, nodes inside
them have to communicate one way or another. One extreme
is that all nodes have all data saved in their local storage,

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

113 doi: 10.2313/NET-2018-11-1_15



but then any change in data has to be broadcast. The other
extreme is that the data is completely distributed between
the nodes, but then the nodes have to request data from
each other. Independent of the strategy for redundancy, this
communication obviously needs additional resources called
overhead over a single computer directly accessing data on
its internal disk. Less overhead is better.

2.6 Attack Resistance
The open nature of the internet implies that distributed sys-
tems may be attacked. In the case of data management, an
attack could mean not being able to deliver data to the rest
of the system anymore or delivering manipulated data. At-
tack resistance describes how many attack vectors there are
and how significant each is.

3. COMPARISON
In the following we are going to compare different distributed
systems, that have a focus on data management. We chose
two protocols relevant for peer-to-peer filesharing, BitTor-
rent and Kademlia, the content delivery network Akamai
and two distributed databases, Zatara and CouchDB.

3.1 Peer To Peer Filesharing
While peer to peer filesharing first emerged with the devel-
opment of Napster1 and gnutella2 for legally controversial
uses, it has advantages over traditional server-client struc-
ture downloading, that makes it interesting for completely
legal use, as well [18]. It uses shared resources to split the
load between many participants and has a higher reliability
as there are fewer single points of failure.

3.1.1 BitTorrent

Figure 1: BitTorrent network with offline origin

BitTorrent is a peer-to-peer file sharing protocol specified in
[10]. It is still under active development, and is still the most
popular peer-to-peer file sharing protocol on the internet,
but its usage falls with streaming services, such as Netflix3,
gaining more popularity. [7]

A download is started by first downloading a .torrent file
containing all the meta information needed. This includes
the URI of a so-called tracker, which coordinates all the

1https://us.napster.com
2http://www.gnutellaforums.com
3http://netflix.com

peers downloading the same file. A peer, also called a leecher
when it has not yet completed the download, connecting to
a tracker receives a list of other peers, which have parts of
the file available that the leecher still needs. As long as the
network as a whole has the complete file available, every
peer can download the needed parts from the other peers.
Initially one peer, the ’origin’, has to have the whole file
available at once.

The intention of a BitTorrent network is to distribute one or
more files to anyone or any node that can access the .torrent
file and connect to the tracker. So the goal of this distributed
system is data management itself. On a higher level, meta-
data also has to be managed. Especially the .torrent file has
to be managed externally, so it is not considered here.

In the following BitTorrent is analyzed according to the at-
tributes described in section 2.

Scalability: According to a two-week experiment described
in [16], the download speed scales with the number of peers.
The trackers are no bottleneck as they only have to dis-
tribute metadata. The more problematic issue is fairness.
An investigation[21] shows that peers with a high download
speed from the origin become ”Super Peers” that have a
very high share ratio (upload to download ratio). In all five
repetitions of the experiment the group of ”Super Peers”
consisted of the same peers independent of the time they
joined the download. This is unfair because a small number
of peers has to provide a larger amount of resources than
the other peers. Independent of fairness, scalability is still
good.

Performance: BitTorrents upload utilization is very good
as reported in [6]. In their experiments in a homogeneous
environment (same bandwidth for all leechers) the upload
utilization was around 95%, independent of the number of
peers. The download utilization was lower because it was
bounded by the upload speed of the leechers, so the bot-
tleneck was the upload bandwidth, not the protocol being
incapable. Performance of BitTorrent is very good because
of the upload utilization.

Consistency: As the content of a torrent never changes
and the user first downloads the metadata file containing
checksums of all pieces of the file(s), consistency is not an
issue with BitTorrent. In the worst case scenario of down-
loading a corrupted piece, the piece is just discarded and
downloaded again. In the case of downloading a corrupted
metadata file, the BitTorrent client will notice a difference
in the checksum from the metadata file and the checksum
provided by the tracker and will stop the download [10].

Redundancy: As with all file-sharing platforms, a higher
redundancy is better, because it infers a higher availability.
There is also no disadvantage of high disk space utilization
as every peer who downloads the file also wants to use it, so
they want to have it available locally to them. With BitTor-
rent, a higher redundancy also implies a higher download
speed for new leechers.

Overhead: The obvious overhead of BitTorrent, compared
to downloading a file from a single source, is the metadata

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

114 doi: 10.2313/NET-2018-11-1_15



file, the connection to the tracker and the meta information
sent when connecting to other peers. The connection to
the tracker makes up for a thousandth of all traffic, which
makes it negligible [9]. The already mentioned overhead of
replicating the file to every node in the system and thereby
using a lot of disk space is not negative as this is the goal of
the system.

Attack Resistance: While there are few attack vectors on
BitTorrent that actually result in the successful download
of a corrupt file, there are methods to hinder a download.
These are called poisoning attacks and are executed by anti-
piracy-agencies and malicious users. Poisoning attacks in-
clude uploading a large amount of fake files and/or malware,
so that users cannot find the file they are looking for with
a search engine [11]. Another possible attack is flooding all
peers that offer parts of the file with download requests so
that it cannot be downloaded by others. This and other
methods are even offered as a service by companies like Me-
diaDefender [5].

All in all, BitTorrent is a peer-to-peer file sharing protocol
with high performance, a good strategy for consistency, little
overhead and a small number of attack vectors.

3.1.2 Kademlia
Kademlia [14] is a peer-to-peer distributed hash table (DHT).
Even though Kademlia was developed as a research project,
it has found its way into practical usage with it being inte-
grated into BitTorrent [13] and the cryptocurrency Ethereum
[20].

The identifier space is used for both keys and node IDs. Keys
are stored on nodes whose IDs are ”close”. Because the whole
network is interpreted as a binary tree, the magnitude of the
distance in a fully populated tree is determined by the height
of the smallest subtree the two nodes are part of. The path
from the root of the network to the root of the subtree sets
the prefix for all identifiers in the subtree.

Figure 2: Finding a key in Kademlia [14]

To ensure that a node can find every other node in the net-
work, it has to know at least one node from every subtree it
is not part of. To look up the value for a given key, the node

sends parallel requests to the k nodes it has contact with
closest to the key. Each of the nodes returns the k nodes
it has contact with closest to the key. The requesting node
then sorts the nodes by distance to the key and contacts the
k closest nodes. This is done recursively until one of the
contacted nodes returns the value.

To store a <key,value> pair, a node searches for the k closest
nodes to the key and sends them a store command. When
a new node joins the network, it introduces itself to the
system and stores all <key,value> pairs it is one of the k
closest nodes to.

Kademlia can be used as a way to remove nearly all central
components from a peer-to-peer network. In this context
it provides a way to find data and information on how to
access it, so in the case of BitTorrent it replaces the central
trackers [13].

Scalability: The amount of storage scales linearly with
the amount of nodes as the redundancy-factor k is global
and not dependent on the amount of nodes in the network.
Of course, with an increasing amount of nodes in the net-
work, the amount of nodes that have to be contacted to find
the value of a key increases, but because of some optimiza-
tions in the tree lookup system this scales even better than
O(log2(n)) [14] which is good.

Performance: Kademlia uses parallel, redundant requests
to decrease performance-loss by broken nodes or nodes that
have left the network. When another node does not re-
ply within a certain time, the node is removed from the re-
questing node’s contact list and is no longer contacted until
it reintroduces itself. The system also uses caching to de-
crease the likelihood of creating a hotspot on a single node
when a certain <key,value> pair is often requested. When-
ever a node requests a value for a given key, it sends a store
command to the node closest to the key that did not have
the value stored before. Because of the unidirectional topol-
ogy, requests from other nodes for the same key are highly
likely to hit the caching nodes. With parallel requests and
optimized caching Kademlia’s performance is very good.

Consistency: The original publisher of a <key,value> pair
has to republish it every 24 hours to limit stale information
in the system. Each of the k nodes the <key,value> pair
is stored on primarily has to republish it every hour. To
decrease the amount of cached stale information, the time
to live in the cache is exponentially inversely proportional
to the distance between the node the <key,value> pair is
primarily stored on and the node it is cached on. Since stale
information can live a long time in Kademlia, its consistency
is not outstanding.

Redundancy: <key,value> pairs are stored at least k times
in the system as they are stored on the k closest nodes to the
key, so whenever a node leaves the network (or dies) at least
k− 1 nodes should still have the information available. Due
to republishing, after a maximum of one hour, the informa-
tion should be available on k nodes again. When all k nodes
that store the same <key,value> pair leave the network in a
single hour, the information should be available again after
24 hours at last. With k chosen to have a small likelihood

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

115 doi: 10.2313/NET-2018-11-1_15



of k nodes leaving the network in one hour, Kademlia’s re-
dundancy is good.

Overhead: As already mentioned, <key,value> pairs have
to be republished every hour. This process is optimized by a
node not republishing for the next hour when a republish was
received, as it is assumed that the other nodes have received
the republish as well. Caching also introduces some overhead
but that is limited to short time periods and to <key,value>
pairs that are requested often. It also decreases the amount
of hops needed to receive a value for a given key, so it reduces
network traffic which is the more precious resource in a peer-
to-peer system that runs on end users’ home computers.

Attack Resistance: One attack vector for open distributed
systems is to overtake a large part of the system and by that
being able to control the whole network. This is difficult
with Kademlia as the existing nodes do not replace nodes
in their contact list that have been longer known to them
with newer ones. One reason for this is that statistically,
nodes that have been in the network for a longer time have
a smaller risk of leaving the network. Another reason is that
a malicious attacker cannot overtake the network by flooding
it with new nodes.

Overall Kademlia has a good scalability, a great perfor-
mance, but falls short on consistency and overhead as keys
have to be actively republished but cannot be actively re-
moved.

3.2 Content Delivery Networks
Websites usually start out running on a single server, but
when they grow large, even a single cluster of servers is no
longer enough. One possibility is to use proxies in front
of the content generating servers in order to cache static
content. But now that a large amount of content on the in-
ternet is generated dynamically, hit rates of proxies are low
(25-40%) [12] and more elaborate systems called Content
Delivery Networks (CDNs), were developed. These systems
consist of a large amount of servers distributed both geo-
graphically and regarding network topology. Whenever a
user wants to access a website, the user actually connects
to one of the CDN’s servers instead of the actual website’s
servers. The CDN only connects to the content generating
server if it has to.

3.2.1 Akamai
Akamai is one of the world’s largest content delivery net-
works (CDN) with well known customers such as Facebook,
Adobe and Airbnb. They have ”more than 240,000 servers
in over 130 countries and within more than 1,700 networks
around the world”[4].

When a large amount of users hits a single website at once
(a flashcrowd), Akamai allocate more of their servers to the
website that needs them at the moment and less to others.
They also try to serve users from a server nearby, so that
latency is low and packet-loss is small [12].

For customers with large amounts of data, Akamai use tiered
distribution within their own network: A set of ”parent”
clusters (see figure 3) is used to cache the data within the
network, and when another cluster does not have that data

available, it retrieves it from the parent cluster instead of
the origin. This can result in offload of over 90% [15].

Akamai also handle livestreams through their network [15],
but this is out of the scope of this paper.

Figure 3: Overview of the Akamai network [15]

Scalability: Akamai was designed with scalability in mind
[15]. Tiered distribution allows for a large amount of data
being available within the network and therefor being avail-
able at high speed to the whole overlay network.

Performance: Performance was another goal Akamai was
designed for [15]. They have developed their own overlay
network with a number of improvements over using stan-
dard internet. One advantage is path optimization, as paths
defined by the Border Gateway Protocol are not always op-
timal and sending traffic through an intermediate server on
the Akamai network can be faster. This can show improve-
ments in speed of 30-50% [17]. On top of that it can in-
crease reliability by offering alternate paths. Another ad-
vantage of path optimization is reduced packet loss. For
applications requiring low latency, a packet can be sent via
multiple ways simultaneously, which decreases the chance
of a packet not reaching its destination at all. This is also
combined with forward error correction techniques to de-
crease the amount of times packets have to be discarded
because of transmission errors. Additionally, Akamai uses
transport protocol optimizations to mitigate the overhead of
protocols like TCP. Further, application level optimization
is used when possible. This includes content compression or
even the implementation of application logic on edge servers
[15].

Consistency: Data management for cacheable objects is
mostly based on standard techniques such as assigning time-
to-live values to each object or using different URLs for dif-
ferent versions of the same object. But as Akamai only serve
content for their customers, they expect to retain control
over their data [15].

Redundancy: How often a datum is stored in the Akamai
network depends on the customer and their needs. As men-
tioned above, for a customer Akamai is an extension of their

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

116 doi: 10.2313/NET-2018-11-1_15



own network and the amount of redundancy is completely
dependent on their application. With tiered distribution
Akamai tries to strike a balance between redundancy and
fast availability within their own network.

Overhead: As Akamai’s overlay network is proprietary, the
protocol overhead is not known, but they claim it to have
improvements over standard TCP as mentioned above (see
performance). This is done by reducing the amount of times
a connection has to be setup and torn down, as they can
leave up connections within their network for a longer time.

Attack Resistance: As Akamai is a closed network, there
are no attackers within the network that could try to destroy
data or deliver wrong data. Attacks from the outside are still
possible, but Akamai was engineered with a high failure rate
of equipment and connections in mind. Because of that, a
lot of effort was put into recovery from all kinds of failure
scenarios [15].

All in all, the highly distributed nature is fundamental to
Akamai’s high performance. The entire communication within
the overlay network is optimized and the two small hops on
either end are meant to be short enough that they do not
matter. This means great scalability, performance and re-
dundancy.

3.3 Distributed Databases
A distributed database can partition data over many servers,
for OLTP use-cases (transactional processing: a large amount
of simple queries) each query can be handled by a different
node or for OLAP use-cases (analytical processing: a small
amount of complicated queries) the nodes can work together
on a single query. With replication, they can also make
large amounts of data available to geographically dispersed
systems with a low speed link in-between.

Zatara was chosen as it was one of the first general use-case
NoSQL databases. CouchDB was selected for its ability to
gracefully resynchronize a client that was offline for some
time.

3.3.1 Zatara
Zatara is an eventually consistent distributed database built
to satisfy the needs of modern cloud applications [8]. Oppo-
site to relational databases like MySQL or Postgresql, Zatara
is a NoSQL database. NoSQL databases allow for other data
models than tables and support other query systems than
SQL. Zatara, in particular, is more similar to a key-value-
storage.

Each key can be of the type cache only or persistent storage.
Cache only keys are stored on a single node in memory and
are not replicated at all. This implies that they are lost
on node failure and are non persistent. Persistent keys are
eventually consistent and are stored on disk. They are also
replicated to all other nodes in the group.

Each key to be stored is mapped to a single node by a hash-
ing algorithm and the client connects directly to that node
to store the key. For cache only keys this is the one node
that stores the key and for persistent keys this is the pri-
mary node the key is stored on and the node that handles

replication for this key.

Figure 4: Zatara nodes organized in groups [8]

When a new node joins the network, there are two options:
The first option is that the node joins an existing group and
replicates the keys that are stored in the group. The other
option is that a group is split. For this, the keys of the old
group have to be rehashed and are thereby divided between
the two new groups.

Every node is configured with a unique node id and authen-
tication information. To connect to the network, each node
is given a list of other nodes in the network.

Scalability: Data is replicated regionally only, whereby
replication data only has to be sent to a small amount of
nodes, instead of the whole network. Data is also replicated
asynchronously after it has been stored on at least a second
node, which brings a good scalability.

Performance: One of the performance improving design
aspects of Zatara is that keys are cached in memory and the
more often they are requested, the higher a TTL they are
being assigned. This decreases the chance of the key being
deleted in case the node runs out of memory. In more prac-
tical terms, the authors not only describe Zatara in [8], but
also evaluate its performance using 196 Amazon EC2 Large
Instances as nodes [8]. They come to the conclusion that
performance scales near linearly without any replication and
is only 10% slower with replication for reading a key from
the database. In [8] they note that they were ”able to reach
more than 20 million operations per second in a pay-as-you-
grow cloud infrastructure that costs less than 100USD per
hour.”

Consistency: Zatara offers eventual consistency4, so it
guarantees that the results for a changed entry will be con-
sistent after the consistency window has closed. This mech-
anism is implemented by the node that primarily stores the
key actively distributing the new value for the key to the
other nodes in the group. As soon as at least one other
node of the group has acknowledged the update request, the
node acknowledges the request to the client. By this, Zatara

4consistency is guaranteed only a given timespan after the
data update is completed, not directly, as it is with tradi-
tional database systems

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

117 doi: 10.2313/NET-2018-11-1_15



can also guarantee a persistent key to be always stored on
at least two nodes. If a node cannot be contacted, the send-
ing node will increase a soft fail counter for that node. If
the soft fail counter increases above a certain threshold, the
node’s status will be set to HardFail and other nodes will be
informed.

Redundancy: Persistent keys in Zatara are guaranteed to
be stored on at least two nodes. When the primary node for
the key is not available, the key will be read from another
node in the group. As long as the groups are large enough,
redundancy in Zatara is good.

Overhead: Asynchronous replication is used to reduce over-
head compared to synchronous replication, but it is still a
problem in large networks with many nodes. To solve this
problem, nodes are organized in groups with recommended
group sizes of 2-4 nodes per group. With the recommended
group size, Zatara can strike a balance between redundancy
and overhead.

Attack Resistance: Zatara employs an internal key to
store username and passwords and another internal key to
store which users are allowed access to which databases. Ev-
ery client and every node first has to authenticate against
the internal key, so in theory only trusted clients and nodes
should have access to the network.

All in all, Zatara is a distributed database with very good
scalability because of asynchronous data replication, good
performance because of in-memory caching and eventual
consistency. Overhead and attack resistance are neither out-
standingly good nor bad.

3.3.2 CouchDB
CouchDB [3] is a document storage NoSQL database aimed
at web applications. Documents are the main unit of data,
consisting of a number of fields and attachments [1].

One of the primary use cases of CouchDB is to have multiple
offline nodes and then synchronize the data upon reconnect.
CouchDB is designed to handle partitioning of the system,
especially when a single node disconnects and reconnects to
the network, gracefully [1].

Internally, documents are versioned and when a new version
of a document is saved, it is appended to the end of the
database file. Occasionally, all current versions are copied
into a new file and the old file is deleted when no clients use
it anymore [1].

Scalability: CouchDB restricts data lookup to keys, which
allows for data to be partitioned between many nodes with-
out loosing the ability to query each node individually [1].
This brings good scalability.

Performance: Locally (on a node) data is stored in B-trees,
so that data lookup by key efficient (O(logN)). Additionally,
CouchDB uses multiversion concurrency control (MVCC)
instead of locks [1]. With MVCC, queries see the state of
the database at the beginning of the query for their whole
lifetime. Because of this, queries can be run fully in parallel
as long as they do not write to the same data set. As already

mentioned, data can be partitioned between nodes to handle
large amounts of data and large queries. Because of efficient
data lookup and parallel requests, performance of CouchDB
is good.

Consistency: A single CouchDB node is fully ACID (avail-
ability, consistency, integrity, durability) compliant. As men-
tioned above, MVCC is used for reading queries. When a
client tries to save a document that in the meantime has
been edited by another client, an edit conflict is triggered.
The client then is offered the option to resolve the conflict by
reapplying the changes to the newer version of the document.
A conflict is also triggered, when an offline node reconnects
to the network and a document was changed on both the
network and the node. Each node deterministically decides
which version of a document wins in this situation (usually
the newest one). The loosing versions are still stored in the
database and can still be accessed. They are only purged on
database compaction. Loosing versions, like any others, are
replicated among the network. Because of that, every node
in the network sees the conflict and has the option to resolve
it either automatically or manually [1]. This is an elaborate
system, similar to version control systems like git5.

Redundancy: This is left for the user of the database sys-
tem to decide upon. Databases can only run on a single
node, can be fully replicated between many nodes, can be
partitioned between many nodes or any configuration in be-
tween. All of these options have their own advantages and
disadvantages resulting in higher or lower query speed and
higher or lower availability [1].

Overhead: As mentioned above, data can be fully repli-
cated between a number of nodes in the system. This obvi-
ously brings a large overhead in both storage and commu-
nication. When a node, that was offline for a while, recon-
nects to the network, all changes have to be transferred to
it and all the changes on the reconnecting node have to be
transferred to other nodes in the network. The amount of
overhead depends on the level of redundancy, so it is not a
negative.

Attack Resistance: For external security, CouchDB im-
plements a simple authentication model by default, but also
allows for a custom, more complex model. One can im-
plement a JavaScript function for update validation that
receives both the new state of the document and authen-
tication of the client to decide on that basis if the update
should be allowed [1].

All in all, CouchDB is a very flexible system being both
useful with data partitioned over many servers and a sin-
gle instance running on a smartphone. It offers very good
performance and an elaborate system for consistency.

4. SUMMARY
In table 1 an overview of all systems and their particular
advantages and disadvantages is given. All of the systems
are marked at least ”good” in performance, as every system
is optimized for at least one use-case and performs well in
it.

5https://git-scm.com

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

118 doi: 10.2313/NET-2018-11-1_15



Table 1: Overview of All Systems
System Data update Scalability Performance Consistency Redundancy Overhead Attack

Resistance
++ + 0 + 0 -

BitTorrent - dl. speed
scales lin. with
#nodes

upload util.
very good

no data
updates;
corrupt data
identified

high high, but
aligns with
goals

poisoning
attacks
possible

+ ++ +/0 + - +
Kademlia active

republication
storage scales
lin. with
#nodes;
lookup time
scales with
O(log2n)

parallel
redundant
requests,
efficient
caching

old information
max. 24h in
system

< key, value >
pairs stored on
>= k nodes

optimized
process
republishing
< key, value >
pairs every
hour

cannot be
overtaken by
node flooding

++ ++ 0 ++ 0 ++
Akamai dep. on

customer
>240.000
nodes

optimized
transfer speed
in network

based on
TTL/version
URLs, but dep.
on customer

tiered distr.
allows for any
degree

improvements
over standard
TCP, dep. on
redundancy

only attacks
from outside
possible; high
recovery rate

++ ++ + + 0 0
Zatara active asynchr. data

repl.; large
#groups
possible; O(1)
key lookup

in-memory
caching (least
recently used)

eventual
consistency

keys are
guaranteed to
be stored on
>= 2 nodes

regional
replication

simple
authentication

++ ++ ++ ++ + +
CouchDB active data lookup by

key only; data
can be
partitioned
over many
nodes

key lookup
locally
O(logN);
MVCC for
parallel
reading queries

eventual
consistency;
graceful
conflict
handling

dep. on
use-case

dep. on
redundancy
needed

simple auth.
model by
default, can be
customized

There are also interesting differences between the systems.
BitTorrent does not allow for the actual data to change and
is the only system that uses passive data update (for meta-
data) by having the nodes poll from the tracker. All other
systems use active updates for replication. With Kademlia
data is republished every hour, Zatara actively updates the
values during the replication window and CouchDB repli-
cates data actively on change or on reconnection to the net-
work. Akamai with tiered distribution can invalidate cached
data actively, dependent on the customer’s needs.

It makes sense that active replication was found the most as
it decreases the time of the network being inconsistent. It
brings more overhead if only a single node needs the data
in the end, but that does not align with the goal of high
availability that most systems have.

There are also different strategies for deciding on which
nodes to store data. BitTorrent stores all data on all nodes.
Kademlia stores a key on the k closest nodes to the key.
With Zatara a key is stored on a primary node that then
replicates it to the rest of the group. CouchDB is very flex-
ible on this issue as one can use a custom filter function for
every node to apply during replication. With Akamai using
tiered distribution, data is stored on a few primary nodes
first and is then cached by other nodes when it is needed.
Which nodes are chosen as the primary ones is dependent
on the customer’s needs, e.g. where the customer’s main
userbase is from geographically.

There are also different ways for conflict handling. CouchDB
is the only system that has an elaborate strategy. As men-
tioned above, it sets the key to a conflict state and then lets
the clients handle it. All the other systems do not do conflict
management. BitTorrent does not need it as data cannot be

changed. Tiered distribution also does not create any con-
flicts as data comes from a single place and is propagated
from the primary nodes. A node in a Kademlia network
looses all data on disconnect and therefor cannot create a
conflict on reconnect. With Zatara all writes are directed to
the same node and are then replicated from there, so there
is a single authority for every key in the system. Larger par-
titions breaking off the network and then rejoining it is not
provided for.

5. CONCLUSION
All of the systems, with the exception of Zatara, are popular
at the time of writing: BitTorrent is the most popular peer-
to-peer filesharing protocol [7], Kademlia is implemented in
BitTorrent [13], Akamai reaches more than 30 Terabits per
second of traffic and CouchDB is used by many small com-
panies and even large ones like Akamai [2].

A short overview of the different protocols used in the sys-
tems was given and their strategies for data management
were compared. Each of them has their own advantages and
disadvantages.

As mentioned, distributed systems could only be developed
because of high-speed networks. The worlds largest high-
speed network - the internet - is available and here to stay,
so the amount of distributed systems will only ever increase.
With more and more aspects of peoples lives moving online,
systems will have to be employed that support a very large
workload and can be accessed from all over the world. The
only type of systems available to handle this, are distributed
systems.

6. REFERENCES

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

119 doi: 10.2313/NET-2018-11-1_15



[1] 1. introduction. http:
//docs.couchdb.org/en/2.1.1/intro/index.html.
last accessed: 02.06.2018 15:09 (revision f85b3421).

[2] Companies using couchdb.
https://idatalabs.com/tech/products/couchdb.
last accessed: 02.06.2018 15:11.

[3] Couchdb - relax. http://couchdb.apache.org. last
accessed: 02.06.2018 15:10.

[4] Facts & figures. https:
//www.akamai.com/us/en/about/facts-figures.jsp.
last accessed: 27.05.2018 20:47.

[5] N. Anderson. Peer-to-peer poisoners: A tour of
mediadefender. https://arstechnica.com/
tech-policy/2007/03/mediadefender, May 2017. last
accessed: 27.05.2018 15:38.

[6] A. Bharambe, C. Herley, and V. N. Padmanabhan.
Analyzing and improving bittorrent performance. 01
2006.

[7] K. Bode. Netflix now accounts for 36.5% of peak
internet traffic.
http://www.dslreports.com/shownews/

Netflix-Now-Accounts-for-365-of-Peak-Internet-Traffic-133945,
May 2015. last accessed: 02.06.2018 15:12.

[8] B. Carstoiu and D. Carstoiu. High performance
eventually consistent distributed database zatara. In
INC2010: 6th International Conference on Networked
Computing, pages 1–6, May 2010.

[9] B. Cohen. Incentives build robustness in bittorrent.
http://www.bittorrent.org/bittorrentecon.pdf,
May 2003. last accessed: 27.05.2018 14:51.

[10] B. Cohen. The bittorrent protocol specification.
http://www.bittorrent.org/beps/bep_0003.html,
Feb 2017. last accessed: 18.05.2018 18:44.

[11] R. Cuevas, M. Kryczka, Á. Cuevas, S. Kaune,
C. Guerrero, and R. Rejaie. Is content publishing in
bittorrent altruistic or profit-driven? In Proceedings of
the 6th International Conference on emerging
Networking EXperiments and Technologies (ACM
CoNEXT 2010), http://hdl.handle.net/10016/10116,
December 2010.

[12] J. Dilley, B. Maggs, J. Parikh, H. Prokop,
R. Sitaraman, and B. Weihl. Globally distributed
content delivery. IEEE Internet Computing,
6(5):50–58, Sep 2002.

[13] A. Loewenstern and A. Norberg. Dht protocol.
http://www.bittorrent.org/beps/bep_0005.html,
Jan 2008. last accessed: 02.06.2018 15:11.

[14] P. Maymounkov and D. Mazières. Kademlia: A
peer-to-peer information system based on the xor
metric. In P. Druschel, F. Kaashoek, and A. Rowstron,
editors, Peer-to-Peer Systems, pages 53–65, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[15] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai
network: A platform for high-performance internet
applications. SIGOPS Oper. Syst. Rev., 44(3):2–19,
Aug. 2010.

[16] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The
bittorrent p2p file-sharing system: Measurements and
analysis. In M. Castro and R. van Renesse, editors,
Peer-to-Peer Systems IV, pages 205–216, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[17] H. Rahul, M. Kasbekar, R. Sitaraman, and A. Berger.
Towards realizing the performance and availability
benefits of a global overlay network. MIT CSAIL TR
2005-070, Dec. 2005.

[18] R. Steinmetz and K. Wehrle. 2. What Is This
“Peer-to-Peer” About?, pages 9–16. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[19] M. van Steen and A. S. Tanenbaum. A brief
introduction to distributed systems. Computing,
98(10):967–1009, Oct 2016.

[20] vbuterin and J. Ray. Kademlia peer selection.
https://github.com/ethereum/wiki/wiki/

Kademlia-Peer-Selection, Oct 2015. last accessed:
02.06.2018 15:13 (revision ea47c31).

[21] Z. Zhang, Y. Li, Y. Chen, P. Cao, B. Deng, and X. Li.
Understand the unfairness of bittorrent. 12 2010.

Seminars FI / IITM SS 18,
Network Architectures and Services, September 2018

120 doi: 10.2313/NET-2018-11-1_15


